
Machine-level Programming (4)

2

Assembler Directives

Not instructions but help assembler and linker do their
jobs
– Reserve data locations

– Sectioning

– etc.

3

Components of assembly language (1/2)

Reserved words
– Instruction: ex) move, add, jmp

– Directive: ex) .title, .list, .word

– Operator: ex) +, -, *, /, &&, ||

Identifiers
– Type

• name: indicate address of data

• label: indicate address of instruction

– Available character: A - Z, a - z, 0 - 9, ., _, $

– Available first character: A - Z, a - z, ., _, $

– Length: Unlimited. But, special symbols(new line, carriage
return, etc.)are not allowed.

4

Components of assembly language (2/2)

Statement
– Type

• Instruction: converted to object code

• Directive: make assembler take specific action

– Format

label operation operand ;comment
• All components are selective.

– 예) iadd: addl %eax, $4(%edx) ; add integers

Comment
– Start with a semicolon(;)

– Location: if the first field begins with a semicolon, the whole
line comment or comment field of the sentence.

5

Components of assembly language

Label Opcode Operands Comments

byte_num:
.byte
Movl

0xa1, 0x89
%eax, %ebx

; Only label.

; Directive – reserve byte.

; Instruction – move data.

label5: incw
Nop

%cx ; Instruction – increase cx by 1.

; Only instruction. No OPeration.

.L1:
addl
popl
popl
leave

$32, %esp
%esi
%edi

; Only label.

; Instruction – esp 0x20

; Instruction – esi (esp)

; Instruction – edi (esp)

; Instruction – restore stack for

; procedure exit.

leave = (movl %ebp, %esp | popl %ebp)

6

Directives

Directives
– Command processed by assembler when assembly program is

assembled.

– Therefore, those are not translated to machine language instruction.

Example of directives
– Data allocation and definition directives

• .byte expressions, .word exp, .long exp (= .int exp)

• 예) num_w: .word 0x438a, 0x439a, 0x43aa : num_w is a label
.ascii “Get smart!” ; a string constant

– Directives which help assembler and linker without machine
language translation.

• .section
– .section name[, “flags”]
– Assemble code that follows this directive to section “name”.

– Flags indicate whether those are available, writable or executable in the ELF
format.

– ex) .section data, “w” ; writable section name = data

• .text, .data

• .align, .p2align

– Directives for comment
• .file

• .ident

7

Directives

Directive 인자 Meaning Example

.file Filename Specify begin of new file (only located in begin of
assembly file)

.file “new_c”

.align boundary,
fill_val, max_n

Align next line with address which is a multiple of
“boundary”(in case of a.out, boundary=number of 0
of binary). Fill blanks between those in “fill_val” up
to “max_n”.

.align 8 (ELF)
= .align 3 (a.out)1

.p2align boundary,
fill_val, max_n

Same with .align. But value of “boundary”[like case
of a.out] is the number of 0 of binary.

.p2align 3, 0xff

.text Subsection Allocate subsequent sentence in text “subsection” .text 0 ; .text 1

.data Subsection Allocate subsequent sentence in data “subsection” .data 0 ; data 1

.globl Symbol Expose symbol to linker “ld” .globl (=global)
func5

.set symbol, exp Set “symbol value to “exp” .set ten, 10

.ident “string” Simply, record “string” in comment section of the
object file

.ident "GCC: (GNU)
3"

.org new_p, fill_val Change Location Counter to “new_p” in same
section. Fill blanks between those with “fill_val” .org next_pos

.include Filename Include “filename” .include “infile.h”

1: Specify format of object and executable files in ELF (executable and linking format). Replace initial a.out format.

8

Directives

About “section”
– Section is a field of address space which is consisted of adjacent

addresses.

– When linker(“id”) links many object files to a executable, it does in section
units.

Type of section – GAS and linker(ld)
– text section, data section

• Accept programs. Distinct section but treated as same kind.

• Text section cannot be edited in runtime. Mostly, It is shared between processes.

• Data section can be edited in runtime. For example, variables of C is saved in it.

– bss section (bss: blow stack segment)
• Accept variables or shared memory space. 0 in startup execution.

subsection
– Within each section, subsection can be placed.

– Identification number of each subsection is from 0 to 8192.

– Object of same subsection is adjacently(in the same place) placed during
generating object file.

Mixed-mode programming

10

Mixed-mode programs

Mixed-mode programs
– Program which is written using high level language such as C, C++

and Pascal and low level language such as assembly language.

Pros and cons of assembly language programming
– Pros

• Easy access to hardware

• Time and space efficiency

– Cons
• Lower productivity of program development. Higher maintenance cost.

• Absence of portability. Codes developed in an architecture cannot be
used in different environment.

Purpose of mixed-mode programs
– Device driver programming

• When direct access to hardware using common C language is
impossible.

– Optimization of program code to make faster execution speed

– Use extended CPU instruction set
• Unavailable instruction set in common C language
• 예) Intel MMX extended multimedia instruction set

– Receive API type system service in assembly program

11

Mixed-mode programs

Rule for mixed-mode programs
– Need

• It should be the common rule between codes because mixed-mode
programs are made by integrating many program module written with
different languages or plural languages are used in a program.

– Range of rule
• Shared identifier symbol

– For example, add “_”(underscore) in front of assembly processor called by C
program.

• Calling convention
– Two languages should follow same calling convention.
– Argument passing procedure: for example, pass from right argument using

stack.
– Return value handling

• resister handling
– Properly preserve value of resisters depending on caller-save or callee-

save.

How to write mixed-mode programs
– Write program modules in different languages and integrate.

• ex) Call processor written in 80x86 assembly language in a program
written in C language. Or, in contrast, call C processor in assembly
program.

