Collections (Lists and Sets)

Chang-Gun Lee (cglee@snu.ac.kr)
Assistant Professor
The School of Computer Science and Engineering
Seoul National University

Collections

- The concept of collection is commonly used in computer science
- set of memory blocks in cache
- sorted list of data packets
- set of active tasks in the ready queue
- Two types of collections
- Lists: ordered collections
- Sets: unordered collections

Lists

- A list is an ordered sequence of objects
- $(1,2,5)$
- The order in which elements appear in a list is significant
- ($1,2,3$) and (3, 2, 1)
- Elements in a list might be repeated
- $(3,3,2)$
- "Length" of a list: the number of elements in the list
- A list of length two: ordered pair
- A list of length zero: empty set denoted by ()
- Equality of two lists:
- Two lists have the same length and elements in the corresponding positions on the two lists are equal
$-(a, b, c)=(x, y, z)$ iff $a=x, b=y, x=z$

Lists are all-pervasive

- A point in the plane is often specified by an ordered pair of real numbers (x, y).
- A written natural number is a list of digits: 172 can be considered as the list (1, 7, 2).
- An identifier in a computer program is a list of letters and digits.
- The buffer in a network card holds a list of packets.

Counting Two-element Lists

- How many two-element lists we can make where the entries in the list are any of digits $1,2,3$, and 4 ?

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$

- How many two-element lists we can make where the first element has n choices and the second has m choices?

$(1,1)$	$(1,2)$	\cdots	$(1, m)$
$(2,1)$	$(2,2)$	\cdots	$(2, m)$
\vdots	\vdots	\ddots	\vdots
$(n, 1)$	$(n, 2)$	\cdots	(n, m)

Multiplication Principle

- Theorem 7.2 (Multiplication Principle) Consider two-element lists for which there are n choices for the first element, and for each choice of the first element there are m choices for the second element. Then the number of such lists is $n m$.
- Longer lists?
- Easy to extend: Consider k-element lists for which there are n_{i} choices for the i-th element. Then the number of such lists is $n_{1} n_{2} \ldots n_{k}$.

Two particular list-making problems

- Making a list of length k in which each element of the list is selected from among n possibilities.
- Problem 1: count all such lists permitting repetitions
- Problem 2: count those without repeated elements
- Theorem 7.6: The number of lists of length k whose elements are chosen from a pool of n possible elements

$$
\begin{array}{r}
=\left\{\right. \\
\begin{array}{ll}
\begin{array}{l}
\text { falling } \\
\text { factorial }
\end{array} & \text { 비중복 }
\end{array} \begin{array}{c}
{ }_{n} P_{k}=(n)_{k}
\end{array}{ }_{n} \Pi_{k}=n^{k}
\end{array}
$$

Counting Lists in CS?

- Algorithm complexity analysis: e.g., find the optimal packet ordering in a buffer
- Probabilistic performance evaluation: e.g., probability of no-collision packet transmission in distributed randomized priority mechanism?

Factorial and Product

- n Factorial: the number of length- n lists chosen from a pool of n objects in which repetition is forbidden

$$
\begin{aligned}
& (n)_{n}=n!=n(n-1)(n-2) \cdots(1) \\
& 1!=1 \\
& 0!=1
\end{aligned}
$$

- Product notation

$$
\begin{aligned}
& n!=\prod_{k=1}^{n} k=1 \times 2 \times \cdots \times n \\
& \prod_{k=1}^{5}(2 k+3)
\end{aligned}
$$

Sets

- Set: a repetition-free, unordered collection of objects (combination)
- a given object can be either is a member of a set or it is not
- an object cannot be in a set more than once
- there is no order to the members of a set
- $\{2,3,1 / 2\},\{3,1 / 2,2\},\{2,2,3,1 / 2\}$ are all the same
- Special sets
- Z: set of integers
- N : set of natural numbers
- Q: set of rational numbers
- R : set of real numbers
- Element: an object that belongs to a set is called an element of the set $x \in A$: x is an element of set A
$y \notin A: y$ is not an element of set A
- cardinality of A, size of $A,|A|:$ number of elements in a set A
- A "finite" set: if cardinality is an integer (i.e., finite)
- A "infinite" set: if cardinality is infinite
- empty set, \{ \}, ϕ : the set with no members

