Ch12. Filters and Tuned Amplifiers

Introduction

□ Passive LC filters

$\Box \text{ Electronic Filter } \rightarrow \text{ Active filter}$

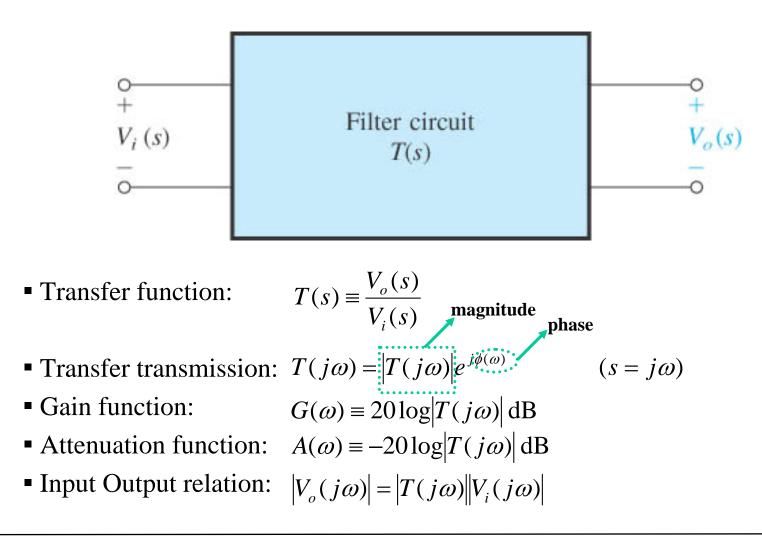
- Active RC filters
- Switched capacitor circuits

→ Advantages: No inductors!

Inductors are large and physically bulky for low frequency applications (such as those used in passive LC filters)

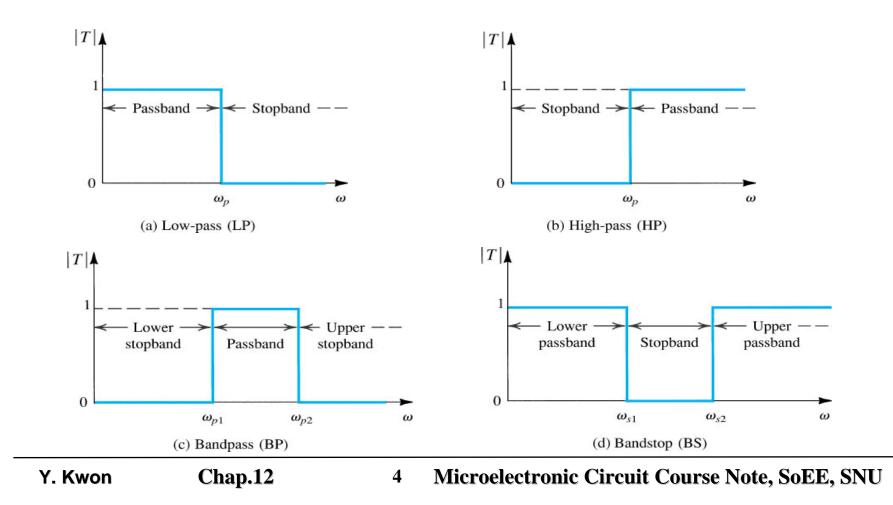
Filter Transmission

□ Filter - a two port device

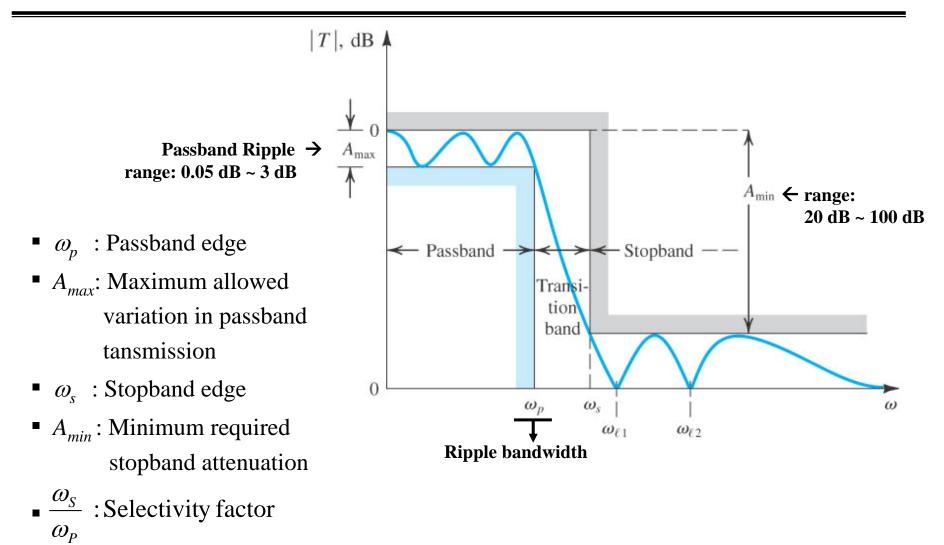


Filter Types

□ Frequency-selection function $\begin{bmatrix} passing \rightarrow passband: |T| = 1 \\ stopping \rightarrow stopband: |T| = 0 \end{bmatrix}$ □ Brick-wall response



