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Why Graphs?y p

• A graph visually represents complex relations among• A graph visually represents complex relations among 
computational objects
– neighborhood relations among nodes in a computer network

conflict relations among sensor nodes– conflict relations among sensor nodes
– dependency relations among concurrent tasks

• In general, graphs formally describe complex problems in visual 
f (i ll fi ld i l di i l t d d t i )forms (in all fields including social study and computer science)



Map Coloring Problem
• Imagine a map of a mythical continent that has several countries

• To show the different countries clearly, we want to fill their regions using 
various colors?

• What is the smallest number of colors we need to color the map?
– Can this map be colored with fewer than four colors?

• No (BTW, can you prove?)( y p )
– Is there another map that can be colored with fewer than four colors?

• Yes
– Is there a map that require more than four colors?

i d i b i h i d i l d f b• First posed in 1852 by Francis Guthrie and remain unsolved for about a century
• In the mid-1970s, Appel and Haken proved that every map can be colored using 

at most four colors



Map Coloring Problem (2)
• Imagine a university in which there are thousands of students and 

hundreds of courses. As in most universities, at the end of each term there 
is an examination period Each course has a 3-hour final exam On anyis an examination period. Each course has a 3-hour final exam. On any 
given day, the university can schedule two final exams.

• It is impossible for a student enrolled in two courses to take both final 
exams if they were held during the same time sloty g

• Devise a final examination schedule with the condition that if a student is 
enrolled in two courses, these courses must get different examination 
periods. (Want have the smallest possible number of examination slots)

• It is essentially the same as map coloring???

Problem Map Coloring Exam Schedulingp g g

Assign colors Time slots

to countries courses

condition Common border 
different colors

Common students 
different slots

objective Fewest colors Fewest time slotsobjective Fewest colors Fewest time slots



Classic Puzzle (Three Utilities Problem)
• Imagine a city containing three houses and three utility plants. The three 

utilities supply gas, water, and electricity. As an urban planar, your job is 
to run connections from every utility plant to every home You need threeto run connections from every utility plant to every home. You need three 
electric wires, three water pipes, and three gas lines.  You may place the 
houses and utility plants anywhere you desire. However, you may not 
allow two wires/pipes/lines to cross!
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• PCB (Printed Circuit Board) Problem: Can we print the various ( ) p
connecting wires onto the board in such a way that there are no crossing?



Classic Puzzle (Seven Bridges Problem)
• In the late 1700s, in the city of Konigsburg located in Russia, there were 

seven bridges connecting various parts of the city

• The twonspeople wondered “Is there a tour we can take through our city 
so that we cross every bridge exactly once?so that we cross every bridge exactly once?
– No (Proven by Euler)

The problem is replaced by the problem of drawing theThe problem is replaced by the problem of drawing the 
abstract figure without lifting your pencil from the paper 
and without redrawing a line

The number of points where an odd number of lines 
meet <= 2 

• Urban planning problem (Garbage truck routing): Can we find a route for p g p ( g g)
the garbage truck so that it travels only once down every street?



Graphp
• Definition 46.1 (Graph) A graph is a pair G=(V,E) where V is 

a finite set and E is a set of two-element subsets of Va finite set and E is a set of two-element subsets of V.
• Example 46.2: 

– G=({1,2,3,4,5,6,7}, {{1,2},{1,3},{2,3},{3,4},{5,6}})
V {1 2 3 4 5 6 7}– V = {1,2,3,4,5,6,7}

– E={{1,2},{1,3},{2,3},{3,4},{5,6}}
• The elements of V are called the vertices (singular: vertex) of the 

graph, and the elements of E are called the edges of the graph
• More than one drawings for one graph
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Adjacencyj y
• Definition 46.3 (Adjacent) Let G=(V,E) be a graph and let 

u,v ∈ V. We say that u is adjacent to v provided {u,v} ∈ E. The 
notation u ~ v means that u is adjacent to v.

