Collections (Lists and Sets)

Chang-Gun Lee (cglee@snu.ac.kr)

Assistant Professor

The School of Computer Science and Engineering

Seoul National University

Collections

- The concept of collection is commonly used in computer science
 - set of memory blocks in cache
 - sorted list of data packets
 - set of active tasks in the ready queue
- Two types of collections
 - Lists: ordered collections
 - Sets: unordered collections

Lists

- A list is an ordered sequence of objects
 - (1, 2, 5)
 - The order in which elements appear in a list is significant
 - (1, 2, 3) and (3, 2, 1)
 - Elements in a list might be repeated
 - (3, 3, 2)
- "Length" of a list: the number of elements in the list
 - A list of length two: ordered pair
 - A list of length zero: empty set denoted by ()
- Equality of two lists:
 - Two lists have the same length and elements in the corresponding positions on the two lists are equal
 - (a, b, c) (x, y, z) iff a x, b y, x z

Lists are all-pervasive

- A point in the plane is often specified by an ordered pair of real numbers (*x*, *y*).
- A written natural number is a list of digits: 172 can be considered as the list (1, 7, 2).
- An identifier in a computer program is a list of letters and digits.
- The buffer in a network card holds a list of packets.

Counting Two-element Lists

• How many two-element lists we can make where the entries in the list are any of digits 1, 2, 3, and 4?

(1,1)	(1,2)	(1,3)	(1,4)
(2,1)	(2,2)	(2,3)	(2,4)
(3,1)	(3,2)	(3,3)	(3,4)
(4,1)	(4,2)	(4,3)	(4,4)

• How many two-element lists we can make where the first element has *n* choices and the second has *m* choices?

Multiplication Principle

- Theorem 7.2 (Multiplication Principle) Consider two-element lists for which there are *n* choices for the first element, and for each choice of the first element there are *m* choices for the second element. Then the number of such lists is *nm*.
- Longer lists?
- Easy to extend: Consider *k*-element lists for which there are n_i choices for the *i*-th element. Then the number of such lists is $n_1 n_2 ... n_k$.

Two particular list-making problems

- Making a list of length *k* in which each element of the list is selected from among *n* possibilities.
- Problem 1: count all such lists permitting repetitions
- Problem 2: count those without repeated elements
- Theorem 7.6: The number of lists of length *k* whose elements are chosen from a pool of *n* possible elements

$$=\begin{cases} n^{k} & \text{if repetitions are permitted} \\ (n)_{k} = n(n-1)(n-2)\cdots(n-(k-1)) & \text{if repetitions are forbidden} \\ \hline \text{falling} & \text{비중복} & \text{중복} \\ \hline \text{factorial} & \text{순열} & _{n}P_{k} = (n)_{k} & _{n}\Pi_{k} = n^{k} \\ \hline \text{조합} & _{n}C_{k} = \frac{_{n}P_{k}}{k!} = \binom{n}{k} & _{n}H_{k} \end{cases}$$

Counting Lists in CS?

- Algorithm complexity analysis: e.g., find the optimal packet ordering in a buffer
- Probabilistic performance evaluation: e.g., probability of no-collision packet transmission in distributed randomized priority mechanism?

Factorial and Product

• *n* Factorial: the number of length-*n* lists chosen from a pool of *n* objects in which repetition is forbidden

$$(n)_n = n! = n(n-1)(n-2)\cdots(1)$$

 $1! = 1$
 $0! = 1$

• Product notation

$$n! = \prod_{k=1}^{n} k = 1 \times 2 \times \dots \times n$$
$$\prod_{k=1}^{5} (2k+3)$$

Sets

- Set: a repetition-free, unordered collection of objects (combination)
 - a given object can be either is a member of a set or it is not
 - an object cannot be in a set more than once
 - there is no order to the members of a set
 - {2, 3, 1/2}, {3, 1/2, 2}, {2, 2, 3, 1/2} are all the same
- Special sets
 - Z: set of integers
 - *N*: set of natural numbers
 - Q: set of rational numbers
 - *R*: set of real numbers
- Element: an object that belongs to a set is called an element of the set $x \in A$: x is an element of set A

 $y \notin A$: y is not an element of set A

- cardinality of A, size of A, |A| : number of elements in a set A
 - A "finite" set: if cardinality is an integer (i.e., finite)
 - A "infinite" set: if cardinality is infinite
- empty set, $\{ \}$, ϕ : the set with no members

Set-builder notation

• Set builder notation

 $\{\text{dummy variable} \in \text{set} : \text{conditions}\}$ $\{x \in \mathbb{Z} : 2 \mid x\}$ $\{x \in \mathbb{Z} : 1 \le x \le 100\}$

