
Multitasking

2

Until now....

We understand how a program runs on a computer
system.

 In reality, multiple programs (tasks) run concurrently on
multiple resources.

Processor Memory

Program1 Program2 Program3

Keyboard Timer Monitor

3

Until now....

We understand how a program runs on a computer
system.

 In reality, multiple programs (tasks) run concurrently on
multiple resources.

Processor Memory

Program1 Program2 Program3

Keyboard Timer Monitor

OS

interrupt
handler

system
calls

signals

OS gives the
illusion that

each task has a
dedicated set
of resources

4

Interleaving in time

Processor Memory

Program1 Program2 Program3

Keyboard Timer Monitor

OS

interrupt
handler

system calls signals

OS gives the illusion
that each task has a

dedicated set of
resources

Program 1 Program 2 Program 3 OS kernel

disk read

timer interrupt

disk data

Logical
control
flow

•Control abruptly changes by events
(not by normal jumps and calls):
Exceptional Control Flow

5

Control Flow

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

 Computers do Only One Thing
– From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time.

– This sequence is the system’s physical control flow (or flow
of control).

Physical control flow

Time

6

How the Control Flow Changes

 Up to Now: two mechanisms for changing control flow:

– Jumps and branches

– Call and return using the stack discipline.

– Both react to changes in program state.

 Insufficient for a useful system

– Difficult for the CPU to react to changes in system state.

• data arrives from a disk or a network adapter.

• Instruction divides by zero

• User hits ctl-c at the keyboard

• System timer expires

 System needs mechanisms for “exceptional control flow”

 Supporting “Exceptional control flow” is the basic mechanism
with which OS serve multiple concurrent tasks controlling
multiple resources.

7

Exceptional Control Flow

– Mechanisms for exceptional control flow exists at all levels of
a computer system.

 Low level Mechanism
– exceptions

• change in control flow in response to a system event (i.e.,
change in system state)

– Combination of hardware and OS software

 Higher Level Mechanisms
– Process context switch

– Signals

– Nonlocal jumps (setjmp/longjmp)

– Implemented by either:

• OS software (context switch and signals).

• C language runtime library: nonlocal jumps.

8

System context for exceptions

Local/IO Bus

Memory
Network

adapter
IDE disk

controller

Video

adapter

Display Network

Processor
Interrupt

controller

SCSI

controller

SCSI bus

Serial port

controller

Parallel port

controller

Keyboard

controller

Keyboard Mouse PrinterModem

disk

disk CDROM

9

Exceptions

 An exception is a transfer of control to the OS in
response to some event (i.e., Page Fault, Timer expires)

User Process OS

exception

exception processing

by exception handler

exception

return (optional)

event current
next

10

Interrupt Vectors

– Each type of event has a
unique exception number k

– Index into jump table (a.k.a.,
interrupt vector)

– Jump table entry k points to
a function (exception
handler).

– Handler k is called each
time exception k occurs.

interrupt

vector

0
1

2 ...
n-1

code for

exception handler 0

code for

exception handler 1

code for

exception handler 2

code for

exception handler n-1

...

Exception

numbers

11

Exception Types

 Asynchronous Exceptions (Interrupts)

 Synchronous Exceptions
– trap (e.g., system call)

– fault (e.g., page fault)

– abort (e.g., parity error)

12

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
– Indicated by setting the processor’s interrupt pin

– handler returns to “next” instruction.

 Examples:
– I/O interrupts

• hitting ctl-c at the keyboard

• arrival of a packet from a network

• arrival of a data sector from a disk

– Hard reset interrupt

• hitting the reset button

– Soft reset interrupt

• hitting ctl-alt-delete on a PC

13

Synchronous Exceptions

 Caused by events that occur as a result of executing
an instruction:
– Traps

• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

– Faults

• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults
(unrecoverable).

• Either re-executes faulting (“current”) instruction or aborts.

– Aborts

• unintentional and unrecoverable

• Examples: parity error, machine check.

• Aborts current program

14

Trap Example

User Process OS

exception

Open file

return

int

pop

 Opening a File
– User calls open(filename, options)

• Function open executes system call instruction int

– OS must find or create file, get it ready for reading or writing

– Returns integer file descriptor

0804d070 <__libc_open>:

. . .

804d082: cd 80 int $0x80

804d084: 5b pop %ebx

. . .

15

Fault Example #1

User Process OS

page fault

Create page and load

into memoryreturn

event
movl

 Memory Reference
– User writes to memory location

– That portion (page) of user’s memory is
currently on disk

– Page handler must load page into
physical memory (This gives the task
the illusion of exclusive use of memory)

– Returns to faulting instruction

– Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

16

Fault Example #2

User Process OS

page fault

Detect invalid address

event
movl

 Memory Reference
– User writes to memory location

– Address is not valid

– Page handler detects invalid address

– Sends SIGSEG signal to user process

– User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

Signal process

17

Multitasking with the Concept of Processes

 Def: A process is an instance of a running program.
– One of the most profound ideas in computer science.