– If {u,v} is an edge of G, we call u and v the endpoints of the edge.
i h l f { } id d h i h f f i– We use uv in the place of {u,v} provided there is no chance of confusion.

– Suppose v is a vertex and an endpoint of the edge. Then, v ∈ e. We also say 
that v is incident on (or incident with) e.
If u and v are adjacent we also say that u and v are neighbors– If u and v are adjacent, we also say that u and v are neighbors.

• Note that “is-adjacent-to (~)” is a relation defined on the vertex set 
of a graph G.

Reflexive? No– Reflexive? No
– Irreflexive? Yes, but

• Self-loop? Multiple edges? (We do not allow them)
S t i ? Y– Symmetric? Yes

– Antisymmetric? Generally No. But, we can make such a graph.
– Transitive? Generally No. But, we can make such a graph.



Degree
Th t f ll i hb f t i ll d th• The set of all neighbors of a vertex v is called the 
neighborhood of v and is denoted N(v). That is
– N(v) = {u ∈ V : u~v}– N(v) = {u ∈ V : u~v}

• Definition 46.4 (Degree) Let G=(V,E) be a graph and let       
v ∈ V. The degree of v is the number of edges with which vV. e deg ee o s e u be o edges w w c
is incident. The degree of v is denoted  dG(v) or, if there is no 
risk of confusion, simply d(v).
– d(v)=|N(v)|

• Try to add the degrees of vertices of a graph…. find the 
l i b d d b f drelation between degrees and number of edges.

• Theorem 46.5 Let G=(V,E). The sum of the degrees of the 
vertices in G is twice the number of edges; that isvertices in G is twice the number of edges; that is

||2)( Evd
Vv

=∑
∈

• Proof ??? --- Hint: Combinatorial proof

Vv∈



Further Notations and Vocabularyy
• Maximum and minimum degree of G, Δ(G) and δ(G)

R l h if ll ti i G h th d• Regular graph: if all vertices in G have the same degree, we 
call G regular. If a graph is regular and all vertices have 
degree r, we also call the graph r-regular.

• Vertex and edge set: V(G) and E(G)
• Order and size: Let G=(V,E) be a graph. The order of G is 

the number of vertices in G that is |V| The size of G is thethe number of vertices in G, that is, |V|. The size of G is the 
number of edges, that is, |E|.

• Complete graphs: Let G be a graph. If all pairs of distinct 
ti dj t i G ll G l t A l tvertices are adjacent in G, we call G complete. A complete 

graph on n vertices is denoted Kn.
• Edgeless graphs: A graph with no edges is called edgeless.g g p g p g g
• Empty graph: A graph with no vertices (and hence no edges) 

is called an empty graph.



Subgraphsg p
• Definition 47.1 (Subgraph): Let G and H be graphs. We call 

G a subgraph of H provided V(G)⊆V(H) and E(G)⊆E(H). g p p ( ) ( ) ( ) ( )
• Example 47.2: Let G and H be the following graphs:

        }9,8,7,6,5,4,3,2,1{)(              }8,7,6,4,3,2,1{)( == HVGV

}74{}93{}63{}62{
},5,2{},3,2{},4,1{},2,1{{

},6,3{},6,2{},3,2{},2,1{{)(

},,,,,,,,{)(},,,,,,{)(

=
=

E(H)
GE

}}9,8{},8,7{             
},9,6{},8,6{},7,5{},6,5{              
},7,4{},9,3{},6,3{},6,2{             

}}8,7{},8,6{},7,4{                
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We call H a supergraph of G.



