25 Cauchy's Integral Formula

25.1 Independence of Path

Theorem 1 (Independence of path)

If $f(z)$ is analytic in a simply connected domain D, then the integral of $f(z)$ is independent of path in D.

Proof.
c_{2}^{*} : the path c_{2} with the orientation reversed.
$c_{1}+c_{2}^{*}$: simple closed path.
Cauchy's theorem applies.
(2')

$$
\int_{c_{1}} f d z+\int_{c_{2}^{*}} f d z=0 \Rightarrow \int_{c_{1}} f d z=-\int_{c_{2}^{*}} f d z
$$

(2)

$$
\therefore \int_{c_{1}} f(z) d z=\int_{c_{2}} f(z) d z
$$

This proves the theorem for paths that have only the endpoints in common.

Principle of Deformation of Path.

Hence we may impose a continuous deformation of the path of an integral, keeping the ends fixed. As long as our deforming path always contains only points at which $f(z)$ is analytic, the integral retains the same value. This is called the principle of path.

Existence of Indefinite Integral.

Theorem 2 (Existence of an infinite integral)

If $f(z)$ is analytic in a simply connected domain D, then there exists an indefinite integral $F(z)$ of $f(z)$ in D-thus, $F^{\prime}(z)=f(z)$ - which is analytic in D, and for al paths in D joining any two points z_{0} and z_{1} in D, the integral of $f(z)$ from z_{0} to z_{1} can be evaluated by

$$
\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right) . \quad\left[F^{\prime}(z)=f(z)\right]
$$

Proof. If $f(z)$ is analytic in a simply connected domain D, then the integral of $f(z)$ is independent of path in D
(3)

$$
F(z)=\int_{z_{0}}^{z_{1}} f\left(z^{*}\right) d z^{*},
$$

which is uniquely determined. We show that this $F(z)$ is analytic in D and $F^{\prime}(z)=f(z)$
(4)

$$
\begin{aligned}
& \frac{F(z+\Delta z)-F(z)}{\Delta z}=\frac{1}{\Delta z}\left[\int_{z_{0}}^{z+\Delta z} f\left(z^{*}\right) d z^{*}-\int_{z_{0}}^{z} f\left(z^{*}\right) d z^{*}\right]=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f\left(z^{*}\right) d z^{*} \\
& \left.(4)-f(z): \frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f\left(z^{*}\right) d z^{*}-f(z) \quad---a\right)
\end{aligned}
$$

Show that R.H.S approaches zero as $\Delta z \rightarrow 0$
$f(z)$ is a constant because z is kept fixed

$$
\begin{gathered}
\int_{z}^{z+\Delta z} f(z) d z^{*}=f(z) \int_{z}^{z+\Delta z} d z^{*}=f(z) \Delta z \\
\text { Thus } \left.f(z)=\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d z^{*}---b\right) \\
b) \rightarrow a) \quad \frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z} \int_{z}^{z+\Delta z}\left[f\left(z^{*}\right)-f(z)\right] d z^{*}
\end{gathered}
$$

Since $f(z)$ is analytic, it is continuous. An $\varepsilon>0$ being given, we can thus find a $\delta>0$ such that $\left|f\left(z^{*}\right)-f(z)\right|<\varepsilon$ when $\left|z^{*}-z\right|<\delta$. Hence, letting $|\Delta z|<\delta$, we see that the ML-inequality yields

$$
\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=\frac{1}{\Delta z}\left|\int_{z}^{z+\Delta z}\left[f\left(z^{*}\right)-f(z)\right] d z^{*}\right| \leq \frac{1}{|\Delta z|} \varepsilon|\Delta z|=\varepsilon .
$$

By the definition of limit and derivative,

$$
F^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{F(+\Delta z)-f(z)}{\Delta z}=f(z)
$$

Since z is any point in D, this implies that $F(z)$ is analytic in D and is an indefinite integral on antiderivative of $f(z)$ in D, written

$$
F(z)=\int f(z) d z
$$

Also of $G^{\prime}(z)=f(z)$, then $F^{\prime}(z)-G^{\prime}(z) \equiv 0$ in D : hence $F(z)-G(z)$ is constant in D. Two indefinite integrals of $f(z)$ can differ only by a constant. This proves theorem.

Cauchy's Theorem for Multiply Connected Domains.

For a doubly connected domain D
(5)

$$
\int_{c_{1}} f(z) d z=\int_{c_{2}} f(z) d z
$$

Proof.

$$
\left.D_{1}: \int_{c_{1}} f(z) d z+\int_{\widetilde{c_{2}}} f(z) d z+\int_{c_{2}^{*}} f(z) d z+\int_{\widetilde{c_{2}}} f(z) d z=0 \quad---1\right)
$$

since $f(z)$ is analytic in D_{1}

$$
\begin{gathered}
\left.D_{2}: \int_{1}^{*} f(z) d z-\int_{\tilde{c_{2}}} f(z) d z+\int_{c_{2_{0}}} f(z) d z-\int_{\widetilde{c_{1}}} f(z) d z=0 \quad---2\right) \\
1)+2) ; \quad \int_{z_{1_{0}}} f(z) d z+\int_{c_{1^{*}}} f(z) d z+\int_{c_{2^{*}}} f(z) d z+\int_{c_{2_{0}}} f(z) d z=0 \\
C_{1_{0}}+C_{1^{*}}=C_{1}(c c w), \quad C_{2^{*}}+C_{2_{0}}=C_{2}(c w) \\
\int_{c_{1}} f(z) d z-\int_{c_{2}} f(z) d z=0 \quad \text { in both ccw. } \\
\therefore \int_{c_{1}} f(z) d z=\int_{c_{2}} f(z) d z .
\end{gathered}
$$

Example 1. A basic result : Integral of integer power.
(6)

$$
\oint\left(z-z_{0}\right)^{m} d z= \begin{cases}2 \pi i & (m=-1) \\ 0 & (m \neq-1 \text { and integer })\end{cases}
$$

for ccw integration around any simple closed path containing z_{0} in its interior.