Equality of Sets

- Two sets are equal iff the two sets have exactly the same elements
- How to prove that two sets are equal?
- Proposition 9.1: The following two sets are equal:

 $E = \{x \in Z : x \text{ is even}\}$ $F = \{x \in Z : x = a + b \text{ where } a \text{ and } b \text{ are both odd}\}$

Proof Template 5

- Proving two sets are equal
- Let *A* and *B* be the sets, To show *A*=*B*, we have the following template:
 - Suppose $x \in A$... Therefore $x \in B$
 - Suppose $x \in B$... Therefore $x \in A$
- Therefore *A*=*B*

Subsets

• Definition 9.2 (Subset) Suppose *A* and *B* are sets. We say that *A* is a subset of *B* (*B* is a superset of *A*) provided every element of *A* is also an element of *B*.

 $A \subseteq B$

• "strict" or "proper" subset:

 $A \subseteq B$ and $A \neq B$

Proof Template 6

- Proving one set is a subset of another
- To show $A \subseteq B$:
 - Let $x \in A$... Therefore $x \in B$
 - Therefore $A \subseteq B$

Proof Template 6

• Proposition 9.5: Let P be the set of Pythagorean triples; that is $P = \{(a, b, c): a, b, c \in \mathbb{Z} \text{ and } a^2 + b^2 = c^2\}$

$$P = \{(a, b, c) : a, b, c \in \mathbb{Z} \text{ and } a^2 + b^2 = c^2\}$$

and let T be the set

 $T = \{(p,q,r) : p = x^2 - y^2, q = 2xy, \text{ and } r = x^2 + y^2 \text{ where } x, y \in Z\}$ Then

 $T \subseteq P$

Counting Subsets

- Theorem 9.7: Let A be a finite set. The number of subsets of A is 2^{|A|}.
- Proof
 - bijective proof
 - its count is the same as the number of length-|A| lists from yes or no

Power Set

- Definition 9.8: Let A be a set. The power set of A is the set of all subsets of A.
- Example
 - the power set of $\{1,2,3\}$

 $\{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

- if a set A has n elements, its power set contains 2^n elements
- Notation for the power set of A: 2^A

$$|2^{A}| = 2^{|A|}$$

Counting Subsets of Size k

- How many combinations of *k* elements we can choose from *n* elements?
- How many sets of size *k* can be made from a set of *n* elements?
- Definition 16.1: Let $n, k \in N$. The symbol $\binom{n}{k}$ denotes the number of *k*-element subsets of an *n*-element set.

Binomial Coefficients

- \$\begin{pmatrix} n \\ k \end{pmatrix}\$ is called a binomial coefficient. Why?
 Try to expand \$(x+y)^4\$

$$(x+y)^{4} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} x^{4} y^{0} + \begin{pmatrix} 4 \\ 1 \end{pmatrix} x^{3} y^{1} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} x^{2} y^{2} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} x^{1} y^{3} + \begin{pmatrix} 4 \\ 4 \end{pmatrix} x^{0} y^{4}$$

four boxes to fill in with either 1 2 3 4
x or y
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
: number of cases to choose two boxes out of four

Theorem 16.8 (Binomial)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

• Proposition 16.7:

Let $n, k \in N$ with $0 \le k \le n$. Then

$$\binom{n}{k} = \binom{n}{n-k}$$

Pascal's Triangle

- The 0-th row contains just the single number 1
- Each successive row contains one more number than its predecessor
- The first and last number in every row is 1.
- An intermediate number in any row is formed by adding two numbers just to its left and jut to its right in the previous row.
- The entry in row *n* and column *k* is $\binom{n}{k}$.
- Theorem 16.10 (Pascal's Identity) Let n and k be integers with 0 < k < n. Then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

- Proof: Hint \rightarrow combinatorial proof
 - Question: How many k-element subsets does an n-element set have?
 - Both LHS and RHS are correct answers!

"There is" and "For all"

• There is Quantifier:

 $\exists x \in A$, assertion about x

 $\exists x \in N, x \text{ is prime and even}$

• For all Quantifier:

 $\forall x \in A$, assertion about x $\forall x \in Z$, x is odd or x is even

• Combining Quantifiers:

 $\forall x, \exists y, x + y = 0$ $\exists y, \forall x, x + y = 0$

Proof Template 7

• To prove

 $\exists x \in A$, assertion about x

- Let x be (give an explicit example) ... (show that x satisfies the assertion).... Therefore x satisfies the required assertions.
- Example 10.1: $\exists x \in N, x \text{ is prime and even}$
- Proof

Consider the integer 2. Clearly 2 is even and 2 is prime. The statement holds.