Spanning Subgraphp g g p
• “H-e” is a new graph with V(H-e)=V(H) and E(H-e)= E(H)-{e}
• If we form a subgraph of H solely by use of edge deletion theIf we form a subgraph of H solely by use of edge deletion, the 

resulting subgraph is called a spanning subgraph of H.
• Definition 47.3 (Spanning subgraph) Let G and H be graphs. We 

ll G i b h f H id d G i b h f Hcall G a spanning subgraph of H provided G is a subgraph of H, 
and V(G)=V(H).
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Induced Subgraphg p
• What about deleting vertices?
• “H-v” is a new graph with V(H-v)=V(H)-{v} andH-v  is a new graph with V(H-v) V(H)-{v} and             

E(H-v)={e∈E(H): v∈e}
• If we form a subgraph of H solely by means of vertex 

d l ti ll th b h i d d b h f Hdeletion, we call the subgraph an induced subgraph of H.
• Definition 47.5 (Induced subgraph) Let H be a graph and 

let A be a subset of vertices of H; that is, A ⊆V(H). The ; , ( )
subgraph of H induced on A is the graph H[A] defined by

])[( AAHV =

2 3

} and :)({])[( AyAxHExyAHE ∈∈∈=
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Clique and clique numberq q
• Definition 47.7 (Clique, clique number) Let G be a graph. A 

subset of vertices S⊆ V(G) is called a clique provided anysubset of vertices S⊆ V(G) is called a clique provided any 
two distinct vertices in S are adjacent. The clique number of 
G is the size of a largest clique; it is denoted ω(G).

• In other words a set S⊆ V(G) is called a clique provided• In other words, a set S⊆ V(G) is called a clique provided 
G[S] (subgraph of G induced on S) is a complete graph. 

• Example 47.8 2 3
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Thi h h li F lThis graph has many cliques. For examples,
{1,4}  {2,5,6}  {9}  {2,3,6}  {6,8,7}  {4}  { }
The largest size of a clique in H is 3, so ω(H)=3

Note that {1,4} is a maximal (cannot be extended) clique that 
is not clique of maximum size



Independent set, independence number
• Definition 47.9 (Independent set, independence number) Let G

be a graph. A subset of vertices S⊆ V(G) is called an 
i d d t t id d t ti i S dj t Thindependent set provided no two vertices in S are adjacent. The 
independence number of G is the size of a largest independent 
set; it is denoted α(G).

• In other words, a set S⊆ V(G) is independent provided G[S] is 
an edgeless graph.
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Thi h h i d d t t F lThis graph has many independent sets. For examples,
{1,3,5}  {1,7,9}  {4}  {1,3,5,8}  {4,6}  {1,3,7}  { }
The largest size of an independent set in H is 4, so α(H)=4

Note that {4,6} is a maximal (cannot be extended) 
independent set that is not of maximum size



Complements (1)p ( )
• The two notions of clique and independent sets are flip sides of 

the same coin.
• The complement of a graph G is a new graph formed by 

removing all the edges of G and replacing them by all possible 
edges that are not in G.edges that are not in G.

• Definition 47.11 (Complement) Let G be a graph. The 
complement of G is the graph denoted G defined by
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Complements (2)p ( )
• Proposition 47.12: Let G be a graph. A subset of V(G) is a clique 

of G if and only if it is an independent set of G. Furthermore, 

( ) ( ) ( ) ( ).   and   GGGG ωααω ==

• Let G be a “very large” graph (i e a graph with a great many• Let G be a very large  graph (i.e., a graph with a great many 
vertices). A celebrated theorem in graph theory (known as 
Ramsey’s Theorem) implies that either G or its complement, G, 

t h “l ” limust have a “large” clique.
• Proposition 47.13: Let G be a graph with at least six vertices. 

Then 
( ) ( ) .3or      3 ≥≥ GG ωω



Connection -Walks
• Definition 48.1 (Walk) Let G=(V,E) be a graph. A walk in G is a 

sequence (or list) of vertices, with each vertex adjacent to the 
h i ( ) i h h l h fnext; that is, W=(v0,v1, ..., vl) with v0~v1~v2~...~vl. The length of 

this walk is l (Note there are l+1 vertices on this walk).

