Real-Time Systems

Chan-Gun Lee

What are

real-time embedded systems?

- Embedded Systems
 - Cell phones, PDAs
 - Digital cameras
 - Microwave ovens
 - Multimedia systems such as DVR, VOD server, etc
 - Factory process control
 - Radar systems
 - Avionics
- Most of embedded systems have a certain level (hard or soft) of timing constraints in addition to logical correctness requirements
- "Real-Time Embedded Systems"

Course Philosophy

- Purposes
 - Familiarize students with fundamental theory and design practice of real-time and embedded systems
 - Theory
 - real-time task models, real-time scheduling, schedulability analysis, inter-task synchronization, end-to-end scheduling, etc.
 - students get ready for "active research" in real-time area
 - Practice
 - Confirm real-time theory with real examples
 - Low-level programming, inline ASM, Interrupts & Timers
 - System development with RTOS (RT-Linux)

Topics

Real-Time Embedded Systems

- Definitions
- Examples
- Theory
 - Real-time Task Modeling Formalize the problem
 - Real-Time Scheduling and Analysis
 - Cyclic executive, Rate monotonic, Earliest deadline first
 - Schedulability analysis
 - Timing analysis
 - Task synchronization
 - Sporadic and Aperiodic Task Scheduling
 - Other advanced topics (OORT, QoS, Power-aware, RT-communication)

• Practical Skills

- Timers and Interrupts
- Real-Time Operating Systems RT-Linux
- Device Drivers

Prerequisite

- Assume pre-built knowledge on basic ideas of computer programming and computer architecture
 - C-programming skills
 - Basic concepts on computer architecture
 - Basic concepts on operating systems

Course Information

- Instructor: Chang-Gun Lee (cglee@snu.ac.kr)
- TA: None
- Class meeting time: Mon, Wed 5 pm ~ 6:15 pm
- Classroom: 301-203
- Office Hours: Wed 12-1pm (Pizza or Gim-Bob will be served by appointment)
- Textbook:
 - Jane W. S. Liu, Real-Time Systems, Prentice-Hall
- Grading
 - Attendance: 0%, Midterm 30%, Final 40%, HW, Prjs, Term-Paper 30%
- NOTE1: Four computer projects will be assigned. The ones who complete the projects and turn in reports will get extra credits.
- NOTE2: Each student should turn in a term-paper. A couple of good papers will be selected and submitted to prestigious international conference.

Passive vs. Active Learning

- After 2 weeks, we tend to remember
- Passive learning
 - 10% of what we read
 - 20% of what we hear
 - 30% of what we see (picture)
 - 50% of what we hear and see
- Active learning
 - 70% of what we say
 - 90% of what we say and do

Everybody! be an Active Learner

- recall prior material
- answer a question (say a lot!)
- guess the solution first (even guessing wrong will help you to remember the right approach)
- raise questions
- think of application
- imagine that you were the professor and think about how you would give a test on the subject material so that key concepts and results will be checked
- summarize a lecture, a set of homework or a lab in your own words concisely

An Active Learner will become an Independent Researcher and Engineer

First Assignment

- Install RT-Linux (by March 15 Monday)
 - Installation instruction available on the website
 - You will encounter huge number of unexpected problems, just be patient, invest more time (searching Internet for helps or consult RT-Linux mailing list archive)
 - Run the examples and turn in a report
 - The report should explain the whole process we should take
 - The report should include problems found and solutions for them
 - The report should look like an in-depth installation guide the best one will be used for next offerings