

Real-Time Ubiquitous Systems

- Integrative System: Entertainment, Medical, Sensing, and Communication Devices
- Integrative Systems that provide <u>real-time</u> <u>interactions</u> with humans and environment
 - Continuous real-time monitoring of human activities
 - Providing real-time guidance
 - Real-time emergency detection and handling
 - Making our daily lives more safe and enjoyable
- How to integrate computing, wireless, and sensing devices providing such real-time interactions?

Real-Time tracking Human/Objects for Assisted Living

- Services we wish to provide:
 - Object finding
 - Where did I leave my eye-glasses?
 - Checking if actions were taken
 - Did I eat my pills today?
 - Behavior analysis
 - Early symptom of diseases

Real-Time Tracking of Human/Object can solve

Our Sensing Infrastructure (Ultrasonic and RFID)

Wristband with

- "Ultrasonic Listener" and
- "RFID reader"
- Tracking user: Ultrasonic Listener on a Wristband
- Tracking object carried by the user: RFID reader of the Wristband

US listener -

RFID Reader

Scheduling Issue

- Two types of active signals
 - Sensing: Ultrasonic signals from multiple beacons
 - Communication: Various RF messages from multiple beacons, listeners, and host computer
- Original cricket method: Carrier sensing and random arbitration
 - Maximum possible sampling rate is limited
 - Poor real-time tracking
- Our new scheduling method
 - Collision-free scheduling providing much faster sampling
 - Combined schedule of "Sensing" and "Communication"
 - Location-aware dynamic scheduling: further improvement of sampling rate
 - Mobility-conscious scheduling: energy saving

Location-aware Performance

 By using Locationaware scheduling, we can achieve a higher sampling rate resulting in less error for high mobility listeners

Mobility-conscious Performance

- Tracking accuracy requirement: tracking error should be less than 20 cm with a probability higher than 90%
- Mobility-aware scheduling can meet the requirement while saving Listener's energy consumption.

Tracking human

Success-based Self-Coloring

- Each beacon monitors which colors are free
- If at least one free color is detected, it tries to capture the color (contention based)
- Once it successfully capture the color, it senses the target in a contention free manner

Location-aware scheduling (3-D Blocking Problem)

Summary

- Collision-free scheduling of sensing and communication for real-time tracking
 - Combined scheduling of sensing and communication
 - Location-aware scheduling
 - Mobility-conscious scheduling
- What we lean
 - Integration of sensing, wireless, computing, and estimation theory
 - Temporal requirement guarantee for physical interaction points