1

2 3
4

•1~2~3~4: (1,4)-walk, (u,v)-walk in general
•1~2~3~6~2~1~5: revisits are permitted
•5~1~2~6~3~2~1: reversal of the previous walk W-1

5
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p
•9: Walk of length zero
•1~5~1~5~1: a closed walk, begins and ends at the same vertex
•(1,1,2,3,4) is not a walk9
•(1,6,7,9) is not a walk

• Definition 48.2 (Concatenation) Let G be a graph. Consider two 
walks W =v v v and W =w w w with v =w Theirwalks W1=v0~v1~ ...~ vl and  W2=w0~w1~...~wk with vl=w0.  Their 
concatenation, denoted W1+W2, is the walk

wwwvvv )( kl wwwvvv ~~~)(~~~ 1010 LL =



Connection - Paths (1)( )
• Definition 48.3 (Path) A path in a graph is a walk in which no 

vertex is repeated.
• 1~2~6~7~3~4 is a path. It is called a (1,4)-path. (u,v)-path in 

general.
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• Proposition 48.4 Let P be a path in a graph G. Then P does not 
traverse any edge of G more than oncetraverse any edge of G more than once.

• Proof:
or    ~~~~~~ LLL vuvuP =

 ~~~~~~ LLL uvvuP =



Connection - Paths (2)( )
• We often think a path as a graph or as a subgraph of a given 

graph.
• Definition 48.5 (Path graph) A path is a graph with vertex set 

V={v1, v2, ..., vn} and edge set E={vi vi+1: 1 ≤ i < n}. A path on n
vertices is denoted Pn.vertices is denoted Pn.

• Definition 48.6 (Connected to) Let G be a graph and let u, v∈
V(G). We say that u is connected to v provided there is a (u, v)-
path in G (i e a path whose first vertex is u and whose last vertexpath in G (i.e., a path whose first vertex is u and whose last vertex 
is v).

• “is-connected-to” relation vs. “is-adjacent-to” relation
– the former is reflexive but the latter is irreflexive.
– both are symmetric.
– the former is transitive but the latter is not. (proof???)(p )

• If there exists a (x,y)-path P and a (y,z)-path Q, P+Q is a (x,z)-path. Right?
• Wrong!
• P+Q is not necessary a path. It can be a walk!

P th t if th i ( ) lk i G th th i ( ) th i G• Prove that if there is an (x,z)-walk in G, then there is an (x,y)-path in G.



Connection - Paths (3)( )
• Theorem 48.8 Let G be a graph. The is-connected-to relation is 

an equivalence relation on V(G).
B “is connected to” relation a graph is partitioned into• By “is-connected-to” relation, a graph is partitioned into 
equivalence classes.

1

2 {1 2 3 4} {5 6} d {7}2

36

7 {1,2,3,4}, {5,6}, and {7}

3

45

6

• The equivalence classes of is connected to decompose a graph• The equivalence classes of is-connected-to decompose a graph 
into what we call components.

• Definition 48.9 (Component) A component of G is a subgraph of 
G induced on an equivalence class of the is-connected-to relation 
on V(G)

• Definition 48.10 (Connected) A graph is called connectedDefinition 48.10 (Connected) A graph is called connected 
provided each pair of vertices in the graph are connected by a 
path; that is, for all x, y∈ V(G), there is an (x,y)-path.



Disconnection
• Definition 48.11 (Cut vertex, cut edge) Let G be a graph. A 

vertex v∈ V(G) is called a cut vertex of G provided G-v has 
more components than G Similarly an edge e∈ E(G) is called amore components than G. Similarly, an edge e ∈ E(G) is called a 
cut edge of G provided G-e has more components than G.

• If G is a connected graph a cut vertex v is a vertex such that G v• If G is a connected graph, a cut vertex v is a vertex such that G-v
is disconnected. Likewise e is a cut edge if G-e is disconnected.

• Theorem 48.12 Let G be a connected graph and suppose e∈
E(G) is a cut edge of G. Then G-e has exactly two components.

• What about G-v if v is a cut vertex?
• G v can have many components• G-v can have many components.



Trees
• Threes are connected graphs that have no cycles.
• Definition 49.1 (Cycle) A cycle is a walk of length at least three 

