
1

Objected-Oriented
Real-Time System Design

Motivations

• Next-Generation real-time systems become
– Complicated
– Distributed
– Networked

• Examples
– Military unmanned command/control system
– City-wide disaster monitoring and management system
– Hospital patient monitoring system
– Assisted-living

• System specification is very difficult in traditional way
• Object-Oriented Design Paradigm needed

2

Time-Driven vs Event-Driven(OO)
cruiseControlTask()
{

while(1){
read current speed;
check brake pedal;
if (brakePressed)

braking…
else{

compute control law;
write throttleValue;

}
sleep (100ms);

}
}

speed
sensor

Brake

Engine

speed sensor
module

Brake
module

Engine
module

Control
module

Time-Driven
SW Design

Event-Driven (OO)
SW Design

Object-Oriented Real-Time
Design Approach

• OO-design more naturally reflect the actual system
• Easy to think
• We can focus on each component and specify event-driven

operations with a stateChart
• Reusable
• Portable
• Flexible
• Extendable

3

Emerging RT designs use
OO paradigm

• Real-Time OO design support languages and tools
– Chaos (Honeywell)
– Cadena (Kansas State Univ.)
– Geodesic (CMU)
– ROOM: Real-Time Object Oriented Modeling
– UML (Universal Modeling Language) – RT
– Real-Time JAVA
– Real-Time CORBA

• Even a small system follow OO paradigm
– TinyOS (Set of commonly used object modules)

Cruise control system example

-Start with manual mode

-When Cruise lever set, goto
automaticControl mode

- In automaticControl mode, regularly
check the current speed and actuate
the engine accordingly to maintain the
setSpeed.

- In automaticControl mode, goto
manual mode when brakePressed,
accelPressed, cruiseOff

4

State Description of
the cruiseControl object

Transactions and timing constraints
At each rotation of drive shaft

(at every rotation of the wheels)
Periodically invoked an calculate the
speed using the number of shaft
rotations in the previous period

Enter Manual Control Mode
Enter Automatic Control Mode

When 6000rpm

5

Message Sequence for Entering Cruise mode

Periodically
calculate the
speed by
counting the
shaft-rotation
interrupts

Message Sequence for Cruise Control Loop

Periodically
calculate the speed
by counting the
shaft-rotation
interrupts

6

Message Sequence for Leaving Cruise Mode

Challenge is
how to implement the system

and validate the timing
• Real-Time theory (including schedulability analysis) is

built on Time-Driven Model
• Real-Time Operating Systems have been evolved with

Time-Driven Model in mind
• Mapping is required from OO-design to Time-driven

implementation over RTOS platform
• How to reuse Real-Time Theory for the schedulability

check after the mapping?

7

Mapping Objects to RTOS threads

• Map a group of objects into an RTOS thread
– For example

• map speedometer object to a RTOS thread
• map all other objects to another RTOS thread

– Optimal mapping is a challenging problem
• Priority

– Transaction priority is determined based on e2e deadline. We give
higher priorities to the aborting transactions (BP,CO,AP > CL)

– Event priority is determined by the highest priority of the
transactions that it belongs to

– Thread priority: dynamically determined by the priority of event
currently being handled (RTOS will dispatch a thread according to
the thread priority)

– This is just heuristic. The optimal priority assignment is an open
issue.

Priorities of Cruise Control Transactions

- Consider each transaction as a Virtual Task.
- Our concern is whether each virtual task can meet its deadline

if it is executed on the above (thread implemented) run-time system

8

Schedulability Analysis
• Calculate the worst case response time of each

transaction
• High-priority transaction can be blocked by low-

priority event handling
– Blocking due to Run-To-Completion of a thread

– Sharing message queue (Mutual exclusion)

• Revised response time equation for transaction i

() ()ijCB event
j

j

RTC
i ThreadThread::max ==

RTC
ii

ihp
j

j

i
i BCC

T
RR

j

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
= ∑

∈)(τ

Worst case event processing time that belongs to transaction j

A high priority thread will not be delayed
by a low priority thread due to preemptive
thread scheduling
However, it may blocked by the event
handling procedure of the same thread but
belonging to a different transaction.

Response times for transactions

)35()21032(3
50

2
10

:Loop) (Control CL

332
10

:Speed) (Determine DS

32:Interrupt)(Shaft SI

++++++⎥⎥
⎤

⎢⎢
⎡+⎥⎥

⎤
⎢⎢
⎡=

++⎥⎥
⎤

⎢⎢
⎡=

+

RRR

RR

9

Automate the Overall Design Flow

OO-based
system

specification

Thread mapping
and

Priority Assignment

Schedulability
Analysis

Feasible

Infeasible

Code
Generator

Application
Code

Makefiles

Run-Time
Libraries

Compiler

Executable
Code

10

References
• M. Saksena, P. Freedman, and P. Rodziewicz, “Guidelines

for Automated Implementation of Executable Object
Oriented Models for Real-Time Embedded Control
Systems, IEEE RTSS 1997

• Z. Gu and Z. He, “Real-Time Scheduling Techniques for
Implementation Synthesis from Component-Based
Software Models, ACM SIGSOFT 2005

• W. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, Robby, and G.
Singh, “Model-checking Middleware-based Event-driven
Real-Time Embedded Software”, The 1st International
Symposium on Formal Methods for Components and
Objects, 2003

• T. E. Bihari and P. Gopinath, “Object-Oriented Real-Time
Systems: Concepts and Examples, Computer 1992

Still open problems
• Component chains in distributed resources?
• Communication costs?

