
Virtual Memory

2

Motivations for Virtual Memory

 Use Physical DRAM as a Cache for the Disk
– Address space of a process can exceed physical memory size

– Sum of address spaces of multiple processes can exceed
physical memory

 Simplify Memory Management
– Multiple processes resident in main memory.

• Each process with its own address space

– Only “active” code and data is actually in memory

• Allocate more memory to process as needed.

 Provide Protection
– One process can’t interfere with another.

• because they operate in different address spaces.

– User process cannot access privileged information

• different sections of address spaces have different permissions.

3

Motivation #1: DRAM a “Cache” for Disk
 Full address space is quite large:

– 32-bit addresses: ~4,000,000,000 (4 billion) bytes

– 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion)
bytes

 Disk storage is ~300X cheaper than DRAM storage
– 80 GB of DRAM: ~ $33,000

– 80 GB of disk: ~ $110

 To access large amounts of data in a cost-effective
manner, the bulk of the data must be stored on disk

1GB: ~$200
80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

4

Levels in Memory Hierarchy

CPU

regs

C

a

c

h

e

Memory disk

size:

speed:

$/Mbyte:

line size:

32 B

1 ns

8 B

Register Cache Memory Disk Memory

32 KB-4MB

2 ns

$125/MB

32 B

1024 MB

30 ns

$0.20/MB

4 KB

100 GB

8 ms

$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

SRAM
Cache

DRAM
Cache

10X
slower

•100,000X slower

•First byte is
~100,000X slower
than successive
bytes on disk

DRAM/disk is
the extreme of
SRAM/DRAM

relation

5

Caching Policy Decision

 DRAM vs. disk is more extreme than SRAM vs. DRAM

 Bottom line:
– Design decisions made for DRAM caches driven by enormous

cost of misses

 DRAM caching policy?
– Line size?

• Large, since disk better at transferring large blocks

– Associativity?

• High, to mimimize miss rate

– Write through or write back?

• Write back, since can’t afford to perform small writes to disk

6

Locating an Object in a “Cache”

 SRAM Cache
– Tag stored with cache line

– No tag for block not in cache

– Hardware retrieves information

• can quickly match against multiple tags

X

Object Name

Tag Data

D 243

X 17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”

7

Locating an Object in “Cache” (cont.)

Data

243

17

105

•
•
•

0:

1:

N-1:

X

Object Name

Location

•
•
•

D:

J:

X: 1

0

On Disk

“Cache”Page Table

 DRAM Cache
– Each allocated page of virtual memory has entry in page table

– Page table entry even if page not in memory

• Specifies disk address

• Only way to indicate where to find page

– HW/OS retrieves information

8

A System with Physical Memory Only
 Examples:

– most Cray machines, early PCs, nearly all embedded
systems, etc.

 Addresses generated by the CPU correspond directly to bytes in

physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

9

A System with Virtual Memory

 Examples:
– workstations, servers, modern PCs, etc.

 Address Translation: Hardware converts virtual addresses to

physical addresses via OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

10

Page Faults (like “Cache Misses”)

 What if an object is on disk rather than in memory?
– Page table entry indicates virtual address not in memory

– OS exception handler invoked to move data from disk into
memory

• current process suspends, others can resume

• OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

11

Servicing a Page Fault

 Processor Signals Controller
– Read block of length P starting

at disk address X and store
starting at memory address Y

 Read Occurs
– Direct Memory Access (DMA)

– Under control of I/O controller

 I / O Controller Signals
Completion
– Interrupt processor

– OS resumes suspended
process diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O

controller

Reg

(2) DMA

Transfer

(1) Initiate Block Read

(3) Read

Done

12

Motivation #2: Memory Management

 Multiple processes can reside in physical memory.

 How do we resolve address conflicts?
– what if two processes access something at the same

address?

kernel virtual memory

Memory mapped region

for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp

memory invisible to

user code

the “brk” ptr

Linux/x86
process

memory

image

13

Virtual

Address

Space for

Process 1:

Physical

Address

Space

(DRAM)

VP 1

VP 2

PP 2

Address Translation0

0

N-1

0

N-1
M-1

VP 1

VP 2

PP 7

PP 10

(e.g., read/only

library code)

Solution: Separate Virt. Addr. Spaces

– Virtual and physical address spaces divided into equal-sized
blocks

• blocks are called “pages” (both virtual and physical)

– Each process has its own virtual address space

• operating system controls how virtual pages as assigned to physical
memory

...

