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Information Processing Machineg
• A machine that takes input data, processes them, and produces 

output dataoutput data
• Examples

– Table lamp up, down, down, up, down, …

– Adder

light, dark, dark, light, dark, …

3, 5, 0, 3, 3, …, , , , ,

4, 4, 6, 1, 4, …

7, 9, 6, 4, 7, …

– Vending machine
dime dime dime quarter quarter nickel quarter nickeldime, dime, dime, quarter, quarter, nickel, quarter, nickel, …

nothing, nothing, gum, nothing, gum, nothing, gum, nothing

– Digital Computer 



Difference between Adder and VM?
• Adder: The output signal at any instant depends only on the input 

signal at that instant.signal at that instant.
• Vending machine: The output signal at any instant depends not 

only on the input signal at that instant but also on the preceding 
input signalsinput signals
– the vending machine is capable of remembering the total amount that 

has been deposited.

Total deposit New deposit output

nickel dime quarter

0 5 10 25 nothing0 5 10 25 nothing

5 10 15 30 or more nothing

10 15 20 30 or more nothing

15 20 25 30 or more nothing

20 25 30 or more 30 or more nothing

25 30 or more 30 or more 30 or more nothing25 30 or more 30 or more 30 or more nothing

30 or more 5 10 25 gum



Two classes of machines

• Class A: machines without memoryy
• Class B: machines with memory
• Even for a machine with memory, it does not remember 

everything that has happened in the past It remembers only aeverything that has happened in the past. It remembers only a 
summary (or abstraction) of the past history

• We call such a summary a “state”.
H t defi e t te f the e di hi e?• How to define states of the vending machine?

• A machine with a finite number of states is called a finite state 
machine.



Finite State Machines
• A finite state machine is specified by

– A finite set of states S = {s0, s1, s2, …}{ 0, 1, 2, }
– A special element of the set S, s0, referred to as the initial state.
– A finite set of input letters I={i1,i2, …}.
– A finite set of output letters O={o1 o2 }A finite set of output letters O {o1, o2, …}
– A function f from S×I to S, referred to as the transition function.
– A function g from S to O, referred to as the output function.

State input output

a b c

0 1 2 0

s1/0
a a

b
c

a

s0 s1 s2 s5 0

s1 s2 s3 s6 0

s2 s3 s4 s6 0 s0/0
s2/0

s3/0
b

a
a

b

a
b

c

b
c

s3 s4 s5 s6 0

s4 s5 s6 s6 0

5 6 6 6 0

s4/0 s6/1

a,b,c

c

a

b,c

s5 s6 s6 s6 0

s6 s1 s2 s5 1 s5/0

, ,
c



FSM as Models of Physical Systems
• Modulo 3 counter:  a FSM that receives a sequence of 0s, 1s, and 

2s as input and produces a sequence of 0s, 1s, and 2s as output 
such that at any instant, the output is equal to the modulo 3 sum of 
h di i i h ithe digits in the input sequence

A/0
0

B/1C/2

1
2 21

2 B/1C/2
010

• Comparator:  a FSM that receives two binary numbers and p y
determine whether they are equal, lager, or smaller. We assume 
that the digits of the two numbers come in one by one, with the 
lower-order digits coming in first.

State output

00 01 10 11

A A C B A EqualA A C B A Equal

B B C B B Larger

C C C B C Smaller



Equivalent Machinesq
• Two FSMs are said to be equivalent if, starting from their 

respective initial states, they will produce the same output 
h th i th i tsequence when they are given the same input sequence.

state input output

1 2

state input output

1 21 2

A B C 0

B F D 0

1 2

A B C 0

B C D 0

C G E 0

D H B 0

E B F 1

C D E 0

D E B 0

E B C 1E B F 1

F D H 0

G E B 0

E B C 1

C=F D=G E=H
H B C 1

C F, D G, E H

• Two states si and sj are said to be equivalent if for any input i j q y p
sequence the machine will produce the same output sequence 
whether it starts in si or sj.



