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25 Cauchy’s Integral Formula

25.1 Independence of Path

Theorem 1 (Independence of path)
If f(z) is analytic in a simply connected domain D, then the integral of f(z) is independent
of path in D.

Proof.
c∗2 : the path c2 with the orientation reversed.
c1 + c∗2 : simple closed path.
Cauchy’s theorem applies.
(2’) ∫

c1

fdz +
∫

c∗2
fdz = 0 ⇒

∫

c1

fdz = −
∫

c∗2
fdz

(2)

∴
∫

c1

f(z)dz =
∫

c2

f(z)dz

This proves the theorem for paths that have only the endpoints in common.

Principle of Deformation of Path.
Hence we may impose a continuous deformation of the path of an integral, keeping the ends
fixed. As long as our deforming path always contains only points at which f(z) is analytic,
the integral retains the same value. This is called the principle of path.

Existence of Indefinite Integral.

Theorem 2 (Existence of an infinite integral)

If f(z) is analytic in a simply connected domain D, then there exists an indefinite integral
F (z) of f(z) in D-thus, F ′(z) = f(z)- which is analytic in D, and for al paths in D joining
any two points z0 and z1 in D, the integral of f(z) from z0 to z1 can be evaluated by

∫ z1

z0

f(z)dz = F (z1)− F (z0). [F ′(z) = f(z)]

Proof. If f(z) is analytic in a simply connected domain D, then the integral of f(z) is
independent of path in D
(3)

F (z) =
∫ z1

z0

f(z∗)dz∗,
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which is uniquely determined. We show that this F (z) is analytic in D and F ′(z) = f(z)

(4)

F (z + ∆z)− F (z)
∆z

=
1

∆z

[∫ z+∆z

z0

f(z∗)dz∗ −
∫ z

z0

f(z∗)dz∗
]

=
1

∆z

∫ z+∆z

z
f(z∗)dz∗

(4)− f(z) :
F (z + ∆z)− F (z)

∆z
− f(z) =

1
∆z

∫ z+∆z

z
f(z∗)dz∗ − f(z) −−− a)

Show that R.H.S approaches zero as ∆z → 0
f(z) is a constant because z is kept fixed

∫ z+∆z

z
f(z)dz∗ = f(z)

∫ z+∆z

z
dz∗ = f(z)∆z.

Thus f(z) =
1

∆z

∫ z+∆z

z
f(z)dz∗ −−− b)

b) → a)
F (z + ∆z)− F (z)

∆z
− f(z) =

1
∆z

∫ z+∆z

z
[f(z∗)− f(z)]dz∗

Since f(z) is analytic, it is continuous. An ε > 0 being given, we can thus find a δ > 0
such that |f(z∗) − f(z)| < ε when |z∗ − z| < δ. Hence, letting |∆z| < δ, we see that the
ML-inequality yields

∣∣∣∣
F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ =
1

∆z

∣∣∣∣
∫ z+∆z

z
[f(z∗)− f(z)]dz∗

∣∣∣∣ ≤
1
|∆z|ε|∆z| = ε.

By the definition of limit and derivative,

F ′(z) = lim
∆z→0

F (+∆z)− f(z)
∆z

= f(z)

Since z is any point in D, this implies that F (z) is analytic in D and is an indefinite integral
on antiderivative of f(z) in D, written

F (z) =
∫

f(z)dz

Also of G′(z) = f(z), then F ′(z)−G′(z) ≡ 0 in D : hence F (z)−G(z) is constant in D. Two
indefinite integrals of f(z) can differ only by a constant. This proves theorem.

Cauchy’s Theorem for Multiply Connected Domains.
For a doubly connected domain D
(5) ∫

c1

f(z)dz =
∫

c2

f(z)dz
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Proof.

D1 :
∫

c10

f(z)dz +
∫

ec2 f(z)dz +
∫

c∗2
f(z)dz +

∫

ec2 f(z)dz = 0 −−− 1)

since f(z) is analytic in D1

D2 :
∫ ∗

1
f(z)dz −

∫

ec2 f(z)dz +
∫

c20

f(z)dz −
∫

ec1 f(z)dz = 0 −−− 2)

1) + 2);
∫

z10

f(z)dz +
∫

c1∗
f(z)dz +

∫

c2∗
f(z)dz +

∫

c20

f(z)dz = 0

C10 + C1∗ = C1(ccw), C2∗ + C20 = C2(cw)
∫

c1

f(z)dz −
∫

c2

f(z)dz = 0 in both ccw.