in hich the first and last erte are the same b t no otherin which the first and last vertex are the same, but no other 
vertices are repeated.  The term cycle also refers to a (sub)graph 
consisting of the vertices and edges of such a walk. In other 

d l i h f th f G (V E) hwords, a cycle is a graph of the form G=(V,E) where

and    },,{ 11 vvvV n= L

• A cycle (graph) on n vertices is denoted Cn.
}.,,,,{ 113221 vvvvvvvvE nnn−= L

• Definition 49.2 (Forest) Let G be a graph. If G contains no 
cycles, then we call G acyclic. Alternatively, we call G a forest.

• Definition 49 3 (Tree) A tree is a connected acyclic graph• Definition 49.3 (Tree) A tree is a connected acyclic graph



Properties of Treesp
• Theorem 49.4 Let T be a tree. For any two vertices a and b in 

V(T) there is a unique (a b) path Conversely if G is a graphV(T), there is a unique (a,b)-path. Conversely, if G is a graph 
with the property that for any two vertices, u, v, there is exactly 
one (u,v)-path, then G must be a tree.

• Theorem 49.5 Let G be a connected graph. Then G is a tree if and 
only if every edge of G is a cut edge.



Leaves
• Definition 49.6 (Leaf) A leaf of a graph is a vertex of degree 1.

h h l ?• Does every three have leaves?
– No. empty graph and K1 do not have leaves.
– Other than these, every tree has a leaf., y

• Theorem 49.7 Every tree with at least two vertices has a leaf
• Proposition 49.8 Let T be a tree and let v be a leaf of T. Then T-v

is a treeis a tree.
• This proposition forms the basis of a proof technique for trees.



Proof Template 25p
• To prove: some theorem about trees
• Proof: We prove the result by induction on the number of verticesProof: We prove the result by induction on the number of vertices 

in T
– Base case: Claim the theorem is true for all trees on n=1 vertices

I d ti h th i S th th i t f ll t k– Induction hypothesis: Suppose the theorem is true for all trees on n=k 
vertices

– Induction: Let T be a tree on n=k+1 vertices. Let v be a leaf of T. Let 
T’=T-v Note that T’ is a tree with k vertices so by induction T’ satisfiesT T-v. Note that T  is a tree with k vertices, so by induction T  satisfies 
the theorem. Now we use the fact that the theorem is true for T’ to 
somehow prove that the conclusion of the theorem holds for T. The the 
result is proved by induction.

• Theorem 49.9 Let T be a tree with n ≥1 vertices. Then T has n-1
edges.

• Proof ????• Proof ????
– It is true when n=1
– Suppose that it is true when n=k

L T b k 1 i L b l f f T d l T’ T T’– Let T be a tree on n=k+1 vertices. Let v be a leaf of T and let T’=T-v. T’ 
has k-1 edges

– degree of v =1. Hence, T has (k-1)+1 edges.



Spanning Treesp g
• Trees are, in a sense, minimally connected graphs. By definition, 

they are connected, but deletion of any edge disconnects a tree.y , y g
• Definition 49.10 (Spanning tree) Let G be a graph. A spanning 

tree of G is a spanning subgraph of G that is a tree.
Th 49 11 A h h i t if d l if it i• Theorem 49.11 A graph has a spanning tree if and only if it is 
connected.

• Theorem 49.12 Let G be a connected graph on n ≥ 1 vertices. g p
Then G is a tree if and only if G has exactly n-1 edges.



Revisit: Seven Bridges Problem
• In the late 1700s, in the city of Konigsburg located in Russia, there were 

seven bridges connecting various parts of the city

• The townspeople wondered “Is there a tour we can take through our city 
so that we cross every bridge exactly once?so that we cross every bridge exactly once?
– No (Proven by Euler)

The problem is replaced by the problem of drawing theThe problem is replaced by the problem of drawing the 
abstract figure without lifting your pencil from the paper 
and without redrawing a line

The number of points where an odd number of lines 
meet <= 2 

• Urban planning problem (Garbage truck routing): Can we find a route for p g p ( g g)