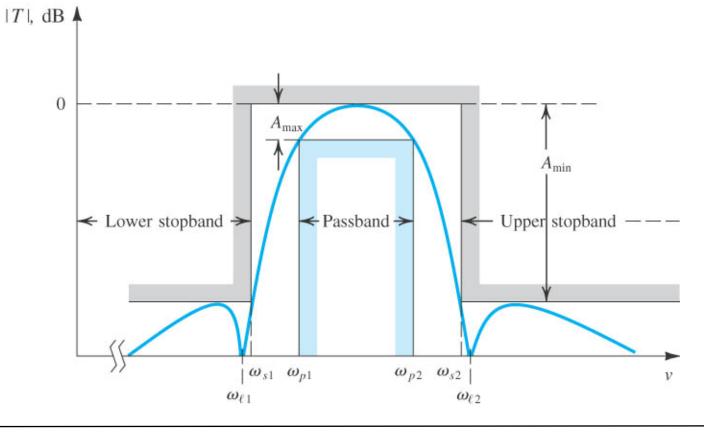
Filter Specification



Filter Specification

- Filter approximation
 - The process of obtaining a transfer function that meets given specifications
 - Performed using computer programs(Snelgrove, 1982;Ouslis and Sedra, 1995),

filter design table(Zverev, 1967) or closed-form expressions(Section 12.3)



 \Box Filter Transfer Function T(s)

•
$$T(s) = \frac{a_M s^M + a_{M-1} s^{M-1} + \dots + a_0}{s^N + b_{N-1} s^{N-1} + \dots + b_0}$$

- -N: Filter order
- If $N \ge M$, stable

$$-a_{0,}...,a_{M} \& b_{0},...,b_{N-1} : real numbers$$

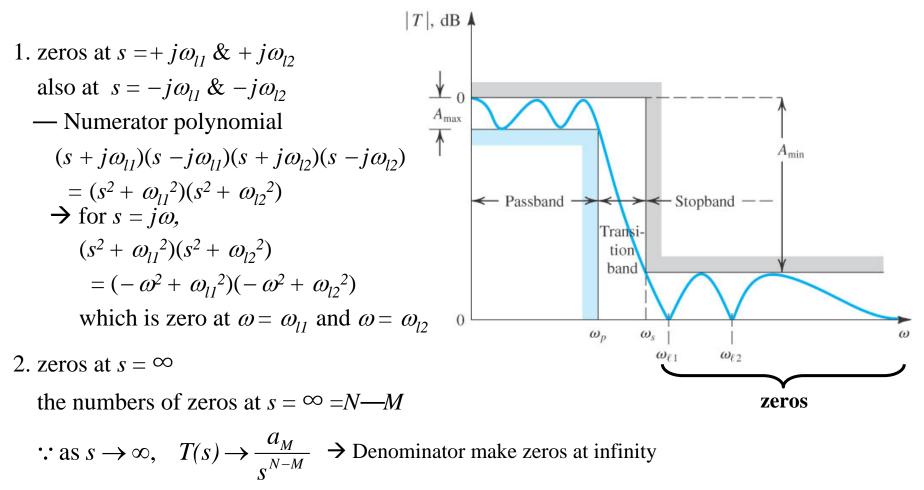
→ Poles need be in conjugate pairs or negative real numbers

•
$$T(s) = \frac{a_M (s - z_1)(s - z_2) \cdots (s - z_M)}{(s - p_1)(s - p_2) \cdots (s - p_N)}$$

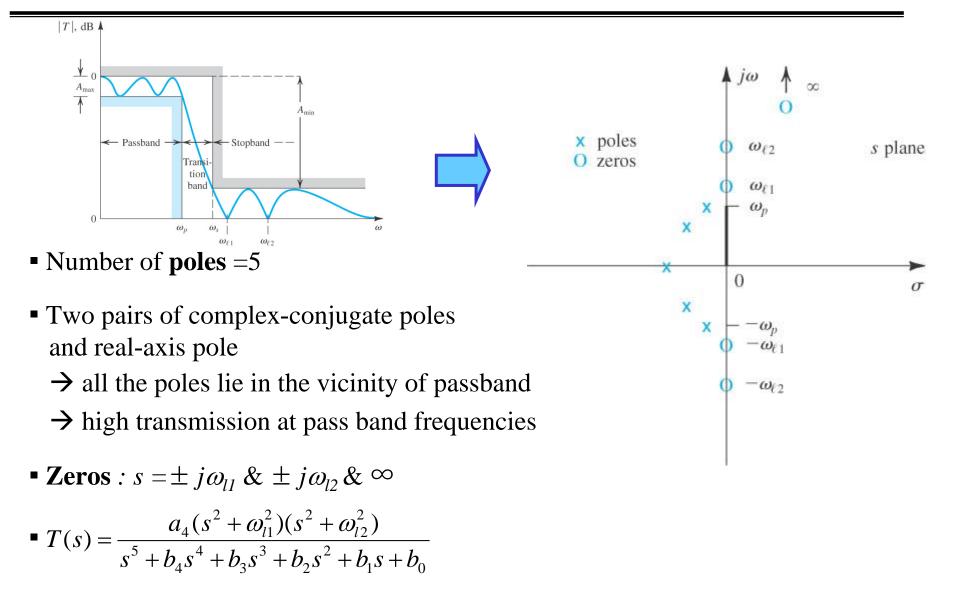
- z_1, \dots, z_M = transfer - function zeros = transmission zeros
- p_1, \dots, p_N = transfer - function poles = natural modes
 \rightarrow All poles must lie in left half plane.