Set-builder notation

- Set builder notation

$$
\begin{aligned}
& \text { \{dummy variable } \in \text { set :conditions }\} \\
& \{x \in Z: 2 \mid x\} \\
& \{x \in Z: 1 \leq x \leq 100\}
\end{aligned}
$$

Equality of Sets

- Two sets are equal iff the two sets have exactly the same elements
- How to prove that two sets are equal?
- Proposition 9.1: The following two sets are equal:

$$
\begin{aligned}
& E=\{x \in \mathrm{Z}: x \text { is even }\} \\
& F=\{x \in \mathrm{Z}: x=a+b \text { where } a \text { and } b \text { are both odd }\}
\end{aligned}
$$

Proof Template 5

- Proving two sets are equal
- Let A and B be the sets, To show $A=B$, we have the following template:
- Suppose $x \in A$... Therefore $x \in B$
- Suppose $\mathrm{x} \in B$... Therefore $\mathrm{x} \in A$
- Therefore $A=B$

Subsets

- Definition 9.2 (Subset) Suppose A and B are sets. We say that A is a subset of B (B is a superset of A) provided every element of A is also an element of B.

$$
A \subseteq B
$$

- "strict" or "proper" subset:

$$
A \subseteq B \text { and } A \neq B
$$

Proof Template 6

- Proving one set is a subset of another
- To show $A \subseteq B$:
- Let $x \in A$... Therefore $x \in B$
- Therefore $A \subseteq B$

Proof Template 6

- Proposition 9.5: Let P be the set of Pythagorean triples; that is

$$
P=\left\{(a, b, c): a, b, c \in Z \text { and } a^{2}+b^{2}=c^{2}\right\}
$$

and let T be the set

$$
T=\left\{(p, q, r): p=x^{2}-y^{2}, q=2 x y, \text { and } r=x^{2}+y^{2} \text { where } x, y \in Z\right\}
$$

Then

$$
T \subseteq P
$$

Counting Subsets

- Theorem 9.7: Let A be a finite set. The number of subsets of A is $2^{|A|}$.
- Proof
- bijective proof
- its count is the same as the number of length-|A| lists from yes or no

Power Set

- Definition 9.8: Let A be a set. The power set of A is the set of all subsets of A.
- Example
- the power set of $\{1,2,3\}$

$$
\{\phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

- if a set A has n elements, its power set contains 2^{n} elements
- Notation for the power set of A: 2^{A}

$$
\left|2^{A}\right|=2^{|A|}
$$

Counting Subsets of Size k

- How many combinations of k elements we can choose from n elements?
- How many sets of size k can be made from a set of n elements?
- Definition 16.1: Let $n, k \in N$. The symbol $\binom{n}{k}$ denotes the number of k-element subsets of an n-element set.
- How to calculate $\binom{n}{k}$?

$$
\binom{n}{k}={ }_{n} C_{k}=\frac{{ }_{n} P_{k}}{k!}=\frac{n!/(n-k)!}{k!}
$$

$$
\begin{array}{ccc}
& \text { 비중복 } & \text { 중복 }^{\text {순열 }} \\
{ }_{n}{ }_{n} P_{k}=(n)_{k} \\
\text { 조합 } & { }_{n} C_{k}=\frac{{ }_{n} P_{k}}{k!}=\binom{n}{k} & { }_{n} \Pi_{k}=n^{k} H_{k}
\end{array}
$$