– Use of inline assembly
• Insert assembly code directly in high level language program

12

Mixed-mode programming

Procedure of mixed-mode
programming

– According to given rules,
write high level language
program and low level
language program.

– After compile/assemble
each of them, generate
executable by linking.

– Example of procedure:

C source file
sample1.c

assembly source file
sample2.s

linker
ld

assembler
as

object file
sample1.o

object file
sample2.o

C compiler
gcc

executable
a.out

(C preprocessor)

(assembler)

13

Mixed-mode programming

extern int proc_2(int x, int y);

void main()
{

int x=10, y=20, s;
s = proc_2(x,y);

}

.globl proc_2

.globl _start

.type proc_2, @function
proc_2:
_start:

pushl %ebp
movl %esp, %ebp
movl 12(%ebp), %eax
addl 8(%ebp), %eax
leave
ret

a.out: file format elf32-i386

Disassembly of section .text:

08048094 <main>:
8048094: 55 push %ebp
8048095: 89 e5 mov %esp,%ebp
8048097: 83 ec 08 sub $0x8,%esp
804809a: 83 e4 f0 and $0xfffffff0,%esp
804809d: 83 ec 18 sub $0x18,%esp
80480a0: 6a 14 push $0x14
80480a2: 6a 0a push $0xa
80480a4: e8 03 00 00 00 call 80480ac <proc_2>
80480a9: c9 leave
80480aa: c3 ret
80480ab: 90 nop

080480ac <proc_2>:
80480ac: 55 push %ebp
80480ad: 89 e5 mov %esp,%ebp
80480af: 8b 45 0c mov 0xc(%ebp),%eax
80480b2: 03 45 08 add 0x8(%ebp),%eax
80480b5: c9 leave
80480b6: c3 ret

1> gcc –O –c code_c3_main.c –o main.o

2> as code_c3_proc2.s –o proc_2.o

3> ld main.o, proc_2.o
4> objdump –d a.out >main.dis

Call assembly program in C program

14

Inline assembly (1/2)

Basic inline assembly
– asm(“statements”)

• If a crash between string ‘asm’ and different name occurs, use
__asm__ instead of asm. (same in case of ‘volatile’)

• Insert “new_line” and “tab”(₩t) in each end of instruction
selectively when use multiple instruction. The reason is to
include assembly instructions to .s file generated by GCC
according to format.

– Example

• asm(“nop”);, asm(“sti”);
• asm(“movl $0x50, %eax\n\t”

“addl %eax, %ebx”);
– Problem

• GCC can’t know change of resister value occurred by
instruction in inline assembly.

• In other word, problem of resister usage can be occurred. In
the above example, resister eax and ebx can be spoiled.

15

Inline assembly (2/2)

Extended inline assembly
– asm (“statements”

: output_list /* optional */ output C variables

: input_list /* optional */ input C variables

: overwrite_registers /* optional */ Modified registers
)

– Write C variables which will be output(write) in “output_list”. Compiler bind
resister selectively.

– Write C variables which will be input(read) in “input_list”. Compiler bind
resister selectively.

– “overwrite_registers” means writing resister declared that will be modified.

Example – Use assembly code in C program
asm (“setae %%bl; movzbl %%bl, %0”

: “=r” (result) /* output */

: /* no inputs */

: “%ebx” /* overwrites */)

– Compiler(gcc) decide input/output resister. It is denoted by resister code
used by gcc.

• [resister] a: eax, b: ebx, c: ecx, d: edx, S: esi, D: edi, A: edx(MSB) ∪ eax(LSB)

• [constant] I (capital i): 0 ~ 31 사이의 상수값 (for 32-bit shifts), K: 0xff, L: 0xffff

• [dynamic allocation] q: one of {eax, ebx, ecx, edx}, r: one of {eax, ebx, ecx, edx
esi, edi}, g: one of {eax, ebx, ecx, edx, memory/immediate operand}

• [memory] m: memory operand

16

Inline assembly (1/2)

Example 1
asm (“leal $3(%1,%1,2), %0”

: “=r” (y) /* ‘=’ means “write-only” as a output. */
: “r” (x) /* y = x*3 + 3 */

– ‘%1’ means ‘1’th(second) operand in whole operand list and
indicate “r” (x).

– Also, %0 means ‘0’th(first) and indicate “=r” (y).
– In above example, changing with “x = x*3 + 3”

asm (“leal $3(%0,%0,2), %0”
: “=r” (x)
: “0” (x) /* ‘0’ means ‘0’th operand. */

Example 2
__asm__ __volatile__ (“incl %0; sete %1”

: “=m” (xim), “=q” (cond)
: “m” (xim)
: “memory”)

– ‘volatile’ means let it be in current position when compile this
assembly code. (In case of volatile, unknown change can be
occurred in compiler level (For example, state change of device
register), so compiler don’t optimize it but leave.)

– ‘memory’ of overwrite list indicate change of memory value.

17

Inline assembly (2/2)

void main()
{

int x=10, y=20, s;
asm volatile ("movl %1, %0\n\t"

"addl %2, %0"
: "=r" (s)
: "r" (x), "r" (y)

);
}

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $16, %esp

#APP
movl $10, %eax
addl $20, %eax

#NO_APP
leave
ret

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
subl $16, %esp
movl $10, %eax
movl $20, %edx

#APP
movl %eax, %eax
addl %edx, %eax

#NO_APP
leave
ret

void main()
{

int x=10, y=20, s;
asm volatile ("movl %1, %0\n\t"

"addl %2, %0"
: "=r" (s)
: “g" (x), “g" (y)

);
}

gcc –O –S add_r.c gcc –O –S add_g.c

Code in #APP - #NO_APP : inline assembly code

