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26 Series, Convergence tests

26.1 Derivatives of Analytic Functions.

Theorem 1 (Derivatives of an analytic function)

If f(2) is analytic in a domain D, then it has derivatives of all orders in D, which are then
also analytic functions in D. The values of derivatives at a point zg in D are given by the
formulas
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and in general
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here C' is any simple closed path in D that encloses zg and whose full interior belongs to D.
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By Cauchy’s integral formula ;
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We consider the difference between these two integrals.
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Being analytic, the function f(z) is continuous on C, hence bounded in absolute value,
|f(z) < K, Let d be the smallest distance from 2 to the points of C.
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By the triangle inequality,
d<|z—z| = |2 —20 — Az + Az| < |z — 290 — Az| + |Az]

let |Az| < d/2, so that —|Az| > —d/2
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This approaches zero as Az — 0

Example 1. Evaluation of line integrals.

for any contour enclosing the point i (ccw)
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Example 2. for any contour enclosing the point —i (ccw)
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= 7i(122% = 6)|,=; = mi(—12 — 6) = —187i

Example 3. for any contour for which 1 lies inside and 42i lie outside (ccw)
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26.2 Cauchy’s Inequality. Liouville’s and Morera’s Theorems.

Choose for C' a circle of radius r and center zy with |f(z)| < M on C
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Theorem 2 Liouville’s theorem

If an entire function f(z) is bounded in absolute value for all z, then f(z) must be a constant.
Proof. By assumption, |f(z)| is bounded, say, |f(z)| < k for all z. Using Cauchy’s inequality,
|f'(20)| < k/r. Since f(z) is entire, this is true for every r, so that we can take r as large as
we please and conclude that f’(z9) = 0. Since zj is arbitrary, f'(z) = 0 for all z, and f(z) is
constant.

Theorem 3 Morera’s theorem (Converse of Cauchy’s integral theorem)

If f(z) is continuous in a simply connected domain D and if
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for every closed path in D, then f(z) is analytic in D.
Proof. If f(z) is analytic in D, then

F(z) = / F(z%)dz"

is analytic in D and F’(z) = f(z). In the proof we used only the continuity of f(z) and the
property that its integral around every closed path in D is zero ; from these assumptions we
conclude that F'(z) is analytic. By theorem 1, the derivative of F'(z) is analytic, that is f(z)
is analytic in D.