25.2 Cauchy's Integral Formula

Theorem 3 (Cauchy's integral formula)

Let $f(z)$ be analytic in a simply connected domain D. Then for any point z_{0} in D and any simple closed path C in D that encloses z_{0},
(1)

$$
\oint_{c} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) \quad \text { (Cauchy's integral formula) }
$$

the integration being taken ccw.
(1*)

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{z-z_{0}} d z \quad \text { (Cauchy's integral formula) }
$$

Proof.

$$
f(z)=f\left(z_{0}\right)+\left[f(z)-f\left(z_{0}\right)\right]
$$

(2)

$$
\oint_{c} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \oint_{c} \frac{d z}{z-z_{0}}+\oint_{c} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z
$$

$$
\oint \frac{d z}{z-z_{0}}=2 \pi i \quad \text { (Example } 6 \text { in sec.13.2) }
$$

$1^{\text {st }}$ term on the R.H.S

$$
\therefore f\left(z_{0}\right) \oint_{c} \frac{d z}{z-z_{0}}=2 \pi i f\left(z_{0}\right)
$$

C is replaced by a small circle k of radius ρ by the principle of deformation of path. Hence an $\varepsilon>0$ being given, we can find a $\delta>0$ such that $\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon$ for all z in the disk $\left|z-z_{0}\right|<\delta$.

$$
\therefore\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|<\frac{\varepsilon}{\rho}
$$

By the ML-inequality,

$$
\left|\oint_{k} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|<\frac{\varepsilon}{\rho} 2 \pi \rho=2 \pi \varepsilon
$$

Since $\varepsilon(>0)$ can be chosen arbitrarily small, it follows that the above integral must have the value zero.

Example 2. Cauchy's integral formula.

$$
\oint_{c} \frac{e^{z}}{z-2} d z=\left.2 \pi i e^{z}\right|_{z=2}=2 \pi i e^{2} \approx 46.4268 i
$$

for any contour enclosing $z_{0}=2$.
Example 3. Cauchy's integral formula.

$$
\oint_{c} \frac{z^{3}-6}{2 z-i} d z=\oint_{c} \frac{\frac{1}{2} z^{3}-3}{z-\frac{i}{2}} d z-\left.2 \pi i\left(\frac{1}{2} z^{3}-3\right)\right|_{z=i / 2}=\pi / 8-6 \pi i \quad\left(z_{0}=i / 2 \text { inside } C\right)
$$

Example 4. Integration around different contours.

$$
g(z)=\frac{z^{2}+1}{z^{2}-1}=\frac{z^{2}+1}{(z-1)(z+1)}
$$

Solution.

(a) circle $|z-1|=1$, encloses $z_{0}=1$

$$
g(z)=\frac{z^{2}+1}{z^{2}-1}=\frac{z^{2}+1}{z+1} \cdot \frac{1}{z-1} ; f(z)=\frac{z^{2}+1}{z+1}
$$

(b) gives the same as (a) by the principle of deformation of path
(c) $z_{0}=-1$

$$
g(z)=\frac{z^{2}+1}{z-1} \cdot \frac{1}{z+1}: \text { thus } f(z)=\frac{z^{2}+1}{z-1}
$$

(d) $0 . g(z)$ is analytic

Example 5. use of partial fractions.

$$
g(z)=\frac{\tan z}{z^{2}-1} \quad: \text { the circle } C:|z|=3 / 2(\mathrm{ccw})
$$

Solution. $\tan z$ is not analytic at $\pm \pi / 2, \pm 3 \pi / 2, \cdots$, but all these points lie outside the contour.

$$
\begin{aligned}
\left(z^{2}-1\right)^{-1}= & 1 /(z-1)(z+1) \text { is not analytic at } 1 \text { and }-1 \\
& \frac{1}{z^{2}-1}=\frac{1}{2}\left(\frac{1}{z-1}-\frac{1}{z+1}\right) \\
\oint \frac{\tan z}{z^{2}-1} d z= & \frac{1}{2}\left[\oint \frac{\tan z}{z-1} d z-\oint \frac{\tan z}{z+1} d z\right] \\
= & \frac{1 \pi i}{2}[\tan 1-\tan (-1)]=2 \pi i \tan 1 \approx 9.785 i
\end{aligned}
$$

Multiply connected domain.
For instance, if $f(z)$ is analytic on C_{1} and C_{2} and in the ring-shaped domain bounded by C_{1} and C_{2} and z_{0} is any point in that domain, then
(3)

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c_{1}} \frac{f(z)}{z-z_{0}} d z+\frac{1}{2 \pi i} \oint_{c_{2}} \frac{f(z)}{z-z_{0}} d z
$$

where the outer integral C_{1} is taken ccw and the inner clockwise.

