
1

WCET Analysis

Overview

• Measurement method vs. Analytical method
• Simple analytical method
• Architecture-aware analysis



2

Why analytical methods?
• Measurement

– does NOT guarantee WCET
• The execution time depends on branches taken, loop count, cache hit/miss, etc.
• Measurement cannot explore all possible cases 

– is very expensive and timing consuming
– is possible only after executable code and execution environment has been 

setup, NOT early design stage
• Analysis

– Guarantee WCET (safe bound)
– Most of analysis steps can be automated (easy to use)
– Can be used in early design stage to check 1) a piece of code is short 

enough, 2) interrupt handlers finish quickly enough, 3) which piece of 
code should be further optimized, 4) system will be schedulable, and 
much more

WCET Analyzer 

C-source code

Object code

OR WCET Analyzer

WCET

Other useful info
(e.g., WC execution path)

Processor
Architecture 
Information

WCET Analyzer will become an important component of IDE (Integrated 
Development Environment) for Embedded Real-Time Systems (along with 
Compiler, Debugger, RTOS, RT-monitor, etc)



3

Target Processors 

1999 World Market for Microprocessors
David Tennenhouse (Intel Director of 
Research) Keynote Speech at RTSS’99

1999 32-bit Microcontroller Sales 
Microprocessor Report, Jan. 17, 2000

• Embedded Market is really big
• Developers choose the minimum processor that meets the requirement
• Most of popular embedded processor has simple architecture (RISC) –

analytical method practical!
• Simple pipeline and no cache (or small on-chip cache)

Target Software
• C, C++, and Assembly languages are most popular 

in embedded system market
– Ada and Java have some use, but need for speed, small 

code size, and efficient access to hardware will prevent 
them from being dominant languages

• So, main focus is on analyzing programs written 
in C, C++, and Assembly languages



4

Basic Analysis Method
i=0;
while(i<5){

i++;
a = b+c;
if (a >0)

d = a;
else

d = a/2 + b*2 + c;
if(d >10)

b = b/2;
else

b = b+1;
}

i=0

i<5?

i++;
a=b+c;

a>0?

d=a; d=a/2+b*2+c;
if
construct

while
construct

basic
construct

sequential
construct

Compiler generates 
control-flow graph d>10?

b=b/2; b=b+1;

if
construct

Timing Schema

(exp)))((exp)()( (exp) while:

))(),(max((exp))( else  then )exp( if
)()()(;:

1
11

2121

2121

TSTTSTSS

STSTTSTSSS:
STSTSTSSS

N

i
++=⇒

+=⇒

+=⇒

∑
=

Bottom-up applying timing schema

T(1st_if) = 1+max(2,6) = 7

T(2nd_if) = 1+max(4,3) = 5

T(insideWhile) = 4+7+5=16

T(while) = 5*(1+16)+1=86

T(all)=1+86=87

i=0

i<5?

i++;
a=b+c;

a>0?

d=a; d=a/2+b*2+c;
if
construct

while
construct

basic
construct

sequential
construct

d>10?

b=b/2; b=b+1;

if
construct

1

1

4

1

2 6

1

4 3

basic
construct



5

Pipelined Processor

Time
IF

RD

MUL ALU DIV

MEM

WB

inst1 inst2 inst3

inst1 inst2 inst3

inst1 inst2 inst3

inst1 inst2 inst3

inst1 inst2 inst3

1 2 3 4 5 6 7

Timing Abstraction for pipeline



6

Bottom-up concatenation

x x x
x x x

x
x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

a=b+c;
a=a*c;

d=3;
a=d/c;

time=9 time=9

w(S1) w(S2)

)()()(;: 2121 SwSwSwSSS ⊕=⇒

S1

S2

Bottom-up concatenation

x x x
x x x

x
x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

time=9 time=9

x x x
x x x

x
x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

time=15



7

Bottom-up concatenation

x x x
x x x

x
x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

time=9 time=9

x x x
x x x

x
x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

time=15

Bottom-up concatenation

• OK. Instead of just time T(S) for a construct S, we will keep the 
reservation table w(S).