the garbage truck so that it travels only once down every street?



Eulerian Graphs (1)p ( )
• Definition 50.1 (Eulerian trail, tour) Let G be a graph. A walk in 

G that traverses every edge exactly once is called an Eulerian y g y
trail. If, in addition, the trail begins and ends at the same vertex, 
we call the walk an Eulerian tour. Finally, if G has an Eulerian 
tour, we call G Eulerian.tour, we call G Eulerian.

• Necessary condition for G be Eulerian: If G is Eulerian, then G 
has at most one nontrivial component (component with more than 
one vertex)one vertex)

• Theorem 50.2 Let G be a connected graph all of whose vertices 
have even degrees. For every vertex v∈ V(G), there is an 
E l i h b i d dEulerian tour that begins and ends at v.

• Theorem 50.3 Let G be a connected graph with exactly two 
vertices of odd degree: a and b. Then G has an Eulerian trail that ve ces o odd deg ee: a d b. e G s u e
begins at a and ends at b.



Eulerian Graphs (2)p ( )
• Proof by Induction using the following two lemmas

– Lemma 50.4 Let G be a graph all of whose vertices have even degrees.Lemma 50.4 Let G be a graph all of whose vertices have even degrees. 
Then no edge of G is a cut edge. 

– Lemma 50.5 Let G be a connected graph with exactly two vertices of odd 
degree. Let a be a vertex of odd degree and suppose d(a) ≠ 1. Then at least g g pp ( )
one of the edges incident with a is not a cut edge.



Revisit: Map Coloring Problem
• Imagine a map of a mythical continent that has several countries

• To show the different countries clearly, we want to fill their regions using 
various colors?

• What is the smallest number of colors we need to color the map?
– Can this map be colored with fewer than four colors?

• No (BTW, can you prove?)( y p )
– Is there another map that can be colored with fewer than four colors?

• Yes
– Is there a map that require more than four colors?

i d i b i h i d i l d f b• First posed in 1852 by Francis Guthrie and remain unsolved for about a century
• In the mid-1970s, Appel and Haken proved that every map can be colored using 

at most four colors



Coloring Problemg
• Let G be a graph. To each vertex of G, we wish to assign a color. 

The restriction is that adjacent vertices must receive different j
colors. The objective is to use as few colors as possible.

• Definition 51.1 (Graph coloring) Let G be a graph and let k be a 
positive integer A k coloring of G is a functionpositive integer. A k-coloring of G is a function

f: V(G) {1, 2, ..., k}.
We call this coloring proper providedg p p p

∀xy ∈ E(G), f(x) ≠ f(y).
If a graph has a proper k-coloring, we call it k-colorable.
I h b {1 2 k} i ll d l• In the above, {1,2, ..., k} is called a palette.

• The coloring function f is not onto.
• k refers to the size of the palette• k refers to the size of the palette.
• if k-colorable, it is also (k+1)-colorable.
• The goal in graph coloring is to use as few colors as possible.g g p g p



Chromatic number
• Definition 51.2 (Chromatic number) Let G be a graph. The 

smallest positive integer k for which G is k-colorable is called the p g
chromatic number of G. The chromatic number of G is denoted 
χ(G).

• Example 51 3 Consider the complete graph K We can properly• Example 51.3 Consider the complete graph Kn. We can properly 
color Kn with n colors by giving every vertex a different color. 
– Can we do better?

N– No
– χ(Kn)=n

• Proposition 51.4 Let G be a subgraph of H. Then χ(G) ≤ χ(Η)p g p χ( ) χ( )
• Proposition 51.5Let G be a graph with maximum degree Δ. Then 

χ(G) ≤ Δ +1.
• Proposition 51 6 For a circle C• Proposition 51.6 For a circle Cn,

⎨
⎧

=
even is  if2

)(
n

Cχ
⎩
⎨=

odd is  if3
)(

n
Cnχ



One-colorable graphg p
• Which graphs are one-colorable?