...

Virtual

Address

Space for

Process 2:

14

Motivation #3: Protection

 Page table entry contains access rights information
– hardware enforces this protection (trap into OS if violation oc

curs) Page Tables

Process i:

Physical AddrRead? Write?

PP 9Yes No

PP 4Yes Yes

XXXXXXXNo No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

PP 6Yes Yes

PP 9Yes No

XXXXXXXNo No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

15

VM Address Translation

 Virtual Address Space
– V = {0, 1, …, N–1}

 Physical Address Space
– P = {0, 1, …, M–1}

– M < N

 Address Translation
– MAP: V P U {}

– For virtual address a:

• MAP(a) = a’ if data at virtual address a at physical address a’

in P

• MAP(a) = if data at virtual address a not in physical memory

– Either invalid or stored on disk

16

VM Address Translation: Hit

Processor

Hardware
Addr Trans
Mechanism

Main
Memorya

a'

physical addressvirtual address part of the
on-chip
memory mgmt unit (MMU)

17

VM Address Translation: Miss

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

page fault

physical address
OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
memory mgmt unit (MMU)

18

virtual page number page offset virtual address

physical page number page offset physical address

0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

VM Address Translation

 Parameters
– P = 2p = page size (bytes).

– N = 2n = Virtual address limit

– M = 2m = Physical address limit

19

Page Tables

Memory resident

page table
(physical page

or disk address) Physical Memory

Disk Storage

(swap file or

regular file system file)

Valid

1

1

1

1

1

1

1

0

0

0

Virtual Page

Number

20

Address Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

21

Page Table Operation

 Translation
– Separate (set of) page table(s) per process

– VPN forms index into page table (points to a page table entry)

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

22

Page Table Operation

 Computing Physical Address
– Page Table Entry (PTE) provides information about page

• if (valid bit = 1) then the page is in memory.

– Use physical page number (PPN) to construct address

• if (valid bit = 0) then the page is on disk

– Page fault

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

23

Page Table Operation

 Checking Protection
– Access rights field indicate allowable access

• e.g., read-only, read-write, execute-only

• typically support multiple protection modes (e.g., kernel vs. user)

– Protection violation fault if user doesn’t have necessary
permission

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

virtual page number (VPN) page offset

virtual address

physical page number (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p

page table base register

if valid=0

then page

not in memory

valid physical page number (PPN)access

VPN acts

as

table index

24

CPU
Trans-

lation
Cache

Main

Memory

VA PA miss

hit

data

Integrating VM and Cache

 Most Caches “Physically Addressed”

– Accessed by physical addresses

– Allows multiple processes to have blocks in cache at same time

– Allows multiple processes to share pages

– Cache doesn’t need to be concerned with protection issues

• Access rights checked as part of address translation

 Perform Address Translation Before Cache Lookup
– But this could involve a memory access itself (of the PTE)

– Of course, page table entries can also become cached

25

CPU
TLB

Lookup
Cache

Main

Memory

VA PA miss

hit

data

Trans-

lation

hit

miss

Speeding up Translation with a TLB
 “Translation Lookaside Buffer” (TLB)

– Small hardware cache in MMU

– Maps virtual page numbers to physical page numbers

– Contains complete page table entries for small number of
pages

26

Address Translation with a TLB

virtual addressvirtual page number page offset

physical address

n–1 0p–1p

valid physical page numbertag

valid tag data

data
=

cache hit

tag byte offsetindex

=

TLB hit

TLB

Cache

. ..

27

Simple Memory System Example

 Addressing
– 14-bit virtual addresses

– 12-bit physical address

– Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

28

Simple Memory System Page Table
– Only show first 16 entries

VPN PPN Valid VPN PPN Valid

00 28 1 08 13 1

01 – 0 09 17 1

02 33 1 0A 09 1

03 02 1 0B – 0

04 – 0 0C – 0

05 16 1 0D 2D 1

06 – 0 0E 11 1

07 – 0 0F 0D 1

29

Simple Memory System TLB

 TLB
– 16 entries

– 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

30

Simple Memory System Cache

 Cache
– 16 lines

– 4-byte line size

– Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

Idx Tag Valid B0 B1 B2 B3 Idx Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11 8 24 1 3A 00 51 89