• Since in the stopband the transmission is zero or small

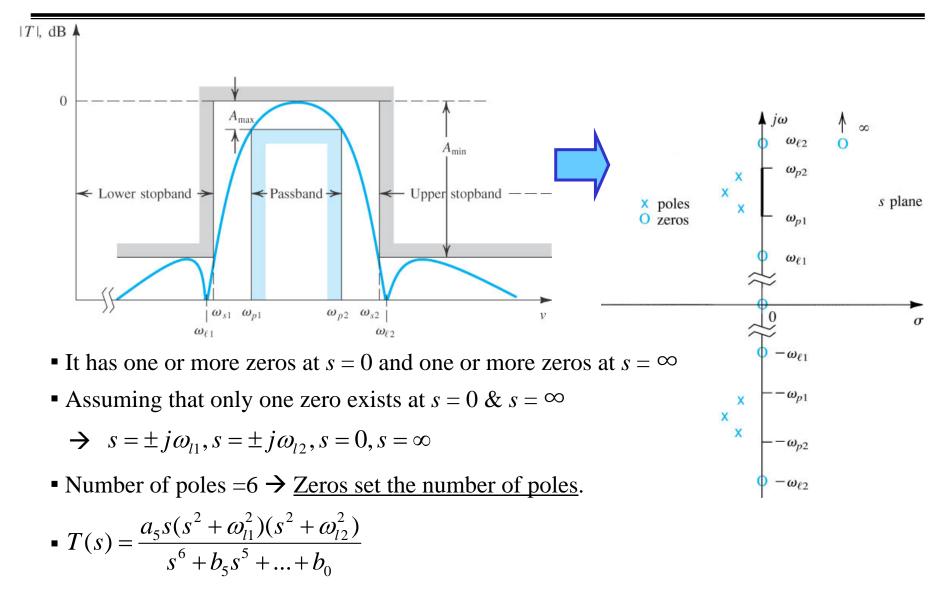
 \rightarrow the zeros are usually, placed on the $j\omega$ axis at stopband frequencies



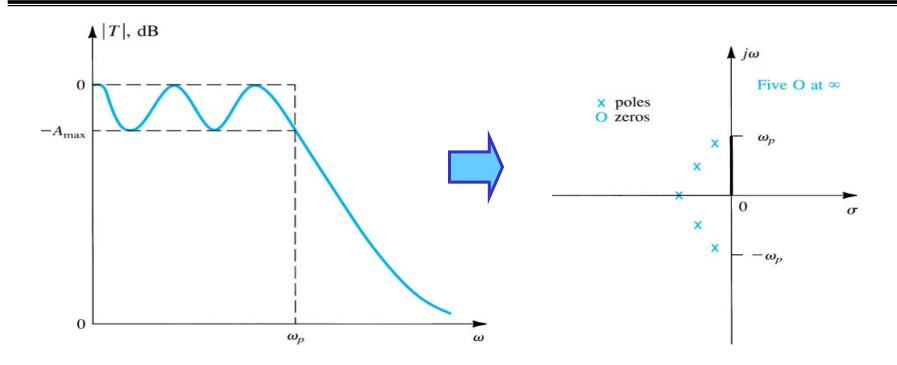
The Filter Transfer Function (ex. 1 : LPF)



The Filter Transfer Function (ex. 2 : BPF)



The Filter Transfer Function (ex. 3 : all-pole LPF)



• It is possible that all zeros are at $s = \infty$

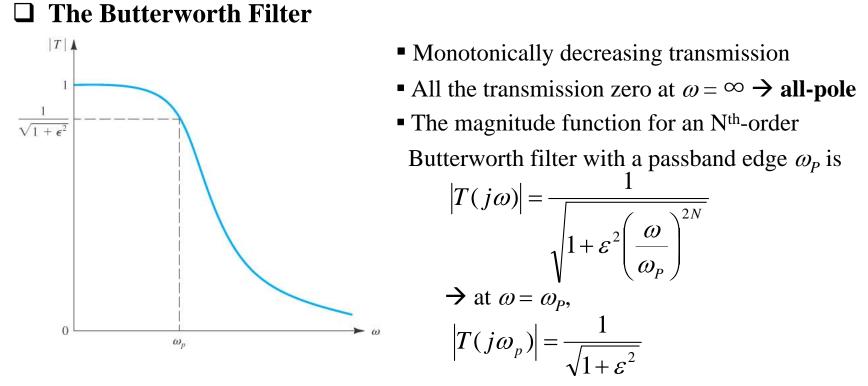
$$T(s) = \frac{a_0}{s^N + b_{N-1}s^{N-1} + \dots + b_0} \quad \Rightarrow \text{ all-pole filter}$$

• The more selective the required filter response is, the higher its order must be, and the closer its natural modes are to the $j\omega$ axis.

Butterworth and Chebyshev Filters

- In this section, we present two functions that are frequently used in approximating the transmission characteristics of low-pass filters.
 - : Closed-form expressions

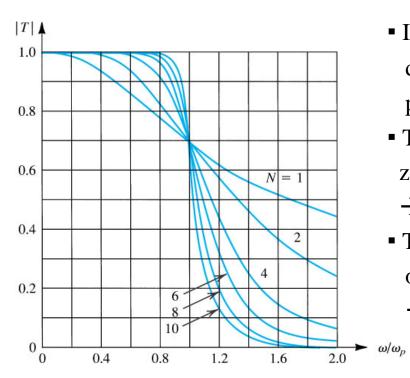
Butterworth Filters : Filter Shape and $|T(j\omega)|$



- Thus, the parameter ε determines the maximum variation in passband transmission, $A_{\text{max}} = 20 \log \sqrt{1 + \varepsilon^2}$
- Conversely, given A_{max} ,

$$\varepsilon = \sqrt{10^{A_{\rm max}/10} - 1}$$

The Butterworth Filter : N effects



 In the Butterworth response the maximum deviation in passband transmission occurs at the passband edge, ω_p, only

• The first 2*N*—1 derivatives of /T/ relative to ω are zero at $\omega = 0$

- \rightarrow very flat near $\omega = 0$ (maximally flat response)
- The degree of passband flatness increases as the order *N* is increased

