Priority-Driven Scheduling of Periodic Tasks - Chapter 6 – (Dynamic Priority (1))

Overview

- EDF
 - optimality (Done!)
 - schedulable utilization bound
 - time demand analysis

Dynamic-priority scheduling

- How to assign Priorities? we already proved that assigning priority based on the absolute deadline is optimal
- How to check the schedulability?

Schedulability of EDF

• Theorem: given a set of *n* (independent) periodic tasks, each deadline will be met if and only if the total utilization of the tasks is no greater than 1. That is:

$$\frac{e_1}{p_1} + \frac{e_2}{p_2} + \dots + \frac{e_n}{p_n} \le 1$$

• How in the world can we prove that?

Proving Steps

- Necessity: Schedulable \rightarrow Total Utilization ≤ 1
 - Total Utilization > 1 \rightarrow Not Schedulable: easy!
 - How prove?
- Sufficiency: Total Utilization $\leq 1 \rightarrow$ Schedulable
 - Prove that if a job misses deadline, then Total Utilization >1
 - Two cases
 - Easy Case
 - Difficult Case

Time-Demand Analysis

(Alternative way for schedulability check)

- Check if Time-Demand is smaller than Time-Supply at all the times.
- Can we check this
 - For all possible arrival patterns?
 - Infinitely?

Worst-case pattern with EDF

- When EDF is used to schedule a set of tasks on a processor, if there is an overflow for a certain arrival pattern, then there is an overflow without idle time prior to it in the pattern in which all tasks are released synchronously.
- Proof:....

Time-demand approach (proof)

• Proof:

The theorem is proved by showing that the processor demand equation is equivalent to the classical schedulability condition:

$$U = \sum_{i=1}^{n} \frac{e_i}{p_i} \le 1 \qquad \Leftrightarrow \qquad L \ge \sum_i \left\lfloor \frac{L}{p_i} \right\rfloor \cdot e_i$$

Hence, first of all, we prove that:

$$U = \sum_{i=1}^{n} \frac{e_i}{p_i} \le 1 \qquad \Rightarrow \qquad L \ge \sum_i \left\lfloor \frac{L}{p_i} \right\rfloor \cdot e_i$$

If $U \le 1$, then for all L (L ≥ 0),

$$L \ge UL = \sum_{i=1}^{n} \frac{L}{p_i} e_i \ge \sum_{i=1}^{n} \left\lfloor \frac{L}{p_i} \right\rfloor \cdot e_i$$

Processor demand approach Then, we prove that: $U = \sum_{i=1}^{n} \frac{e_i}{p_i} \le 1 \quad \Leftarrow \quad L \ge \sum_{i=1}^{n} \left\lfloor \frac{L}{p_i} \right\rfloor \cdot e_i$ we prove it by contradiction; hence, suppose that U > 1, there exists a L ≥ 0 such that L < D[0, L]

if U > 1, then for $L = lcm(p_1, p_2, ..., p_n)$,

$$L < UL = \sum_{i=1}^{n} \frac{L}{p_i} e_i = \sum_{i=1}^{n} \left\lfloor \frac{L}{p_i} \right\rfloor \cdot e_i$$