1 15 0 – – – – 9 2D 0 – – – –

2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B

3 36 0 – – – – B 0B 0 – – – –

4 32 1 43 6D 8F 09 C 12 0 – – – –

5 0D 1 36 72 F0 1D D 16 1 04 96 34 15

6 31 0 – – – – E 13 1 83 77 1B D3

7 16 1 11 C2 DF 03 F 14 0 – – – –

31

Address Translation Example #1

 Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

32

Address Translation Example #1

 Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

0

13

0

12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

TLBITLBT

0

11

0

10

1

9

1

8

0

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

PPOPPN

COCICT

0F 3 03 h 0Dno

00 5 0D h 36

33

Address Translation Example #2

 Virtual Address 0x038F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

34

Address Translation Example #2

 Virtual Address 0x038F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

TLBITLBT

0

11

1

10

0

9

0

8

0

7

1

6

0

5

0

4

1

3

1

2

1

1

1

0

PPOPPN

COCICT

0E 2 03 m no 11

11 3 11 m in memory

35

Address Translation Example #3

 Virtual Address 0x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

36

Address Translation Example #3

 Virtual Address 0x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

0

13

0

12

0

11

0

10

0

9

0

8

0

7

1

6

0

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

01 1 00 m yes ??

37

Multi-Level Page Tables
 Given:

– 4KB (212) page size

– 32-bit address space

– 4-byte PTE

 Problem:
– Would need a 4 MB page table!

• 220 *4 bytes

 Common solution
– multi-level page tables

– e.g., 2-level table (P6)

• Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

• Level 2 table: 1024 entries, each of
which points to a page

Level 1

Table

...

Level 2

Tables

38

Summary: Main Themes

 Programmer’s View
– Large “flat” address space

• Can allocate large blocks of contiguous addresses

– Processor “owns” machine

• Has private address space

• Unaffected by behavior of other processes

 System View
– User virtual address space created by mapping to set of

pages

• Need not be contiguous

• Allocated dynamically

• Enforce protection during address translation

– OS manages many processes simultaneously

• Continually switching among processes

• Especially when one must wait for resource

– E.g., disk I/O to handle page fault

39

Case Study:
The Pentium/Linux Memory system

40

P6 Memory System

bus interface unit

DRAM

external
system bus

(e.g. PCI)

instruction

fetch unit

L1

i-cache

L2

cache

cache bus

L1

d-cache

inst

TLB

data

TLB

processor package

32 bit address space

4 KB page size

L1, L2, and TLBs

 4-way set

associative

inst TLB

 32 entries

 8 sets

data TLB

 64 entries

 16 sets

L1 i-cache and d-cache

 16 KB

 32 Byte line size

 128 sets

L2 cache

 unified

 128 KB -- 2 MB

41

Review of Abbreviations

 Symbols:
– Components of the virtual address (VA)

• TLBI: TLB index

• TLBT: TLB tag

• VPO: virtual page offset

• VPN: virtual page number

– Components of the physical address (PA)

• PPO: physical page offset (same as VPO)

• PPN: physical page number

• CO: byte offset within cache line

• CI: cache index

• CT: cache tag

42

Overview of P6 Address Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

data TLB

43

P6 2-level Page Table Structure

 Page directory
– 1024 4-byte page directory

entries (PDEs) that point to page
tables

– one page directory per process.

– page directory must be in
memory when its process is
running

– always pointed to by PDBR

 Page tables:
– 1024 4-byte page table entries

(PTEs) that point to pages.

– page tables can be paged in
and out.

page
directory

...

Up to
1024
page
tables

1024

PTEs

1024

PTEs

1024

PTEs

...

1024

PDEs

44

P6 Page Directory Entry (PDE)

Page table physical base addr Avail G PS A CD WT U/S R/W P=1

Page table physical base address: 20 most significant bits of physical
page table address (forces page tables to be 4KB aligned)

Avail: These bits available for system programmers

G: global page (don’t evict from TLB on task switch)

PS: page size 4K (0) or 4M (1)

A: accessed (set by MMU on reads and writes, cleared by software)

CD: cache disabled (1) or enabled (0)

WT: write-through or write-back cache policy for this page table

U/S: user or supervisor mode access

R/W: read-only or read-write access

P: page table is present in memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page table location in secondary storage) P=0

31 01

45

P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page
address (forces pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storage) P=0

31 01

46

How P6 Page Tables Map Virtual
Addresses to Physical Ones

PDE

PDBR
physical address

of page table base

(if P=1)

physical

address

of page base

(if P=1)

physical address

of page directory

word offset into

page directory

word offset into

page table

page directory page table

VPN1

10

VPO

10 12

VPN2 Virtual address

PTE

PPN PPO

20 12

Physical address

word offset into

physical and virtual

page

47

Representation of Virtual Address Space

 Simplified Example
– 16 page virtual address space

 Flags
– P: Is entry in physical memory?