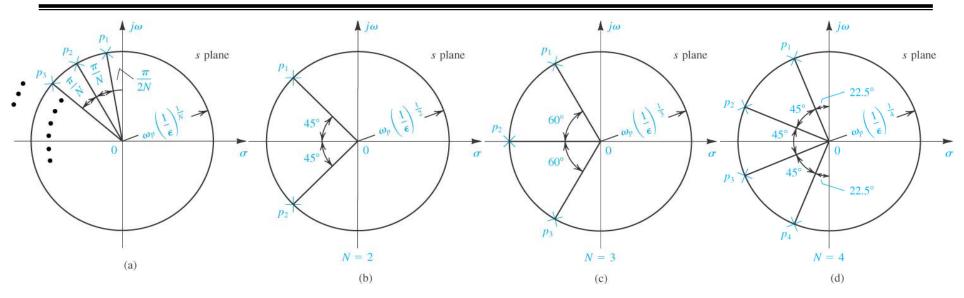
→ as the order N is increased the filter response
 approaches the ideal brick-wall

• At the edge of the stopband, $\omega = \omega_s$, attenuation is

$$A(\omega_{s}) = -20\log\left[1/\sqrt{1+\varepsilon^{2}(\omega_{s}/\omega_{p})^{2N}}\right] = 10\log\left[1+\varepsilon^{2}(\omega_{s}/\omega_{p})^{2N}\right]$$

• The required filter order = the lowest integer value of N that yields $A(\omega_S) \ge A_{\min}$

The Butterworth Filter : Poles



- The natural modes of an *N*th-order Butterworth filter can be determined from the graphical construction above.
- Natural modes lies on a circle of radius $\omega_P(1/\varepsilon)^{1/N}$

 \rightarrow same frequency of $\omega_0 = \omega_P (1/\varepsilon)^{1/N}$

- Space by equal angles of π/N , with the first mode at an angle $\pi/2N$ from the $+j\omega$ axis.
- Transfer function is

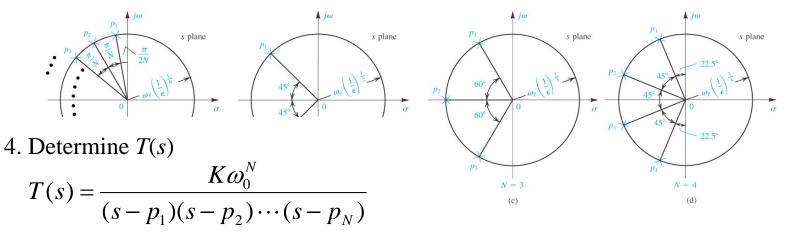
 $T(s) = \frac{K\omega_0^N}{(s - p_1)(s - p_2)\cdots(s - p_N)} \rightarrow K \text{ is a constant dc gain of the filter}$

The Butterworth Filter

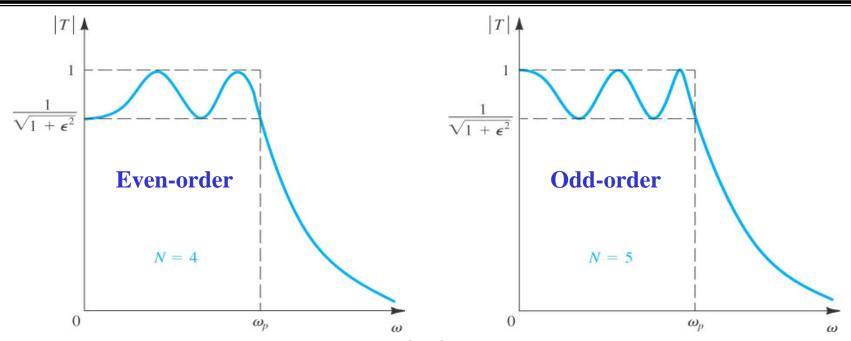
- How to find a Butterworth transfer function
 - 1. Determine \mathcal{E} .

$$\varepsilon = \sqrt{10^{A_{\max}/10} - 1}$$

- 2. Determine the required filter order as the lowest integer value of N that results in $A(\omega_S) \ge A_{\min}$. $A(\omega_S) = -20 \log \left[\frac{1}{\sqrt{1 + \varepsilon^2 (\omega_S / \omega_P)^{2N}}} \right] = 10 \log \left[1 + \varepsilon^2 (\omega_S / \omega_P)^{2N} \right]$
- 3. Determine the *N* natural modes.



The Chebyshev Filter



- Equi-ripple response (A_{max} = the peak ripple) in the passband and a monotonically decreasing transmission in the stopband.
- The odd-order filter, |T(0)|=1

The even-order filter exhibits its maximum magnitude deviation at $\omega = 0$.

- Total number of passband maxima and minima equals the order of the filter, *N*.
- All the zeros are at $\omega = \infty$. \rightarrow all-pole filter

• The magnitude of the transfer function with a passband edge ω_P is

$$\begin{aligned} |T(j\omega)| &= \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega/\omega_P)]}} & \text{for } \omega \le \omega_P \\ |T(j\omega)| &= \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega/\omega_P)]}} & \text{for } \omega \ge \omega_P \\ |T(j\omega_P)| &= \frac{1}{\sqrt{1 + \varepsilon^2}} & \text{for } \omega = \omega_P \end{aligned}$$

• Maximum passband ripple :

$$A_{\rm max} = 10\log(1+\varepsilon^2)$$

conversely,

$$\varepsilon = \sqrt{10^{A_{\text{max}}/10} - 1}$$

• The attenuation at the stopband $edge(\omega = \omega_S)$ is

$$A(\omega_{s}) = 10\log[1 + \varepsilon^{2}\cosh^{2}(N\cosh^{-1}(\omega_{s}/\omega_{P}))]$$

 \rightarrow Required order *N* calculation by

finding the lowest integer value of N that yields $A(\omega_S) \ge A_{\min}$.

• Increasing the order N of the Chebyshev filter causes its magnitude function to approach the ideal brick-wall low-pass response.