• Proposition 51 7: A graph G is on-colorable if and only if it isProposition 51.7: A graph G is on-colorable if and only if it is 

edgeless



Two-colorable graph (1)g p ( )
• Definition 51.8 (Bipartite graphs) A graph G is called bipartite 

provided it is 2-colorable.p
• Let G=(V,E) be a bipartite graph. V is partitioned into X and Y 

where X is the set of vertices assigned with one color and Y with 
the other colorthe other color.

• The partition of V into the sets of X and Y is called a bipartition 
of the bipartite graph.

• Which graphs are bipartite?
– even cycles are bipartite
– odd cycles are notodd cycles are not

• Proposition 51.9: Trees are bipartite
– Basis case: Clearly a tree with only one vertex is bipartite.

I d ti h th i E t ith ti i bi tit L t T b t– Induction hypothesis: Every tree with n vertices is bipartite. Let T be a tree 
with n+1 vertices. Let v be a leaf of T and let T’ = T-v. T’ is bipartite. In T, 
v has a single neighbor w. Whatever color w has, we can give v the other 
color. Thus, T is also two-colorable.color. Thus, T is also two colorable. 



Two-colorable graph (2)g p ( )
• Definition 51.10 (Complete bipartite graphs) Let n, m be positive 

integers. The complete bipartite graph Kn m is a graph whose g p p g p n,m g p
vertices can be partitioned V=X∪Y such that 
– |X| = n,
– |Y| = m|Y|  m,
– for all x∈ X and for all y∈ Y, xy is an edge, and
– no edge has both its endpoints in X or both its endpoints in Y



How to know bipartite or not?p
• How can we convince that a graph is bipartite?

– show that it can be colored with two colors.show that it can be colored with two colors.
• How can we convince that a graph is NOT bipartite?

Th 51 11 A h i bi tit if d l if it d t• Theorem 51.11 A graph is bipartite if and only if it does not 
contain an odd cycle



Procedure of two coloringg
• We begin with a graph, all of whose vertices are uncolored.
• We arbitrarily color one vertex whiteWe arbitrarily color one vertex white.
• Then we color all its neighbors black.
• Now we color all neighbors of black vertices white, and then all g

neighbors of white vertices black.
– At some point in this procedure, we may color two adjacent vertices the 

same color. If we do, we tries to find an odd cycle, proving the graph is not 
bi ibipartite.

– At some point, we may find that this procedure finds no new vertices to 
color, but yet, there remain uncolored vertices. In this case, the graph is not 
connected and we restart this procedure in another componentconnected. and we restart this procedure in another component.

• This procedure is simple and efficient. We know that once we 
color a vertex, say black, all its neighbors must be white. There is 

h i i hi b h l lno choice in this matter because there are only two colors.



What about three-coloring?g
• We have more than one choice at each step. This complicates the 

problem.p
• There are no known efficient procedures to determine whether or 

not a graph is tree-colorable (or k-colorable for any fixed value of 
k > 2): NP completek > 2): NP-complete

• There is no known efficient procedure for calculating χ(G): NP-
complete

• There are, however, heuristic and approximate methods that often 
give good results.



Revisit: Three Utilities Problem
• Imagine a city containing three houses and three utility plants. The three 

utilities supply gas, water, and electricity. As an urban planar, your job is 
to run connections from every utility plant to every home You need threeto run connections from every utility plant to every home. You need three 
electric wires, three water pipes, and three gas lines.  You may place the 
houses and utility plants anywhere you desire. However, you may not 
allow two wires/pipes/lines to cross!
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• PCB (Printed Circuit Board) Problem: Can we print the various ( ) p