– M: Has this part of VA space
been mapped?

Page Directory

PT 3

P=1, M=1

P=1, M=1

P=0, M=0

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=0, M=1

P=0, M=1

P=0, M=0

P=0, M=0

•
•
•
•

PT 2

PT 0

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Mem Addr

Disk Addr

In Mem

On Disk

Unmapped

48

P6 TLB Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

49

P6 TLB

 TLB entry (not all documented, so this is speculative):

– V: indicates a valid (1) or invalid (0) TLB entry

– PD: is this entry a PDE (1) or a PTE (0)?

– tag: disambiguates entries cached in the same set

– PDE/PTE: page directory or page table entry

 Structure of the data TLB:
– 16 sets, 4 entries/set

PDE/PTE Tag PD V

1 11632

entry entry entry entry

entry entry entry entry

entry entry entry entry

entry entry entry entry

...

set 0
set 1
set 2

set 15

50

Translating with the P6 TLB

 1. Partition VPN into
TLBT and TLBI.

 2. Is the PTE for VPN
cached in set TLBI?

– 3. Yes: then
build physical
address.

 4. No: then read PTE
(and PDE if not
cached) from memory
and build physical
address.

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address

PDE PTE

...
TLB

miss

TLB

hit

page table translation

PPN PPO

20 12

physical
address

1 2

3

4

51

P6 page table translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

52

Translating with the P6 Page Tables
(case 1/1)

 Case 1/1: page
table and page
present.

 MMU Action:
– MMU builds

physical
address and
fetches data
word.

 OS action
– none

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data
page

data

Page
directory

Page
table

Mem

Disk

53

Translating with the P6 Page Tables
(case 1/0)

 Case 1/0: page
table present but
page missing.

 MMU Action:
– page fault exception

– handler receives the
following args:

• VA that caused fault

• fault caused by
non-present page
or page-level
protection violation

• read/write

• user/supervisor

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE

Page
directory

Page
table

Mem

Disk

Data
page

data

p=0

54

Translating with the P6 Page Tables
(case 1/0, cont)

 OS Action:
– Check for a legal

virtual address.

– Read PTE through
PDE.

– Find free physical
page (swapping out
current page if
necessary)

– Read virtual page from
disk and copy to
virtual page

– Restart faulting
instruction by
returning from
exception handler.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE p=1

Page
directory

Page
table

Data
page

data

PPN PPO

20 12

Mem

Disk

55

Translating with the P6 Page Tables
(case 0/1)

Case 0/1: page
table missing but
page present.

 Introduces
consistency issue.
– potentially every

page out requires
update of disk page
table.

 Linux disallows this
– if a page table is

swapped out, then
swap out its data
pages too.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE p=1

Page
directory

Page
table

Mem

Disk

Data
page

data

56

Translating with the P6 Page Tables
(case 0/0)

 Case 0/0: page
table and page
missing.

 MMU Action:
– page fault

exception

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE

Page
directory

Page
table

Mem

Disk

Data
page

datap=0

57

Translating with the P6 Page Tables
(case 0/0, cont)

 OS action:
– swap in page

table.

– restart faulting
instruction by
returning from
handler.

 Like case 1/0
from here on.

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE

Page
directory

Page
table

Mem

Disk

Data
page

data

p=0

58

P6 L1 Cache Access

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets,
4 entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

59

L1 Cache Access

 Partition physical
address into CO, CI,
and CT.

 Use CT to determine
if line containing
word at address PA is
cached in set CI.

 If no: check L2.

 If yes: extract word at
byte offset CO and
return to processor.

physical

address (PA)

data

32

...

CT CO

20 5

CI

7

L2 andDRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

60

Speeding Up L1 Access

 Observation
– Bits that determine CI identical in virtual and physical address

– Can index into cache while address translation taking place

– Then check with CT from physical address

– “Virtually indexed, physically tagged”

– Cache carefully sized to make this possible

Physical address (PA)

CT CO

20 5

CI

7

virtual

address (VA)
VPN VPO

20 12

PPOPPN

Addr.