• The poles are

$$p_{k} = -\omega_{P} \sin\left(\frac{2k-1}{N}\frac{\pi}{2}\right) \sinh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\varepsilon}\right) + j\omega_{P} \cos\left(\frac{2k-1}{N}\frac{\pi}{2}\right) \cosh\left(\frac{1}{N}\sinh^{-1}\frac{1}{\varepsilon}\right) \quad k = 1, 2, \cdots, N$$

• The transfer function is

$$T(s) = \frac{K\omega_p^N}{\varepsilon 2^{N-1}(s-p_1)(s-p_2)\cdots(s-p_N)}$$

- How to find the transfer function
 - 1. Determine ε
 - 2. Determine the order required, $A(\omega_s)$
 - 3. Determine the poles, p_k
 - 4. Determine the transfer function, T(s)

First-Order and Second-Order Filter Functions

- Nth-order response is very hard to visualize → Simple filter transfer functions
 first and second order
- Cascade design.
- possible for the design of active filters (utilizing op amps and RC circuits).
- OP-amp output : low impedance
- High-order transfer function T(s) can be factored into the product of firstorder and second-order functions.

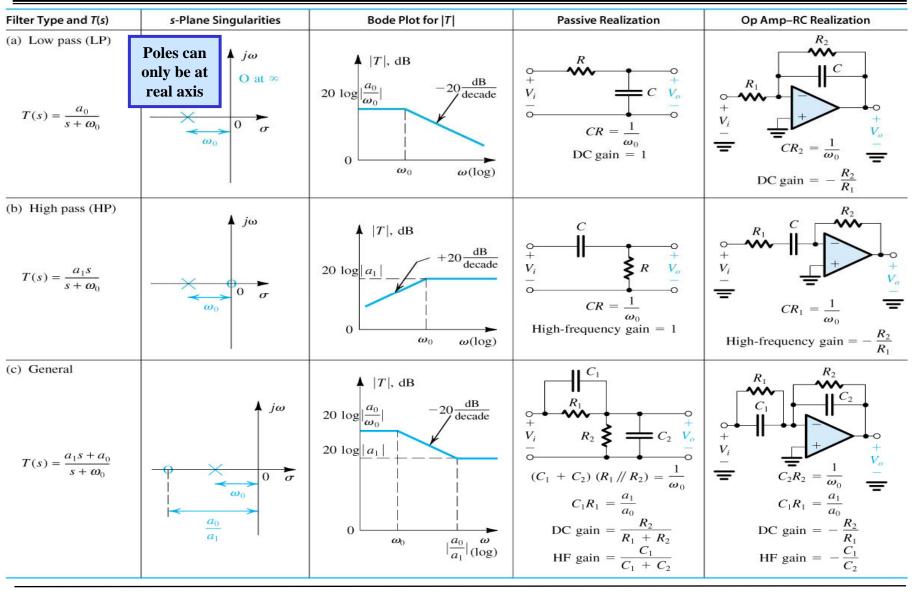
First-Order Filter Function

□ First-Order Filter Function

$$T(s) = \frac{a_1 s + a_0}{s + \omega_0}$$

- \rightarrow bilinear transfer function
- natural mode at $s = -\omega_0$
- transmission zero at $s = -\frac{a_0}{a_1}$
- high-frequency gain = a_1
- The numerator coefficients, a_0 and a_1 , determine the type of filter

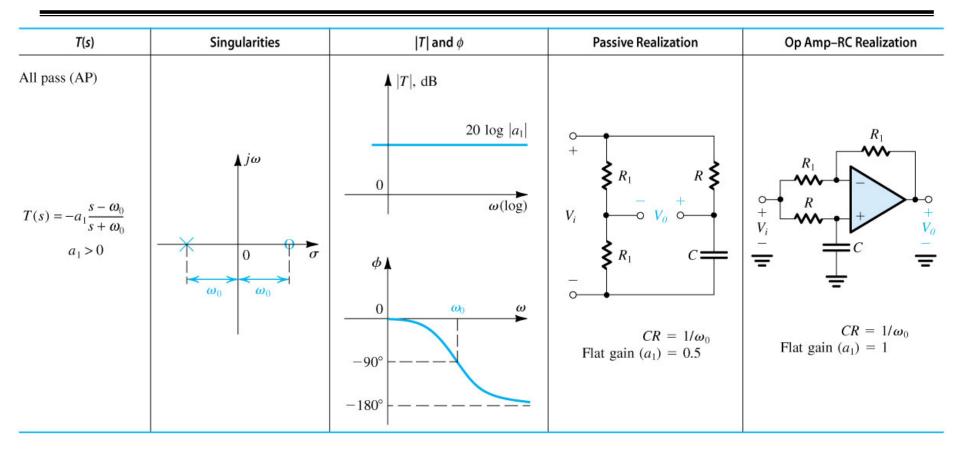
First-Order Filter Function



Y. Kwon

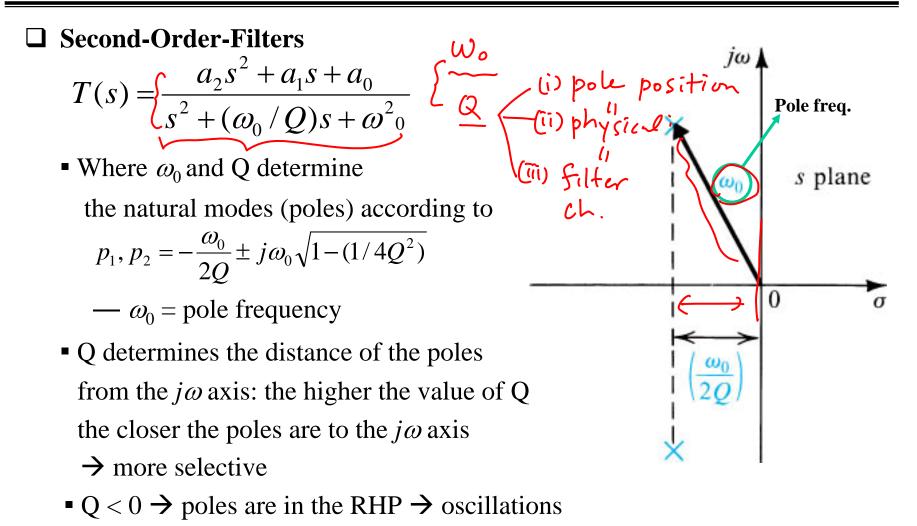
22 Microelectronic Circuit Course Note, SoEE, SNU