Proof Template 8

• To prove

 $\forall x \in A$, assertion about *x*

- Let x be any element of A... (Show that x satisfies the assertion using only the fact that "x is in A" and no further assumptions on x).... Therefore x satisfies the required assertions.
- Example 10.2: Let $A = \{x \in Z : 6 \mid x\}$ $\forall x \in A, x \text{ is even}$
- Proof

For any x divisible by 6, there is an integer y such that x = 6y, which can be rewritten x = 2 (3y). Therefore x is divisible by 2 and therefore even.

Set Operations

• Union and Intersection

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$
$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

• Theorem 11.3: Let A, B, and C denote sets. The followings are true:

 $A \cup B = B \cup A \text{ and } A \cap B = B \cap A. \text{ (Commutative properties)}$ $A \cup (B \cup C) = (A \cup B) \cup C \text{ and } A \cap (B \cap C) = (A \cap B) \cap C. \text{ (Associative properties)}$ $A \cup \phi = A \text{ and } A \cap \phi = \phi$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ and } A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$ (Distributive properties)

• Proof? (Use Theorem 6.2 Boolean Algebra)

Size of Union

• Proposition 11.4: Let A and B be finite sets. Then

 $|A| + |B| = |A \cup B| + |A \cap B|$

- Proof: Imagine we assign labels to every objects (label A to objects in set A and label B to objects in B
 - Pose a question: how many labels have we assigned?
 - LHS (|A|+|B|) is one correct answer for the above question.
 - RHS ($|A \cup B| + |A \cap B|$) is another correct answer.
 - Therefore LHS=RHS
- Example 11.5: How many integers in the range 1 to 1000 (inclusive) are divisible by 2 or by 5?.... Use

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Proof Template 9

- To prove an equation of the form LHS = RHS
 - Pose a question of the form, "In how many ways?"
 - On the one hand, argue why LHS is a correct answer to the above question
 - On the other hand, argue why RHS is also a correct answer.
 - Therefore LHS-RHS

Size of Union (2)

- Definition 11.6: (Disjoint) Let A and B be sets. We call A and B disjoint provided $A \cap B = \phi$
- (Pairwise Disjoint) Let $A_1, A_2, ..., A_n$ be a collection of sets. These sets are called *pairwise disjoint* provided $A_i \cap A_j = \phi$ whenever $i \neq j$
- Corollary 11.8 (Addition Principle) Let A and B be finite sets. If A and B are disjoint, then $|A \cup B| = |A| + |B|$
- Generalization of Addition Principle: If $A_1, A_2, ..., A_n$ are pairwise disjoint sets, then

$$\left| \bigcup_{k=1}^{n} A_{k} \right| = \sum_{k=1}^{n} \left| A_{k} \right|$$

Inclusion-Exclusion

• Theorem 18.1 (Inclusion-Exclusion) Let A₁, A₂, ..., A_n be finite sets. Then

$$\begin{aligned} |A_{1} \cup A_{2} \cup \cdots \cup A_{n}| &= |A_{1}| + |A_{2}| + \cdots + |A_{n}| \\ &- |A_{1} \cap A_{2}| - |A_{1} \cap A_{3}| - \cdots - |A_{n-1} \cap A_{n}| \\ &+ |A_{1} \cap A_{2} \cap A_{3}| + |A_{1} \cap A_{2} \cap A_{4}| + \cdots + |A_{n-2} \cap A_{n-1} \cap A_{n}| \\ &- \cdots + \cdots \\ &\pm |A_{1} \cap A_{2} \cap \cdots \cap A_{n}| \end{aligned}$$

How to use Inclusion-Exclusion?

- Example 18.3: The number of length-*k* lists whose elements are chosen from the set {1,2,...,*n*} is *n^k*. How many of these lists use all of the elements in {1,2,...,*n*} at least once?
- Hint!
 - # good lists = n^k # bad lists
 - B1: set of all lists that do not contain 1 (bad because of missing 1)
 - B2: set of all lists that do not contain 2 (bad because of missing 2)
 - # bad lists = $|B_1 \cup B_2 \cup \cdots \cup B_n|$

How to use Inclusion-Exclusion? (2)

- Example 18.4: There are *n*! ways to make lists of length *n* using the elements of {1,2,...,*n*} without repetition. Such a list is called a derangement if the number *j* does not occupy position *j* of the list for every *j* = 1, 2, ..., *n*. How many derangements are there?
- Hint!
 - # good lists = n! # bad lists
 - B1: set of all lists that have 1 in position 1 (bad because of 1)
 - B2: set of all lists that have 2 in position 2 (bad because of 2)
 -
 - # bad lists = $|B_1 \cup B_2 \cup \cdots \cup B_n|$

Proof Template 10 (Using inclusion-exclusion)

