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Ch12. Filters and Tuned AmplifiersCh12. Filters and Tuned Amplifiers
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IntroductionIntroduction

Passive LC filters

Electronic Filter   Active filter 
– Active RC filters
– Switched capacitor circuits

Advantages: No inductors! 
Inductors are large and physically bulky for low frequency applications 
(such as those used in passive LC filters)
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Filter TransmissionFilter Transmission

Filter - a two port device

▪ Transfer function:

▪ Transfer transmission:
▪ Gain function:
▪ Attenuation function:
▪ Input Output relation:
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Filter TypesFilter Types

Frequency-selection function   passing passband:
stopping stopband:

Brick-wall response

1=T
0=T
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Filter SpecificationFilter Specification

▪ ωp : Passband edge
▪ Amax: Maximum allowed

variation in passband
tansmission

▪ ωs : Stopband edge
▪ Amin : Minimum required 

stopband attenuation

▪

Passband Ripple  
range: 0.05 dB ~ 3 dB

factory Selectivit:
P

S

ω
ω

Ripple bandwidth

range: 
20 dB ~ 100 dB
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Filter SpecificationFilter Specification

▪ Filter approximation
— The process of obtaining a transfer function that meets given specifications
— Performed using computer programs(Snelgrove, 1982;Ouslis and Sedra, 1995), 

filter design table(Zverev, 1967) or closed-form expressions(Section 12.3)
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The Filter Transfer FunctionThe Filter Transfer Function

Filter Transfer Function T(s)

▪

− N : Filter order
− If  N ≥ M,  stable
−

▪

−

−
All poles must lie in left half plane.  
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The Filter Transfer Function (zeros)The Filter Transfer Function (zeros)

▪ Since in the stopband the transmission is zero or small
the zeros are usually, placed on the jω axis at stopband frequencies

1. zeros at s =+ jωl1 & + jωl2

also at  s = − jωl1 & − jωl2

— Numerator polynomial
(s + jωl1)(s − jωl1)(s + jωl2)(s − jωl2)
= (s2 + ωl1

2)(s2 + ωl2
2)

for s = jω,
(s2 + ωl1

2)(s2 + ωl2
2) 

= (− ω2 + ωl1
2)(− ω2 + ωl2

2)
which is zero at ω = ωl1  and ω = ωl2

2. zeros at s = ∞
the numbers of zeros at s = ∞ =N—M

MN
M

s
aT(s)s −→∞→  , asQ

zeros

Denominator make zeros at infinity



Y. KwonY. Kwon Chap.12Chap.12 Microelectronic Circuit Course Note, Microelectronic Circuit Course Note, SoEESoEE, SNU, SNU9

The Filter Transfer Function (ex. 1 : LPF)The Filter Transfer Function (ex. 1 : LPF)

▪ Number of poles =5

▪ Two pairs of complex-conjugate poles
and real-axis pole

all the poles lie in the vicinity of passband
high transmission at pass band frequencies

▪ Zeros : s =± jωl1 & ± jωl2 & ∞
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▪ It has one or more zeros at s = 0 and one or more zeros at s = ∞
▪ Assuming that only one zero exists at s = 0 & s = ∞

▪ Number of poles =6 Zeros set the number of poles.

▪

The Filter Transfer Function (ex. 2 : BPF)The Filter Transfer Function (ex. 2 : BPF)
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The Filter Transfer Function (ex. 3 : allThe Filter Transfer Function (ex. 3 : all--pole LPF)pole LPF)

▪ It is possible that all zeros are at s = ∞

▪ The more selective the required filter response is, the higher its order must be, 
and the closer its natural modes are to the jω axis.
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Butterworth and Butterworth and ChebyshevChebyshev FiltersFilters

▪ In this section, we present two functions that are frequently used in
approximating the transmission characteristics of low-pass filters.
: Closed-form expressions
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Butterworth Filters : Filter Shape and Butterworth Filters : Filter Shape and 

The Butterworth Filter
▪ Monotonically decreasing transmission
▪ All the transmission zero at ω = ∞ all-pole
▪ The magnitude function for an Nth-order 
Butterworth filter with a passband edge ωP is

at ω = ωP,

▪ Thus, the parameter ε determines the maximum variation in passband transmission,

▪ Conversely, given Amax,
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The Butterworth Filter : N effectsThe Butterworth Filter : N effects

▪ In the Butterworth response the maximum
deviation in passband transmission occurs at the
passband edge, ωP, only
▪ The first 2N—1 derivatives of |T| relative to ω are
zero at ω = 0

very flat near ω = 0 (maximally flat response)
▪ The degree of passband flatness increases as the 

order N is increased
as the order N is increased the filter response
approaches the ideal brick-wall

▪ At the edge of the stopband, ω = ωS, attenuation is

▪ The required filter order = the lowest integer value of N that yields A(ωS)≥Amin
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The Butterworth Filter : PolesThe Butterworth Filter : Poles

▪ The natural modes of an Nth-order Butterworth filter can be determined from the 
graphical construction above.

▪ Natural modes lies on a circle of radius ωP(1/ε)1/N

same frequency of ω0 = ωP(1/ε)1/N

▪ Space by equal angles of π/N, with the first mode at an angle π/2N from the +jω axis.
▪ Transfer function is

K is a constant dc gain of the filter
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The Butterworth FilterThe Butterworth Filter

▪ How to find a Butterworth transfer function
1. Determine ε. 