First-Order Filter Function

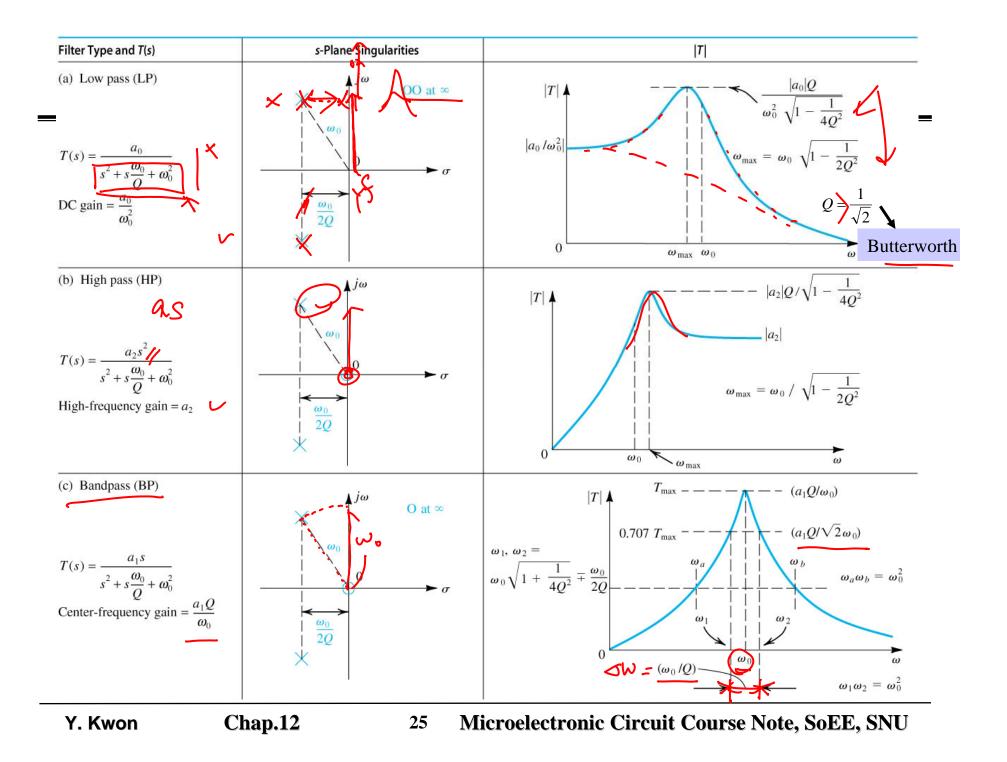


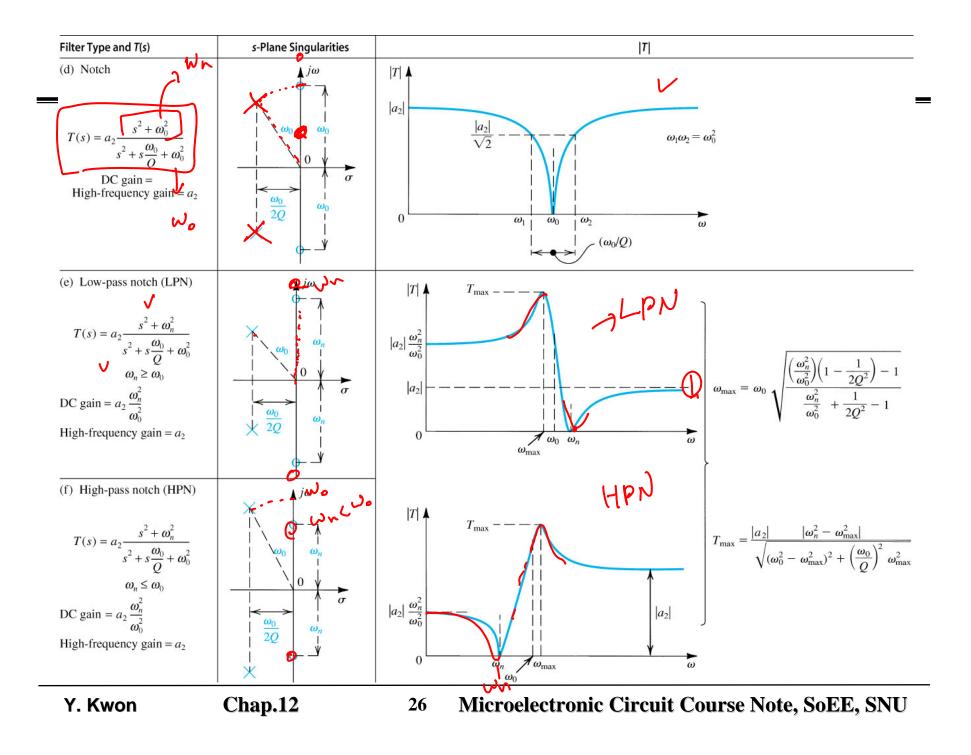
- Although the transmission is constant, its phase shows frequency selectivity
- All-pass filters are used as phase shifters and in systems that require phase shaping

