2007 Fall: Electronic Circuits 2

CHAPTER 11 Memory and Advanced Digital Circuits

Y. Kwon

Introduction

Sequential circuits : memory included.

- \rightarrow output depends not only on the present inputs but also on the previous inputs.
- \rightarrow timing generator (clock) required.

Two approaches for providing memory

- Static : positive feedback (bistable circuit)
- Dynamic : charge on a capacitor \rightarrow need refresh

11.1.2 The SR Flip-Flop

Figure 11.2 (a) The set/reset (SR) flip-flop and (b) its truth table.

Flip-flop = latch + triggering circuit

◆ S=R=0 → memory (or rest) state → retains the value

◆ S=1, R=0 $\rightarrow \overline{Q}=0$, Q=1 (set) \rightarrow retained after S returns to 0

S=1, R=1 → Q=0, Q=0 → undefined, but depends on which one returns to zero first.

12/16/2007

11.1.3 CMOS Implementation of SR Filp-Flops

Figure 11.3 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ .

♦ Clock signal(Φ) is high → set or reset action performed. ♦ S=1 → $\overline{Q} \downarrow \rightarrow V_{Q3} \downarrow \rightarrow Q \uparrow \rightarrow V_{Q1} \uparrow \rightarrow \overline{Q} \downarrow$ (regenerative)

Chapter 11

11.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop

 Very popular in the design of static random-access memory (SRAM)

11.1.5 D Flip-Flop Circuits

Simple implementation of the D flip-flop:

- $\Phi = 1$ and $\overline{\Phi} = 0$: the loop is open and Q is determined by D.
- Φ = 0 and Φ = 1: the loop is closed and the flip-flop is in latch mode.
 →latch stores the value of D right before the clock went down.
- two-phase non-overlapping clock is required for D flip-flop operation.
- Major drawback: <u>the output simply follows the signal on the D input</u> <u>line during Φ.</u>

11.1.5 D Flip-Flop Circuits (cont.)

- Two clock phases, $\Phi_1 \& \Phi_2$, must be nonoverlapping.
- Positive transition of clock Φ_2 the output Q adopts the value of D.
 - During the nonoverlap interval, feedback loops open
 - \rightarrow capacitances maintain most of their charge.
- Nonoverlap interval should be kept reasonably short(one-tenth or less of the clock period, and of the order of 1ns or so in current practice)

11.2 MULTIVIBRATOR CIRCUITS

Figure 11.9 The monostable multivibrator (one-shot) as a functional block, shown to be triggered by a positive pulse. In addition, there are one shots that are triggered by a negative pulse.

- Bistable multivibrator (two stable states, e.g. flip-flop).
- Monostable multivibrator (one stable state + quasi-stable state, e.g. pulse stretcher or pulse standardizer).
- Astable multivibrator (no stable states + two quasi-stable states, e.g. periodic pulse generator).

11.2.1 A CMOS Monostable Circuit

Commercially available CMOS gates have a special arrangement of diodes connected at their input terminals

(b)

- Prevent the input voltage signal from rising above the supply voltage V_{DD} and from falling below ground voltage.
- Effect on the operation of the inverter-connected gate G₂.
 - The diodes provide a low-resistance path to the power supply for voltages exceeding the power supply limits, the input current for intermediate voltages is essentially zero.

Figure 11.12 Output equivalent circuit of CMOS gate when the output is (a) low and (b) high.

Approximate output equivalent circuits of the gate.

- Fig.11.12(a) : when the gate output is low. In this state, current can flow from the external circuit into the output terminal of the gate; the gate is said to be sinking current.
- Fig.11.12(b) : when the gate output is high. In this state, current can flow from V^{DD} through the output terminal of the gate into the external circuit; the gate is said to be sourcing current.

- 1. Stable state of the monostable circuit (the state of the circuit before the trigger pulse is applied): The output of G_1 is high at V_{DD} , the capacitor is discharged, and the input voltage to G_2 is high at V_{DD} .
 - The output of G_2 is low, at ground voltage.
 - Low voltage is fed back to G_1 ; since v_1 also is low, the output of G_1 is high, as initially assumed.

- 2. Trigger pulse is applied: The output of G_1 will go low (but its output will not go all the way to 0V). The output of G_1 drops by a value ΔV_1 .
 - $G_2 \rightarrow$ the drop of voltage at its input causes its output to go high (to V_{DD}).
 - Keeps the output of G₁ low even after the triggering pulse has disappeared.
 - The Circuit is now in the quasi-stable state.

- 3. Operation in the quasi-stable state : The current through R, C, and R_{on} causes C to charge, and the voltage V_{12} rises exponentially toward V_{DD} with a time constant C(R + R_{on}).
 - V₁₂ continue to rise until it reaches V_{th} of inverter G₂
 - G_2 will switch and its output v_{O2} will go to 0V, which will in turn cause G_1 to switch on toward V_{DD} .

(c)

• The output of G_1 will attempt to rise to V_{DD} (instantaneous rise). Limited to an amount ΔV_2 by the limiting action of diode.

 $\Delta V_2 = V_{DD} + V_{D1} - V_{th}$

- V_{01} rise. And the input of G_2 will rise by an equal amount ΔV_2 .
- Now V₁₂ >V_{DD}, current will flow from the output of G₁ through C and then through the parallel combination of R and D₁.
- This current discharges C until V_{12} drops to V_{DD} and v_{O1} rises to V_{DD} .

* The monostable circuit should not be retriggered until the capacitor has been discharged (recovery time: the capacitor discharge interval).

 $v_{I2}(t) = V_{DD} - \Delta V_1 e^{-t/\tau 1}$

$$\tau_1 = C(R + R_{on})$$

Substituting for t = T and $v_{I2}(T) = V_{th}$.

$$T = C(R + R_{on}) \ln(\frac{R}{R + R_{on}} \frac{V_{DD}}{V_{DD} - V_{th}})$$

Figure 11.13 Timing diagram for the monostable circuit in Fig. 11.10.

12/16/2007

Chapter 11

11.2.2 An Astable Circuit

Figure 11.15 (a) A simple astable multivibrator circuit using CMOS gates. (b) Waveforms for the astable circuit in (a). The diodes at the gate input are assumed to be ideal and thus to limit the voltage v_{I1} to 0 and V_{DD} .

- Assume that the NOR gates are of the CMOS family.
- Neglect the finite output resistance of the CMOS gate.
- Assume that the clamping diodes are ideal.

Chapter 11

 \rightarrow The waveforms of Fig. 11.15(b) are obtained.

11.2.3 The Ring Oscillator

 Ring oscillator provides a relatively simple means for measuring the inverter propagation delay.