∴
∫

c1

f(z)dz =
∫

c2

f(z)dz.

Example 1. A basic result : Integral of integer power.

(6) ∮
(z − z0)mdz =

{
2πi (m = −1)
0 (m 6= −1 and integer)

for ccw integration around any simple closed path containing z0 in its interior.

25.2 Cauchy’s Integral Formula

Theorem 3 (Cauchy’s integral formula)
Let f(z) be analytic in a simply connected domain D. Then for any point z0 in D and any
simple closed path C in D that encloses z0,
(1) ∮

c

f(z)
z − z0

dz = 2πif(z0) (Cauchy’s integral formula)

the integration being taken ccw.
(1∗)

f(z0) =
1

2πi

∮

c

f(z)
z − z0

dz (Cauchy’s integral formula)

Proof.
f(z) = f(z0) + [f(z)− f(z0)]

(2) ∮

c

f(z)
z − z0

dz = f(z0)
∮

c

dz

z − z0
+

∮

c

f(z)− f(z0)
z − z0

dz
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∮
dz

z − z0
= 2πi (Example 6 in sec.13.2)

1st term on the R.H.S
∴ f(z0)

∮

c

dz

z − z0
= 2πif(z0)

C is replaced by a small circle k of radius ρ by the principle of deformation of path . Hence
an ε > 0 being given, we can find a δ > 0 such that |f(z) − f(z0)| < ε for all z in the disk
|z − z0| < δ.

∴
∣∣∣∣
f(z)− f(z0)

z − z0

∣∣∣∣ <
ε

ρ

By the ML-inequality, ∣∣∣∣
∮

k

f(z)− f(z0)
z − z0

dz

∣∣∣∣ <
ε

ρ
2πρ = 2πε

Since ε(> 0) can be chosen arbitrarily small, it follows that the above integral must have the
value zero.

Example 2. Cauchy’s integral formula.

∮

c

ez

z − 2
dz = 2πiez|z=2 = 2πie2 ≈ 46.4268i

for any contour enclosing z0 = 2.

Example 3. Cauchy’s integral formula.

∮

c

z3 − 6
2z − i

dz =
∮

c

1
2z3 − 3
z − i

2

dz − 2πi(
1
2
z3 − 3)|z=i/2 = π/8− 6πi (z0 = i/2 inside C)

Example 4. Integration around different contours.

g(z) =
z2 + 1
z2 − 1

=
z2 + 1

(z − 1)(z + 1)

Solution.
(a) circle |z − 1| = 1, encloses z0 = 1

g(z) =
z2 + 1
z2 − 1

=
z2 + 1
z + 1

· 1
z − 1

; f(z) =
z2 + 1
z + 1

(b) gives the same as (a) by the principle of deformation of path
(c) z0 = −1

g(z) =
z2 + 1
z − 1

· 1
z + 1

: thus f(z) =
z2 + 1
z − 1
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(d) 0. g(z) is analytic

Example 5. use of partial fractions.

g(z) =
tan z

z2 − 1
: the circle C : |z| = 3/2 (ccw)

Solution. tan z is not analytic at ±π/2,±3π/2, · · · , but all these points lie outside the
contour.

(z2 − 1)−1 = 1/(z − 1)(z + 1) is not analytic at 1 and -1

1
z2 − 1

=
1
2

(
1

z − 1
− 1

z + 1

)

∮
tan z

z2 − 1
dz =

1
2

[∮
tan z

z − 1
dz −

∮
tan z

z + 1
dz

]

=
1πi

2
[tan 1− tan(−1)] = 2πi tan 1 ≈ 9.785i

Multiply connected domain.
For instance, if f(z) is analytic on C1 and C2 and in the ring-shaped domain bounded by C1

and C2 and z0 is any point in that domain, then
(3)

f(z0) =
1

2πi

∮

c1

f(z)
z − z0

dz +
1

2πi

∮

c2

f(z)
z − z0

dz,

where the outer integral C1 is taken ccw and the inner clockwise.
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