Second-Order Filter Function

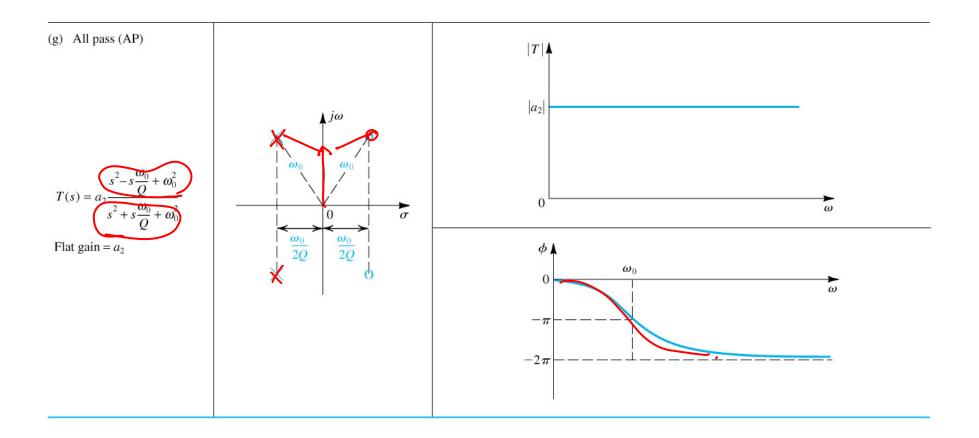


• Q = pole quality factor = pole Q





Second-Order Filter Function



Second-Order Filter Function

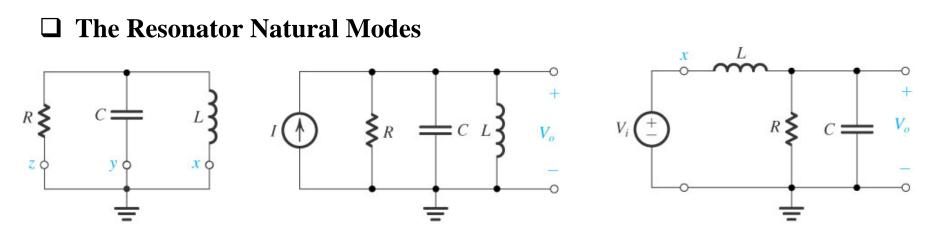
□ LP case: The peak occurs only for $Q > \frac{1}{\sqrt{2}}$ $Q = \frac{1}{\sqrt{2}}$ → Butterworth, or maximally flat □ HP case: Transmission zeros at *s*=0 Dual to LP

D BP case: Transmission zeros at s=0 and $s=\infty$

Magnitude response peaks at $\omega = \omega_0$ =center frequency 3dB: $\omega_1, \omega_2 = \omega_o \sqrt{1 + \frac{1}{4Q^2}} \pm \frac{\omega_o}{2Q}$

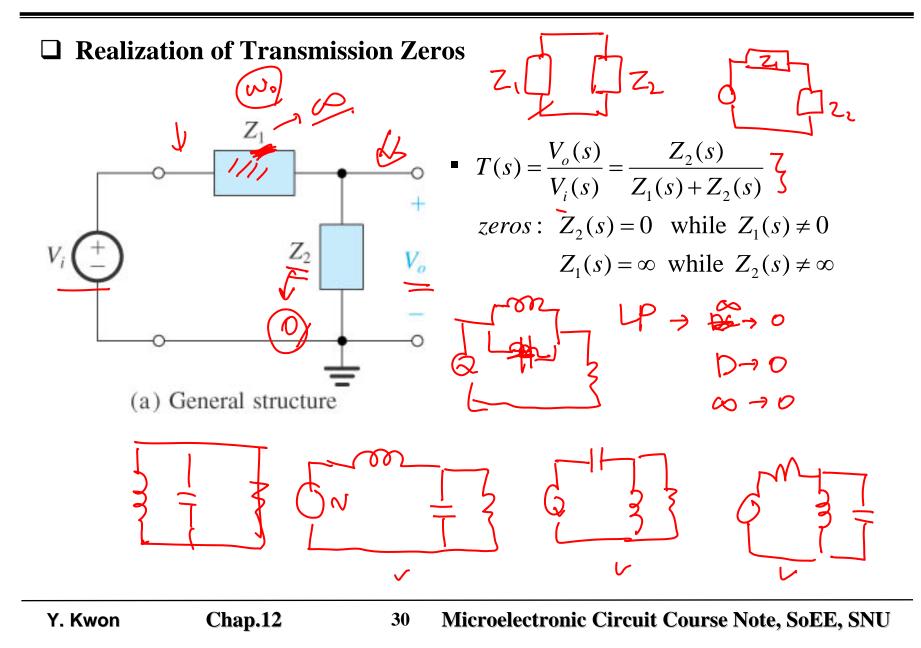
BW=
$$\omega_2 - \omega_1 = \frac{\omega_o}{Q}$$
 :as Q \uparrow BW \downarrow more selective