Binomial Coefficients

- $\binom{n}{k}$ is called a binomial coefficient. Why?
- Try to expand $(x+y)^{4}$

$$
\begin{aligned}
& (x+y)^{4}=\binom{4}{0} x^{4} y^{0}+\binom{4}{1} x^{3} y^{1}+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x^{1} y^{3}+\binom{4}{4} x^{0} y^{4} \\
& \text { ur boxes to fill in with either } 1
\end{aligned}
$$

x or y

$$
\binom{4}{2} \text { : number of cases to choose two boxes out of four }
$$

- Theorem 16.8 (Binomial)

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

- Proposition 16.7:

Let $n, k \in N$ with $0 \leq k \leq n$. Then

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Pascal’s Triangle

- The 0 -th row contains just the single number 1
- Each successive row contains one more number than its predecessor
- The first and last number in every row is 1.
- An intermediate number in any row is formed by adding two numbers just to its left and jut to its right in the previous row.
- The entry in row n and column k is $\binom{n}{k}$.
- Theorem 16.10 (Pascal's Identity) Let n and k be integers with $0<k<n$. Then

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

- Proof: Hint \rightarrow combinatorial proof
- Question: How many k-element subsets does an n-element set have?
- Both LHS and RHS are correct answers!

"There is" and "For all"

- There is Quantifier:
$\exists x \in A$, assertion about x
$\exists x \in N, x$ is prime and even
- For all Quantifier:
$\forall x \in A$, assertion about x
$\forall x \in Z, x$ is odd or x is even
- Combining Quantifiers:

$$
\begin{aligned}
& \forall x, \exists y, x+y=0 \\
& \exists y, \forall x, x+y=0
\end{aligned}
$$

Proof Template 7

- To prove

$$
\exists x \in A \text {, assertion about } x
$$

- Let x be (give an explicit example) ... (show that x satisfies the assertion).... Therefore x satisfies the required assertions.
- Example 10.1: $\exists x \in N, x$ is prime and even
- Proof

Consider the integer 2 . Clearly 2 is even and 2 is prime. The statement holds.

Proof Template 8

- To prove

$$
\forall x \in A \text {, assertion about } x
$$

- Let x be any element of $\mathrm{A} . .$. (Show that x satisfies the assertion using only the fact that " x is in A " and no further assumptions on x).... Therefore x satisfies the required assertions.
- Example 10.2: Let $A=\{x \in Z: 6 \mid x\}$
$\forall x \in A, x$ is even
- Proof

For any x divisible by 6 , there is an integer y such that $x=6 y$, which can be rewritten $x=2$ (3y). Therefore x is divisible by 2 and therefore even.

Set Operations

- Union and Intersection

$$
\begin{aligned}
& A \cup B=\{x: x \in A \text { or } x \in B\} \\
& A \cap B=\{x: x \in A \text { and } x \in B\}
\end{aligned}
$$

- Theorem 11.3: Let A, B, and C denote sets. The followings are true:

$$
\begin{aligned}
& A \cup B=B \cup A \text { and } A \cap B=B \cap A \text {. (Commutative properties) } \\
& A \cup(B \cup C)=(A \cup B) \cup C \text { and } A \cap(B \cap C)=(A \cap B) \cap C \text {. (Associative properties) } \\
& A \cup \phi=A \text { and } A \cap \phi=\phi \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \text { and } A \cap(B \cup C)=(A \cap B) \cup(A \cap C) . \\
& \text { (Distributive properties) }
\end{aligned}
$$

- Proof? (Use Theorem 6.2 Boolean Algebra)

Size of Union

- Proposition 11.4: Let A and B be finite sets. Then

$$
|A|+|B|=|A \cup B|+|A \cap B|
$$

- Proof: Imagine we assign labels to every objects (label A to objects in set A and label B to objects in B
- Pose a question: how many labels have we assigned?
- LHS $(|A|+|B|)$ is one correct answer for the above question.
- RHS $(|A \cup B|+|A \cap B|)$ is another correct answer.
- Therefore LHS=RHS
- Example 11.5: How many integers in the range 1 to 1000 (inclusive) are divisible by 2 or by 5?.... Use