– Not the same as “program” or “processor”

 Process provides each program with two key
abstractions:
– Logical control flow

• Each program seems to have exclusive use of the CPU.

– Private address space

• Each program seems to have exclusive use of main memory.

 How are these Illusions maintained?
– Process executions interleaved (multitasking)

– Address spaces managed by virtual memory system

18

Logical Control Flows

Time

Process A Process B Process C

Each process has its own logical control flow

19

Concurrent Processes

 Two processes run concurrently (are concurrent) if
their flows overlap in time.

 Otherwise, they are sequential.

 Examples:
– Concurrent: A & B, A & C

– Sequential: B & C

Time

Process A Process B Process C

20

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time. (Because CPU can run only a single
instruction at a time)

 However, we can think of concurrent processes are
running in parallel with each other.

Time

Process A Process B Process C

21

Context Switching

 Processes are managed by a shared chunk of OS
code called the kernel
– Important: the kernel is not a separate process, but rather

runs as part of some user process

 Control flow passes from one process to another via
a context switch.

Process A

code

Process B

code

user code

kernel code

user code

kernel code

user code

Time
context switch

context switch

by a system call
or timer interrupt

22

Private Address Spaces

 Each process has its own private address space.

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

23

Process Related System Calls

 Now, we understand how multiple processes run
concurrently

 How multiple processes can be created?

 How existing processes can be removed from the
system?

 OS provides system calls to do this
– fork

– exit

24

fork: Creating new processes

 int fork(void)

– creates a new process (child process) that is identical to the
calling process (parent process)

– returns 0 to the child process

– returns child’s pid to the parent process

if (fork() == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Fork is interesting

(and often confusing)

because it is called

once but returns twice

2525

Kernel Data Structure for Processes

 Process Table (Array of PCB)

– Save information of active processes

– Display process information using a PCB(Process Control
Block) as a table entry

 Process Control Block (PCB)
– Save all information related to process

– Process and kernel thread have independent PCB.

2626

PCB for each process
PCB

Process state

Exit code

Process ID, Parent process ID

Scheduling priority

Time slice

Resister set

User ID, Group ID

Virtual address space

(text, data, heap, stack etc.)

Physical memory mapping (page table)

Open file table

File system information

Signal handling

Terminal

Process classification
and state information

Scheduling information

User and group information of
executable file

Virtual address space and
physical memory mapping information

Open file and file system information

Signal handling and terminal information

27

Fork Example #1

void fork1()

{

int x = 1;

pid_t pid = fork();

if (pid == 0) {

printf("Child has x = %d\n", ++x);

} else {

printf("Parent has x = %d\n", --x);

}

printf("Bye from process %d with x = %d\n", getpid(), x);

}

 Key Points
– Parent and child both run same code

• Distinguish parent from child by return value from fork

– Start with same state (e.g., stack, registers, program counter,
environment variables, and open file descriptors)

– But, each has private copy and thus can evolve separately

Relative ordering of their print
statements undefined

28

Fork Example #2

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

 Key Points
– Both parent and child can continue forking

L0 L1

L1

Bye

Bye

Bye

Bye

29

Fork Example #3

void fork3()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("L2\n");

fork();

printf("Bye\n");

}

 Key Points
– Both parent and child can continue forking

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

30

Fork Example #4

void fork4()

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

fork();

}

}

printf("Bye\n");

}

 Key Points
– Both parent and child can continue forking

L0 L1

Bye

L2

Bye

Bye

Bye

31

Fork Example #5

void fork5()

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

fork();

}

}

printf("Bye\n");

}

 Key Points
– Both parent and child can continue forking

L0 Bye

L1

Bye

Bye

Bye

L2

32

exit: Destroying Process

 void exit(int status)

– exits a process

• Normally return with status 0

– atexit() registers functions to be executed upon exit

void cleanup(void) {

printf("cleaning up\n");

}

void fork6() {

atexit(cleanup);

fork();

exit(0);

}

33

Zombies

 Idea
– When process terminates, still consumes system resources

• Various tables maintained by OS

– Called a “zombie”

• Living corpse, half alive and half dead

 Reaping
– Performed by parent on terminated child

– Parent is given exit status information

– Kernel discards process

 What if Parent Doesn’t Reap?