- Counting with inclusion-exclusion
 - Classify the objects as either "good" (the ones you want to count) or "bad" (the ones you don't want to count).
 - Decide whether you want to count the good objects directly or to count the bad objects and subtract from the total.
 - Cast the counting problem as the size of a union of sets. Each set describes one way the objects might be "good" or "bad".
 - Use inclusion-exclusion (Theorem 18.1)

Difference and Symmetric Difference

- Definition 11.9: (Set difference) Let A and B be sets. The *set* difference, A-B, is the set of all elements of A that are not in B: $A - B = \{x : x \in A \text{ and } x \notin B\}.$
- (Symmetric difference) of A and B, denoted by $A \Delta B$, is the set of all elements in A but not B or in B but not A. That is

 $A\Delta B = (A - B) \cup (B - A).$

- Proposition 11.11: Let A and B be sets. Then $A\Delta B = (A \cup B) (A \cap B).$
- Proof: (Use Proof Template 5)

(1) Suppose $x \in A \Delta B$ Therefore $x \in (A \cup B) - (A \cap B)$. (2) Suppose $x \in (A \cup B) - (A \cap B)$ Therefore $x \in A \Delta B$ Therefore $A \Delta B = (A \cup B) - (A \cap B)$.

DeMorgan's Laws

• Proposition 11.12 (DeMorgan's Laws): Let A, B, and C be sets. Then

$$A - (B \cup C) = (A - B) \cap (A - C)$$
$$A - (B \cap C) = (A - B) \cup (A - C)$$

Cartesian Product

• Definition 11.13 (Cartesian product): Let *A* and *B* be sets. The Cartesian product of *A* and *B*, denoted by *A* x *B*, is the set of all ordered pairs (two-element lists) formed by taking an element from *A* together with an element from *B* in all possible ways. That is,

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

• Proposition 11.15: Let *A* and *B* be sets. Then

$$|A \times B| = |A| \times |B|$$

• Proof: ???

Two more examples of Combinatorial Proof

- Proposition 12.1: Let *n* be a positive integer. Then $2^{0} + 2^{1} + \dots + 2^{n-1} = 2^{n} - 1$
- Proof: (Use Proof Template 9)

Pose a question: How many non-empty subsets does {1, 2, ..., n} have?
 RHS (2ⁿ-1) is a correct answer
 LHS is also a correct answer (why?)

• Proposition 12.2: Let *n* be a positive integer. Then

 $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1.$

- Proof: (Use Proof Template 9)
 - (1) Pose a question: How many repetition-free length-(n+1) lists can we form from {1,2,...n+1} in which the elements do not appear in increasing order?
 - (2) RHS is a correct answer

(3) LHS is also a correct answer (why?)

Multisets

- A multiset is, like a set, an unordered collection of elements. However, in a multiset, an object may be considered to be in the multiset more than once.
- Ex: <1, 2, 3, 3>
 - Multiplicity of an element is the number of times it is a member of multiset. (The element 3 has multiplicity equal to 2).
- Two multisets are the same provided they contain the same elements with the same multiplicities.

 $- \langle 1, 2, 3, 3 \rangle = \langle 3, 1, 3, 2 \rangle \langle 1, 2, 3, 3 \rangle \Rightarrow \langle 1, 2, 3, 3 \rangle$

• The cardinality of a multiset is the sum of the multiplicities of its elements.

Counting Multisets

- How many k-element multisets can we form by choosing elements from an n-element sets?
- How many unordered length-k lists can we form using the elements {1, 2, ..., n} with repetition allowed?
- Definition 17.1: Let $n, k \in N$. The symbol $\binom{n}{k}$ denotes the number of multisets with cardinality equal to k whose elements belong to an *n*-element set such as $\{1, 2, ..., n\}$.

비중복 중복
순열
$$_{n}P_{k} = (n)_{k}$$
 $_{n}\Pi_{k} = n^{k}$
조합 $_{n}C_{k} = \frac{_{n}P_{k}}{k!} = \binom{n}{k}$ $_{n}H_{k} = \binom{n}{k}$

Counting Multisets (2)

• Proposition 17.6: Let *n*, *k* be positive integers. Then

$$\binom{\binom{n}{k}}{=}\binom{\binom{n-1}{k}}{+}\binom{\binom{n}{k-1}}{=}$$

• Theorem 17.8: Let n, k be positive integers. Then

$$\binom{n}{k} = \binom{n+k-1}{k}$$

• Proof: Hint strange encoding of a multiset

$$\langle 1,1,1,2,3,3,5\rangle \leftrightarrow ***|*|**||*$$

k stars and *n-1* bars
How many ways of
encodings?
Out of k+n-1 positions,
select k positions to put
stars

Homework

- 7.10, 7.12
- 9.1, 9.5
- 10.1, 10.4
- 11.1, 11.5, 11.6, 11.21
- 12.1, 12.4
- 16.13, 16.15
- 17.1, 17.2, 17.8