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Proof Template 9

- To prove an equation of the form LHS = RHS
- Pose a question of the form, "In how many ways?"
- On the one hand, argue why LHS is a correct answer to the above question
- On the other hand, argue why RHS is also a correct answer.
- Therefore LHS=RHS

Size of Union (2)

- Definition 11.6: (Disjoint) Let A and B be sets. We call A and B disjoint provided $A \cap B=\phi$
- (Pairwise Disjoint) Let $A_{1}, A_{2}, \ldots, A_{\mathrm{n}}$ be a collection of sets. These sets are called pairwise disjoint provided $A_{i} \cap A_{j}=\phi$ whenever $i \neq j$
- Corollary 11.8 (Addition Principle) Let A and B be finite sets. If A and B are disjoint, then

$$
|A \cup B|=|A|+|B|
$$

- Generalization of Addition Principle: If $A_{1}, A_{2}, \ldots, A_{\mathrm{n}}$ are pairwise disjoint sets, then

$$
\left|\bigcup_{k=1}^{n} A_{k}\right|=\sum_{k=1}^{n}\left|A_{k}\right|
$$

Inclusion-Exclusion

- Theorem 18.1 (Inclusion-Exclusion) Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ be finite sets. Then

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right| \\
& -\left|A_{1} \cap A_{2}\right|-\left|A_{1} \cap A_{3}\right|-\cdots-\left|A_{n-1} \cap A_{n}\right| \\
& +\left|A_{1} \cap A_{2} \cap A_{3}\right|+\left|A_{1} \cap A_{2} \cap A_{4}\right|+\cdots+\left|A_{n-2} \cap A_{n-1} \cap A_{n}\right|
\end{aligned}
$$

$$
-\cdots+\cdots \cdots
$$

$$
\pm\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
$$

How to use Inclusion-Exclusion?

- Example 18.3: The number of length-k lists whose elements are chosen from the set $\{1,2, \ldots, n\}$ is n^{k}. How many of these lists use all of the elements in $\{1,2, \ldots, n\}$ at least once?
- Hint!
- \# good lists $=n^{k}-\#$ bad lists
- B1: set of all lists that do not contain 1 (bad because of missing 1)
- B2: set of all lists that do not contain 2 (bad because of missing 2)
$-\#$ bad lists $=\left|B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right|$

How to use Inclusion-Exclusion? (2)

- Example 18.4: There are n ! ways to make lists of length n using the elements of $\{1,2, \ldots, n\}$ without repetition. Such a list is called a derangement if the number j does not occupy position j of the list for every $j=1,2, \ldots, n$. How many derangements are there?
- Hint!
- \# good lists = n! - \# bad lists
- B1: set of all lists that have 1 in position 1 (bad because of 1)
- B2: set of all lists that have 2 in position 2 (bad because of 2)
....
- \# bad lists $=\left|B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right|$

Proof Template 10 (Using inclusion-exclusion)

- Counting with inclusion-exclusion
- Classify the objects as either "good" (the ones you want to count) or "bad" (the ones you don't want to count).
- Decide whether you want to count the good objects directly or to count the bad objects and subtract from the total.
- Cast the counting problem as the size of a union of sets. Each set describes one way the objects might be "good" or "bad".
- Use inclusion-exclusion (Theorem 18.1)

Difference and Symmetric Difference

- Definition 11.9: (Set difference) Let A and B be sets. The set difference, $A-B$, is the set of all elements of A that are not in B :

$$
A-B=\{x: x \in A \text { and } x \notin B\} .
$$

- (Symmetric difference) of A and B , denoted by $A \Delta B$, is the set of all elements in A but not B or in B but not A. That is

$$
A \Delta B=(A-B) \cup(B-A) .
$$

- Proposition 11.11: Let A and B be sets. Then

$$
A \Delta B=(A \cup B)-(A \cap B)
$$

- Proof: (Use Proof Template 5)

$$
\begin{aligned}
& \text { (1) Suppose } x \in A \Delta B \ldots \text { Therefore } x \in(A \cup B)-(A \cap B) \\
& \text { (2) Suppose } x \in(A \cup B)-(A \cap B) \ldots . \text { Therefore } x \in A \Delta B \\
& \text { Therefore } A \Delta B=(A \cup B)-(A \cap B) \text {. }
\end{aligned}
$$