– If any parent terminates without reaping a child, then child
will be reaped by init process

– Only need explicit reaping for long-running processes

• E.g., shells and servers

34

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

Zombie
Example

– ps shows child

process as “defunct”

– Killing parent allows
child to be reaped

void fork7()

{

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n",

getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

}

}

35

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

Nonterminating
Child

Example

– Child process still active
even though parent has
terminated

– Must kill explicitly, or else
will keep running indefinitely

void fork8()

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

}

36

wait: Synchronizing with children

and Reaping zombies

 int wait(int *child_status)

– suspends current process until one of its children terminates

– return value is the pid of the child process that terminated

– if child_status != NULL, then the object it points to will

be set to a status indicating why the child process
terminated

37

wait: Synchronizing with children

void fork9() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

}

else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

exit();

}
HP

HC Bye

CT Bye

38

Wait Example
– If multiple children completed, will take in arbitrary order

– Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void fork10()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminate abnormally\n", wpid);

}

}

39

Waitpid
– waitpid(pid, &status, options)

• Can wait for specific process

• Various options

void fork11()

{

pid_t pid[N];

int i;

int child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */

for (i = 0; i < N; i++) {

pid_t wpid = waitpid(pid[i], &child_status, 0);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

40

Wait/Waitpid Example Outputs

Child 3565 terminated with exit status 103

Child 3564 terminated with exit status 102

Child 3563 terminated with exit status 101

Child 3562 terminated with exit status 100

Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100

Child 3569 terminated with exit status 101

Child 3570 terminated with exit status 102

Child 3571 terminated with exit status 103

Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

41

exec: Running new programs

 int execl(char *path, char *arg0, char *arg1, …, 0)

– loads and runs executable at path with args arg0, arg1, …

• path is the complete path of an executable

• arg0 becomes the name of the process

– typically arg0 is either identical to path, or else it contains only the
executable filename from path

• “real” arguments to the executable start with arg1, etc.

• list of args is terminated by a (char *)0 argument

– returns -1 if error, otherwise doesn’t return!

main() {

if (fork() == 0) {

execl("/usr/bin/cp", "cp", "foo", "bar", 0);

}

wait(NULL);

printf("copy completed\n");

exit();

}

42

The World of Multitasking

 System Runs Many Processes Concurrently
– Process: executing program

• State consists of memory image + register values + program
counter

– Continually switches from one process to another

• Suspend process when it needs I/O resource or timer event
occurs

• Resume process when I/O available or given scheduling priority

– Appears to user(s) as if all processes executing
simultaneously

• Even though most systems can only execute one process at a
time

• Except possibly with lower performance than if running alone

43

Programmer’s Model of Multitasking
 Basic Functions

– fork() spawns new process

• Called once, returns twice

– exit() terminates own process

• Called once, never returns

• Puts it into “zombie” status

– wait() and waitpid() wait for and reap terminated
children

– execl() and execve() run a new program in an existing
process

• Called once, (normally) never returns

 Programming Challenge
– Understanding the nonstandard semantics of the functions

– Avoiding improper use of system resources
• E.g. “Fork bombs” can disable a system.

•can give env variables

44

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

 Now, we are ready to understand how UNIX starts up
and run many user application programs

45

Unix Startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small

bootstrap program.

2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)

4. Boot block program passes control to kernel.

5. Kernel handcrafts the data structures for process 0.

Process 0 forks child process 1

46

Unix Startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab, and forks
and execs a getty program
for the console

47

Unix Startup: Step 3

init [1]

[0]

The getty process

execs a login

program
login

48

Unix Startup: Step 4

init [1]

[0]

login reads login and passwd.

if OK, it execs a shell.
if not OK, it execs another getty

tcsh

49

Shell Programs

 A shell is an application program that runs programs on
behalf of the user.
– sh – Original Unix Bourne Shell

– csh – BSD Unix C Shell, tcsh – Enhanced C Shell

– bash –Bourne-Again Shell

int main()

{

char cmdline[MAXLINE];

while (1) {

/* read */

printf("> ");

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))

exit(0);

/* evaluate */

eval(cmdline);

}

}

 Execution is a sequence
of read/evaluate steps

50

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* argv for execve() */

int bg; /* should the job run in bg or fg? */

pid_t pid; /* process id */

bg = parseline(cmdline, argv);

if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);

exit(0);

}

}

if (!bg) { /* parent waits for fg job to terminate */

int status;

if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);

}

}

51

Summarizing

 Exceptions are the basic for multitasking
– Events that require nonstandard control flow

– Generated externally (interrupts) or internally (traps and faults)

 Processes
– At any given time, system has multiple active processes

– Only one can execute at a time, though

– Each process appears to have total control of processor + private
memory space

 Programmer’s perspective

– fork(): creating a process (one call, two returns)

– exit(): terminating a process (one call, no return)

– wait(), waitpid(): reaping a zombie

– execl(), execve(): replacing the program (one call, no return)

 UNIX start-up sequence until shell runs

 Shell forks processes and run user programs