Trans.

No

Change CI

Tag Check

61

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

– pgd:

• page directory address

– vm_prot:

• read/write permissions
for this area

– vm_flags

• shared with other
processes or private to
this process

vm_flags

vm_flags

vm_flags

•PID

•ptr to usr
stack

•executable
obj file
name

•PC

62

Linux Page Fault Handling

vm_area_struct

vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

 When Page Hit

– Protection is checked by
hardware’s page table
retrieval

 When Page Fault, page
fault handler checks the
following before page-in

– Is the VA legal?

• i.e. is it in an area
defined by a
vm_area_struct? (checked
by page fault handler)

• if not then signal
segmentation violation
(e.g. (1))

– Is the operation legal?

• i.e., can the process
read/write this area?

• if not then signal
protection violation (e.g.,
(2))

– If OK, handle fault

• e.g., (3)

write

read

read
1

2

3

63

Memory Mapping

 Creation of new VM area done via “memory mapping”

– create (1) new vm_area_struct and (2) page tables for area

– area can be backed by (i.e., get its initial values from) :

• regular file on disk (e.g., an executable object file)

– initial page bytes come from a section of a file

• nothing (e.g., bss)

– initial page bytes are zeros

– dirty pages are swapped back and forth between a special
swap file.

 Key point: For a new VM area mapping, no virtual
pages are copied into physical memory until they are
referenced!
– known as “demand paging”

– crucial for time and space efficiency

64

Exec() Revisited

kernel code/data/stack

Memory mapped region

for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp
process

VM

brk

0xc0

physical memorysame
for each
process

process-specific data

structures

(page tables,

task and mm structs)

kernel

VM

 To run a new program p
in the current process
using exec():
– free vm_area_struct’s and

page tables for old areas.

– create new
vm_area_struct’s and page
tables for new areas.

• stack, bss, data, text,
shared libs.

• text and data backed by
ELF executable object file.

• bss and stack initialized to
zero.

– set PC to entry point in
.text

• Linux will swap in code and
data pages as needed.

.data

.text

p

demand-zero

demand-zero

libc.so

.data

.text

65

Fork() Revisited

 To create a new process using fork():

– make copies of the old process’s mm_struct,
vm_area_struct’s, and page tables.

• at this point the two processes are sharing all of their pages.

• How to get separate spaces without copying all the virtual pages
from one space to another?

– “copy on write” technique.

– copy-on-write

• make pages of writeable areas read-only (in page table entry)

• flag vm_area_struct’s for these areas as private “copy-on-write”.

• writes by either process to these pages will cause protection
faults.

– fault handler recognizes copy-on-write, makes a copy of the page,
and restores write permissions.

– Net result:

• copies are deferred until absolutely necessary (i.e., when one of
the processes tries to modify a shared page).

66

User-Level Memory Mapping

 void *mmap(void *start, int len,

 int prot, int flags, int fd, int offset)

– map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start (usually 0

for don’t care).

• prot: MAP_READ, MAP_WRITE

• flags: MAP_PRIVATE, MAP_SHARED

– return a pointer to the mapped area.

– Example: fast file copy

• useful for applications like Web servers that need to quickly
copy files.

• mmap allows file transfers without copying into user space.

67

mmap() Example: Fast File Copy

 #include <unistd.h>

 #include <sys/mman.h>

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 /*

 * mmap.c - a program that uses mma

p

 * to copy itself to stdout

 */

 int main() {

 struct stat stat;

 int i, fd, size;

 char *bufp;

 /* open the file & get its size

*/

 fd = open("./mmap.c", O_RDONLY)

;

 fstat(fd, &stat);

 size = stat.st_size;

 /* map the file to a new VM area */

 bufp = mmap(0, size, PROT_READ,

 MAP_PRIVATE, fd, 0);

 /* write the VM area to stdout */

 write(1, bufp, size);

 }

•read from memory (i.e., bufp) = read
from the mapped file

•Kernel (i.e., page fault handler) will
actually read the data

68

Memory System Summary

 Cache Memory
– Purely a speed-up technique

– Behavior invisible to application programmer and OS

– Implemented totally in hardware

 Virtual Memory
– Supports many OS-related functions

• Process creation

– Initial

– Forking children

• Task switching

• Protection

– Combination of hardware & software implementation

• Software management of tables, allocations

• Hardware access of tables

• Hardware caching of table entries (TLB)