DeMorgan’s Laws

- Proposition 11.12 (DeMorgan's Laws): Let A, B, and C be sets. Then

$$
\begin{aligned}
& A-(B \cup C)=(A-B) \cap(A-C) \\
& A-(B \cap C)=(A-B) \cup(A-C)
\end{aligned}
$$

Cartesian Product

- Definition 11.13 (Cartesian product): Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (two-element lists) formed by taking an element from A together with an element from B in all possible ways. That is,

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

- Proposition 11.15: Let A and B be sets. Then

$$
|A \times B|=|A| \times|B|
$$

- Proof: ???

Two more examples of Combinatorial Proof

- Proposition 12.1: Let n be a positive integer. Then

$$
2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1
$$

- Proof: (Use Proof Template 9)
(1) Pose a question: How many non-empty subsets does $\{1,2, \ldots, n\}$ have?
(2) RHS (2 $\left.2^{\mathrm{n}}-1\right)$ is a correct answer
(3) LHS is also a correct answer (why?)
- Proposition 12.2: Let n be a positive integer. Then

$$
1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1 .
$$

- Proof: (Use Proof Template 9)
(1) Pose a question: How many repetition-free length-($n+1$) lists can we form from $\{1,2, \ldots n+1\}$ in which the elements do not appear in increasing order?
(2) RHS is a correct answer
(3) LHS is also a correct answer (why?)

Multisets

- A multiset is, like a set, an unordered collection of elements. However, in a multiset, an object may be considered to be in the multiset more than once.
- Ex: <1, 2, 3, 3>
- Multiplicity of an element is the number of times it is a member of multiset. (The element 3 has multiplicity equal to 2).
- Two multisets are the same provided they contain the same elements with the same multiplicities.
$-<1,2,3,3>=<3,1,3,2><1,2,3,3>\neq<1,2,3,3,3>$
- The cardinality of a multiset is the sum of the multiplicities of its elements.

Counting Multisets

- How many k-element multisets can we form by choosing elements from an n-element sets?
- How many unordered length-k lists can we form using the elements $\{1,2, \ldots, n\}$ with repetition allowed?
- Definition 17.1: Let $n, k \in N$. The symbol $\left(\binom{n}{k}\right)$ denotes the number of multisets with cardinality equal to k whose elements belong to an n-element set such as $\{1,2, \ldots, n\}$.

$$
\begin{array}{ccc}
& \text { 비중복 } & \text { 중복 } \\
\text { 순열 } & { }_{n} P_{k}=(n)_{k} & { }_{n} \Pi_{k}=n^{k} \\
\text { 조합 } & { }_{n} C_{k}=\frac{{ }_{n} P_{k}}{k!}=\binom{n}{k} & { }_{n} H_{k}=\left(\binom{n}{k}\right)
\end{array}
$$

Counting Multisets (2)

- Proposition 17.6: Let n, k be positive integers. Then

$$
\left(\binom{n}{k}\right)=\left(\binom{n-1}{k}\right)+\left(\binom{n}{k-1}\right)
$$

- Theorem 17.8: Let n, k be positive integers. Then

$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k}
$$

- Proof: Hint strange encoding of a multiset

$$
\left.\left.\langle 1,1,1,2,3,3,5\rangle \leftrightarrow^{* * *}\right|^{*}\right|^{* *} \|^{*}
$$

k stars and $n-1$ bars
How many ways of
encodings?
Out of $\mathrm{k}+\mathrm{n}-1$ positions,
select k positions to put
stars

Homework

- 7.10, 7.12
- 9.1, 9.5
- 10.1, 10.4
- 11.1, 11.5, 11.6, 11.21
- 12.1, 12.4
- 16.13, 16.15
- 17.1, 17.2, 17.8