• Problem: keeping only the one with max time does not guarantee 
WCET at the end



8

x x x
x x x

x
x x x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

x

exp

S1 S2

)((exp) 1Sww ⊕

)((exp) 2Sww ⊕
time=11

time=10

x x x
x x x

x
x x x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

x

exp

S1 S2

SS1

SS2

)((exp) 1Sww ⊕

)((exp) 2Sww ⊕

x x
x x

x

x x x
x

x

x

)( 1SSw



9

x x x
x x x

x
x x x x x

x x x
x x x

x x x
x x x

x

x x x
x x x

x x x

x

x x
x x

x

x x x
x

x

x

x x x
x x x

x
x x x x x

x x x
x x x

x x
x x

x

x x x
x

x

x

x x
x x

x

x x x
x

x

x

x x x
x x x

x

x x x
x x x

x x x

x

)( 1SSw

)((exp) 1Sww ⊕

)((exp) 2Sww ⊕
time=13

time=14

Revised Timing Schema

{ }

(exp).))((exp)()( (exp) while:

)),((exp)())((exp)()( else  then )exp( if

,,|  where
)()()(;:

111

2121

22112121

2121

WSWWSWSS

SWWSWWSWSSS:

WwWwwwWW
SWSWSWSSS

N

i
⊕







 ⊕⊕=⇒

⊕∪⊕=⇒

∈∈⊕=⊕
⊕=⇒

=



10

What are problems?

• Reservation tables become longer and longer as 
we do concatenation.

• Number of reservation tables we have to keep 
exponentially increase.

Abstracted Reservation Table (1)



11

Abstracted Reservation Table (2)

Pruning

• If we are sure that a reservation table w cannot 
contribute to WCET, we can drop it.

• Pruning condition: if w1’s worst case scenario is 
better than w2’s best case scenario, then we can 
prune w1. 

w1.time

w2.time

W1’s worst case 
scenario

W2’s best case 
scenario

w2.time-head-tail

tailheadtimewtimewWw δδ −−<∈∃ .., 212



12

Instruction Cache Effects
• If there is on-chip instruction cache, ignoring it will give us 

too pessimistic WCET 
• Cache hit/miss depends on previous execution path taken
• In the stage of bottom-level construct analysis, we have no 

idea of preceding execution path 

b2

b3

b2

b4

Memory reference from 
a program construct S

Idea
• For memory references whose cache hit/miss can be 

known by local analysis, accurately consider it in w(S).time
estimation

• For other references, assume cache miss in w(S).time
estimation

• Such pessimistic assumption will be revised in later 
concatenation, if the reference turns out to be cache hit 

b2

b3

Cache 0

Cache 1

b4

b3

First Ref Last Ref



13

Concatenation
b2 b3 b2 b4S1:

b2

b3

Cache 0

Cache 1

b4

b3

First Ref Last Ref

b4 b2 b2 b8S2:

b4

NA

Cache 0

Cache 1

b8

NA

First Ref Last Ref

S:S1;S2

b2

b3

Cache 0

Cache 1

b8

b3

First Ref Last Ref

w(S1) w(S2)

One miss counted in S2 turns out to be hit!

WCET Analyzer



14

WCET analysis accuracy

Summary
• Commercial WCET analysis tool will come out soon (AbsInt 2004 –

Reinhard Wilhelm, Saarland Unv. Germany)
– Retargetable WCET anaysis
– WCET anaysis for super-scalar and VLIW architecture for DSP 
– Modular implementation of WCET analysis steps
– Integration with other development tools such as compiler, source-level 

debugger, RTOS, real-time kernel monitor
• References

– Sung-Soo Lim et al., An Accurate Worst Case Timing Analysis for RISC 
Processors, IEEE Transactions on Software Engineering, Vol. 21, No. 7, 
July 1995.

– Jakob Engblom et al., Worst-Case Execution-Time Analysis for 
Embedded Real-Time Systems, Journal of Software Tools for 
Technology Transfer, 2001. 