connecting wires onto the board in such a way that there are no crossing?



Planar Graphs
• Definition (Simple curve): A simple curve is a curve that joins two 

distinct points in the plane and does not cross itself.
Definition (Closed) If a c r e ret rns to its starting point e call the• Definition (Closed) If a curve returns to its starting point, we call the 
curve closed.

• Definition (Simple closed curve) If the first/last point of the curve is the 
only point on the curve that is repeated then we call the curve a simpleonly point on the curve that is repeated, then we call the curve a simple 
closed curve.

• A graph has many different drawings by drawing edges with different 
curves.

• Definition 52.2 (Planar graph) A planar graph is a graph that has a 
crossing-free drawing in the plane.



How do we know planar or not?
• Euler’s formula gives a relation among numbers of faces, vertices, and 

edges of a crossing-free drawing of a planar graph.

n=9 vertices
m=12 edgesm=12 edges
f=5 faces

• Theorem 52.3 (Euler’s formula) Let G be a connected planar graph with n
vertices and m edges. Choose a crossing-free drawing for G, and let f be the 
number of faces in the drawing. Then

n - m + f = 2
• Proof by induction

• Basis case: G with n vertices and m=n-1 edges. It is a treeg
• Induction hypothesis: For G with n vertices and m edges, it holds

• Show that it also holds for G’ with n vertices and (m+1) edges
• From G’ delete non cut-edge eFrom G , delete non cut edge e
• G’-e is a planar graph. It has f-1 faces. Thus, n - m + (f-1) = 2
• Thus, n - (m+1) +f = 2



More properties of planar graphs
• Degree of a face is the number of edges that are on the boundary of the 

face (an edge is counted twice if both sides of it are on the boundary of 
the same face)the same face)
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• Proposition 52.4: Let G be a planar graph. The sum of the degrees of the 
faces in a crossing-free drawing of G in the plane is equals 2|E(G)|

n - m + f = 2f
• Corollary 52.5: Let G be a planar graph with at least two edges. Then

|E(G)| ≤ 3 |V(G)| - 6
Furthermore if G does not contain K3 as a subgraph thenFurthermore, if G does not contain K3 as a subgraph, then

|E(G)| ≤ 2 |V(G)| - 4
• Proof: every face has degree at least 3, so the sum of the face degrees is at 

least 3f Therefore 2|E(G)| ≥ 3f Putting this into Euler’s formula we haveleast 3f. Therefore, 2|E(G)| ≥ 3f. Putting this into Euler s formula, we have
2 - |V(G)| + |E(G)| = f ≤ 2/3 |E(G)|
|E(G)| ≤ 3|V(G)| - 6



Nonplanar graphs
• We can use Corollary 52.5 to prove that certain graphs are nonplanar
• Proposition 52.7: The graph K5 is nonplanar.
• Proposition 52.8: The graph K3,3 is nonplanar.
• A subdivision of G is formed from G by replacing edges with paths.

• If a graph is planar, so are its subdivisions. If a graph is nonplanar, then 
all of its subdivisions are also nonplanar.

• Theorem 52.9 (Kuratowski) A graph is planar if an only if it does not 
contain a subdivision of K5 or K3,3 as a subgraph.

• How to say a graph is planar?
• show a crossing-free drawing

• How to say a graph is nonplanar?
• find a subdivision of K5 or K3,35 3,3



Coloring Planar Graphs
• The problem of coloring a map is equivalent to the problem of 

coloring a graph.
h i l• A map has a special property.

– It is a planar graph
• Is every planar graph four-colorable?Is every planar graph four colorable?
• Theorem 52.10 (Four color) If G is a planar graph, then χ(G) ≤ 4.
• 4 is the best possible number, that is 4 cannot be replaced by a 

smaller value in the above theoremsmaller value in the above theorem.



Homework
• 46.1, 46.9, 46.10, 46.16
• 47.1, 47.3, 47.8
• 48.1, 48.6, 48.11
• 49.1, 49.4, 49.9
• 50 1 50 3 50 4• 50.1, 50.3, 50.4
• 51.1, 51.2, 51.6, 51.13
• 52.2, 52.3, 52.6