2. Determine the required filter order as the lowest integer value of N that results in 
A(ωS) ≥ Amin.

3. Determine the N natural modes.

4. Determine T(s)
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The The ChebyshevChebyshev FilterFilter

▪ Equi-ripple response (Amax = the peak ripple) in the passband and a monotonically 
decreasing transmission in the stopband.
▪ The odd-order filter, |T(0)|=1
The even-order filter exhibits its maximum magnitude deviation at ω = 0.
▪ Total number of passband maxima and minima equals the order of the filter, N.
▪ All the zeros are at ω = ∞. all-pole filter

Even-order Odd-order
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The The ChebyshevChebyshev Filter : EquationFilter : Equation

▪ The magnitude of the transfer function with a passband edge ωP is

▪Maximum passband ripple :  

conversely,

▪ The attenuation at the stopband edge(ω = ωS) is

Required order N calculation by  
finding the lowest integer value of N that yields A(ωS) ≥ Amin.

▪ Increasing the order N of the Chebyshev filter causes its magnitude function to approach the ideal 
brick-wall low-pass response.
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The The ChebyshevChebyshev FilterFilter

▪ The poles are

▪ The transfer function is

▪ How to find the transfer function
1. Determine ε
2. Determine the order required, A(ωS)
3. Determine the poles, pk

4. Determine the transfer function, T(s)
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FirstFirst--Order and SecondOrder and Second--Order Filter FunctionsOrder Filter Functions

▪ Nth-order response is very hard to visualize Simple filter transfer functions
— first and second order

▪ Cascade design.
— possible for the design of active filters (utilizing op amps and RC circuits).
— OP-amp output : low impedance 

▪ High-order transfer function T(s) can be factored into the product of first-
order and second-order functions.
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FirstFirst--Order Filter FunctionOrder Filter Function

First-Order Filter Function

bilinear transfer function

— natural mode at 

— transmission zero at

— high-frequency gain = a1

— The numerator coefficients, a0 and a1,
determine the type of filter
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FirstFirst--Order Filter FunctionOrder Filter Function

Poles can 
only be at 
real axis
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FirstFirst--Order Filter FunctionOrder Filter Function

▪ Although the transmission is constant, its phase shows frequency selectivity
▪ All-pass filters are used as phase shifters and in systems that require phase
shaping
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SecondSecond--Order Filter FunctionOrder Filter Function

Second-Order-Filters

▪Where ω0 and Q determine 
the natural modes (poles) according to

— ω0 = pole frequency
▪ Q determines the distance of the poles 

from the jω axis: the higher the value of Q, 
the closer the poles are to the jω axis

more selective
▪ Q < 0 poles are in the RHP oscillations
▪ Q = pole quality factor = pole Q
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SecondSecond--Order Filter FunctionsOrder Filter Functions

2
1

=Q

Butterworth
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SecondSecond--Order Filter FunctionsOrder Filter Functions
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SecondSecond--Order Filter FunctionOrder Filter Function
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SecondSecond--Order Filter FunctionOrder Filter Function

LP case:  The peak occurs only for

Butterworth, or maximally flat
HP case:  Transmission zeros at s=0

Dual to LP

BP case:  Transmission zeros at s=0 and s=∞
Magnitude response peaks at ω = ωo=center frequency

3dB: ω1, ω2=

BW=ω2—ω1=        :as Q↑ BW↓ more selective
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The SecondThe Second--order LCR Resonator : Natural Modesorder LCR Resonator : Natural Modes

The Resonator Natural Modes

▪ The natural modes can be determined by applying an excitation that does not   
change the natural structure of the circuit
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The SecondThe Second--order LCR Resonator : Adding Zerosorder LCR Resonator : Adding Zeros

Realization of Transmission Zeros

▪

∞≠∞=
≠=

+
==

)(    while)(             
0)(     while0)(   :

)()(
)(

)(
)()(

21

12

21

2

sZsZ
sZsZzeros

sZsZ
sZ

sV
sVsT

i

o



Y. KwonY. Kwon Chap.12Chap.12 Microelectronic Circuit Course Note, Microelectronic Circuit Course Note, SoEESoEE, SNU, SNU31

The SecondThe Second--order LCR Resonatororder LCR Resonator

Realization of the Low-Pass Function

▪
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The SecondThe Second--order LCR Resonatororder LCR Resonator

Realization of the High-Pass Function

▪
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The SecondThe Second--order LCR Resonatororder LCR Resonator

Realization of the Band-Pass Function

▪

at ω0,
LC-tuned circuit exhibits an infinite
impedance no current flows 
the center freq. gain is unity
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Realization of the Notch FunctionsRealization of the Notch Functions

▪ The impedance of the LC circuit becomes 
infinite at 

zero transmission
▪ The resistor does not introduce zeros. 

▪ To obtain arbitrary ωn

▪ L1C1 tank will introduce a pair of zeros 
at           , provided the L2C2 tank is not 
resonant at ωn.
▪ The natural modes have not been altered, 

▪ It is obtained from the original LCR resonator 
by lifting part of L and part of C off ground
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Realization of the AllRealization of the All--Pass FunctionPass Function

▪ The all-pass transfer function

▪ All pass realization with a flat gain of 0.5
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