The Second-order LCR Resonator : Natural Modes

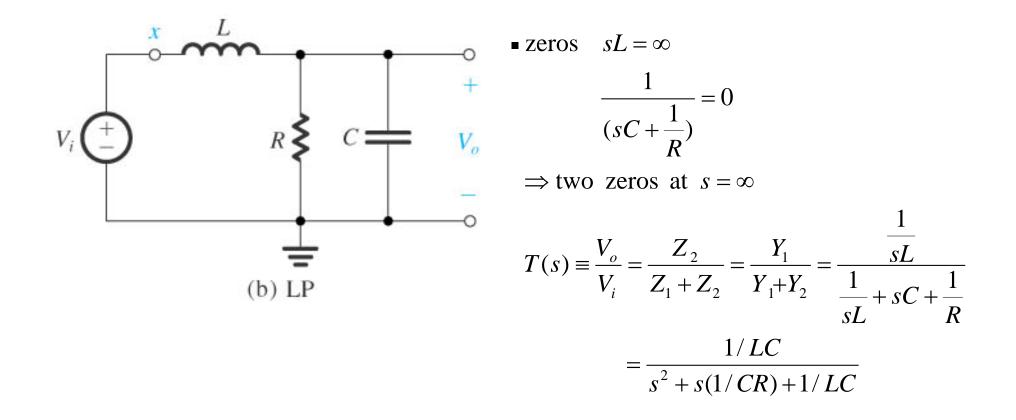


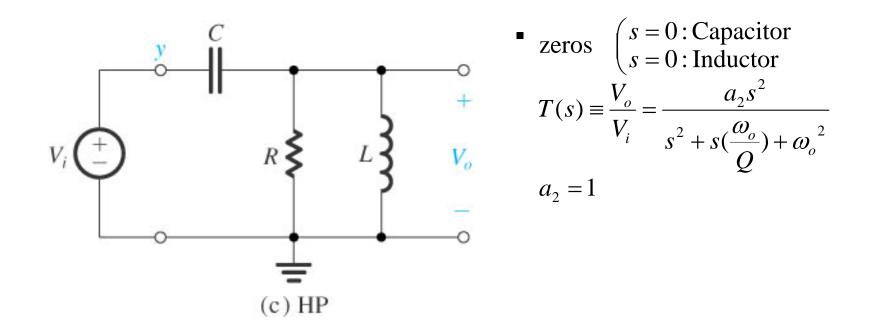
• The natural modes can be determined by applying an excitation that does not change the natural structure of the circuit

The Second-order LCR Resonator : Adding Zeros

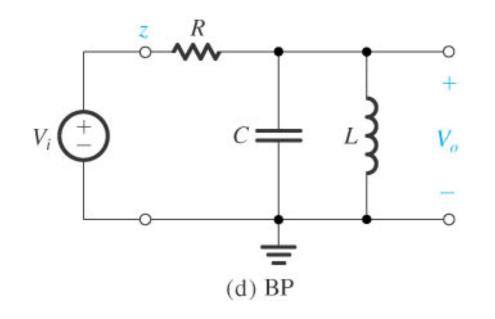


The Second-order LCR Resonator





Realization of the Band-Pass Function



zeros
$$\begin{pmatrix} s = 0 : \text{Inductor} \\ s = \infty : \text{Capacitor} \end{pmatrix}$$

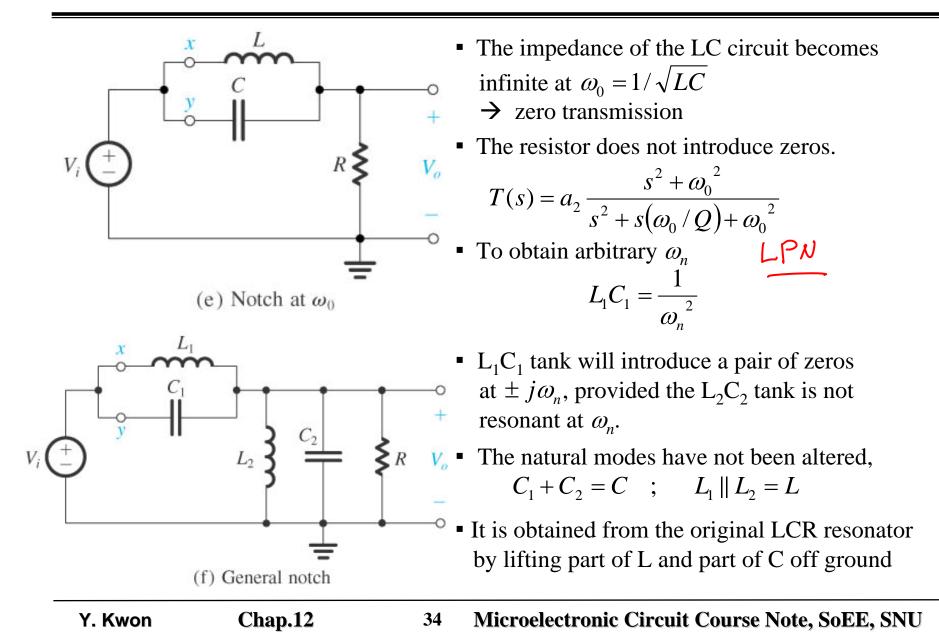
at ω0,

LC-tuned circuit exhibits an infinite impedance \rightarrow no current flows the center freq. gain is unity

1

$$T(s) = \frac{Y_R}{Y_R + Y_L + Y_C} = \frac{\frac{1}{R}}{\frac{1}{R} + \frac{1}{sL} + sC}$$
$$= \frac{s(\frac{1}{CR})}{s^2 + s(\frac{1}{CR}) + (\frac{1}{LC})}$$

Realization of the Notch Functions



Realization of the All-Pass Function

- The all-pass transfer function $T(s) = \frac{s^2 - s(\omega_o/Q) + \omega_o^2}{s^2 + s(\omega_o/Q) + \omega_o^2}$ $= 1 - \underbrace{\frac{s2(\omega_o/Q)}{s^2 + s(\omega_o/Q) + \omega_o^2}}_{\downarrow} \longrightarrow \text{bandpass function with a center-frequency gain of 2}$
- All pass realization with a flat gain of 0.5

$$T(s) = 0.5 - \frac{s(\omega_o/Q)}{s^2 + s(\omega_o/Q) + \omega_o^2}$$