How do we know equivalent states?q
• Two states are said to be 0-equivalent if they have the same 

output.
• Two states are said to be 1-equivalent if they have the same output 

and if, for ever input letter, their successor are 0-equivalent.
• Two states are said to be k-equivalent if they have the same output q y p

and if, for every input letter, their successors are (k-1)-equivalent.
• Two states are equivalent if they are k-equivalent for all k.

state input output

0 1

A B F 0

k-equivalence makes a equivalent 
relation among states!A B F 0

B A F 0

C G A 0

D H B 0

π0={ABCDE   FGH}

π ={ABE CD F GH}D H B 0

E A G 0

F H C 1

G A 1

π1={ABE   CD   F   GH}

π2={AB   CD   E   F   GH}

π3={AB   CD   E   F   GH}
G A D 1

H A C 1



FSMs as Language Recognizers
• A FSM with 

– accepting states (output = 1)
– rejecting states (output = 0)rejecting states (output  0)

• An input sequence is said to be accepted by the FSM if it leads the 
machine from the initial state to an accepting state, and said to be 
rejected, otherwise.rejected, otherwise.

• Example 1: Make a FSM that accepts all binary sequences that 
ends with the digits 011. 1 0 1

1
A/0 B/0 C/0 D/10

0
1

01

• Example 2: Make a FSM that accepts all binary sequences of the 
form any number of 0s, followed by one or more 1s, followed by 
one or more 0s, followed by a 1, followed by any number of 0s,one or more 0s, followed by a 1, followed by any number of 0s, 
followed by a 1, and then followed by anything.

0
1 1

1 0 0

1

0,1

A/0 B/0 C/0 D/0
1 10 E/1

1



Finite State LanguageFinite State Language
• A language is said to be a finite state language (or a regular 

language) if there is a finite state machine that accepts exactly alllanguage) if there is a finite state machine that accepts exactly all 
sequences in the language

• Any FSM defines a finite state language.
• A given language might or might not be a finite state language• A given language might or might not be a finite state language.
• Consider the language L={akbk|k≥1}. Is it a finite state language?

– No
– Prove by contradiction

• Pumping lemma
N N

aaaaaaaa…aaabbbbbbbb…bbb
s s



Finite State Languages and Type-3 LanguagesFinite State Languages and Type 3 Languages
• Surprisingly, a finite state language is a type-3 language and a 

type-3 language is a finite state language.type 3 language is a finite state language. 
• To show this, let’s introduce a nondeterministic FSM.

– A finite set of states S = {s0, s1, s2, …}
A special element of the set S s referred to as the initial state– A special element of the set S, s0, referred to as the initial state.

– A finite set of input letters I={i1,i2, …}.
– A finite set of output letters O={o1, o2, …}

f i f f S f d h f– A function f from S×I to 2S, referred to as the transition function.
– A function g from S to O, referred to as the output function.

state input output
0 1

0 0 0 1 0 0 0 0 1

A B A A B A A A A B
A B B,C 0
B A,C C 0
C A B C 1

C B C C B B B C

C C
C A B,C 1



Nondeterministic FSM as Language Recognizer
• We say that a sequence is accepted by a nondeterministic FSM if 

starting from the initial state, among all the final states the 
sequence will lead the machine into, one of them is an accepting 
state.

• Is a nondeterministic FSM is more powerful than a deterministic 
FSM in the sense that there are languages that can be recognized 
b d i i i hi b b i d bby a nondeterministic machine but cannot be recognized by a 
deterministic one?
– No, For any given nondeterministic FSM, there is a deterministic 

fi i hi h l h lfinite state machine that accepts exactly the same language.

state input output

0 1
state input output

0 10 1

A B B,C 0

B A,C - 0

C A B C 1

0 1

{A} {B} {B,C} 0

{B} {A,C} { } 0

{C} {A} {B,C} 1C A B,C 1 {C} {A} {B,C} 1

{A,B} {A,B,C} {B,C} 0

{A,C} {A,B} {B,C} 1

{B,C} {A,C} {B,C} 1{ , } { , } { , }

{A,B,C} {A,B,C} {B,C} 1

{ } { } { } 0



Nondeterministic FSMs and Type-3 Languages
• The class of finite state languages is exactly the class of type-3 

languages.
• We show

– Given a FSM, we can have a type-3 grammar specifying the language 
accepted by the FSM.

– Given a type-3 grammar, we can construct a nondeterministic FSM yp g ,
that accepts the language specified the grammar.



Constructing Type-3 Grammar from FSM

0

0

1

1

1

A B C D/1 E/10

0

0

0

1

0

1
A 0B
A 1AA 1A
B 0B
B 1C
C 0B
C 1D
C 1
D 0E
D 0
D 1A
E 0D
E 0
E 1C



Constructing FSM from Type-3 Gramamr
A 0A
A 1B
B 0CB 0C
B 0D
C 0
C 1B

0 0

1

C 1B
C 1D
D 1
D 1A

A B C

0

1 1
D

D 1A

E/1

0
1

1
E/1

0
1

0,1

T

0,1


