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26 Series, Convergence tests

26.1 Derivatives of Analytic Functions.

Theorem 1 (Derivatives of an analytic function)
If f(z) is analytic in a domain D, then it has derivatives of all orders in D, which are then
also analytic functions in D. The values of derivatives at a point z0 in D are given by the
formulas
(1’)

f ′(z0) =
1

2πi

∮

c

f(z)
(z − z0)2

dz,

(1”)

f ′′(z0) =
2

2πi

∮

c

f(z)
(z − z0

3

dz,

and in general
(1)

f (n)(z0) =
n!
2πi

∮

c

f(z)
(z − z0)n+1

dz (n = 1, 2, · · · );

here C is any simple closed path in D that encloses z0 and whose full interior belongs to D.
Proof.

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)
∆z

By Cauchy’s integral formula ;

f(z0 + ∆z)− f(z0)
∆z

=
1

2πi∆z

[∮
f(z)

z − (z0 + ∆z)
dz −

∮
f(z)

z − z0
dz

]

=
1

2πi∆z

∮
f(z){z − z0 − [z − (z0 + ∆z)]}

[z − (z0 + ∆z)][z − z0]
dz

f(z0 + ∆z)− f(z0)
∆z

=
1

2πi

∮
f(z)

(z − z0 −∆z)(z − z0)
dz

We consider the difference between these two integrals.
∮

c

f(z)
(z − z0 −∆z)(z − z0)

dz −
∮

c

f(z)
(z − z0)2

dz =
∮

c

f(z)[z − z0 − (z − z0 −∆z)]
(z − z0 −∆z)(z − z0)2

dz

=
∮

f(z)∆z

(z − z0 −∆z)(z − z0)2
dz
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Being analytic, the function f(z) is continuous on C, hence bounded in absolute value,
|f(z) ≤ K, Let d be the smallest distance from z0 to the points of C.

|z − z0|2 ≥ d2, hence
1

|z − z0|2 ≤
1
d2

By the triangle inequality,

d ≤ |z − z0| = |z − z0 −∆z + ∆z| ≤ |z − z0 −∆z|+ |∆z|

let |∆z| ≤ d/2, so that −|∆z| ≥ −d/2
∣∣∣∣
∮

c

f(z)∆z

(z − z0 −∆z)(z − z0)2
dz

∣∣∣∣ ≤ KL|∆z| · 1
d
· 1
d2

This approaches zero as ∆z → 0

Example 1. Evaluation of line integrals.

for any contour enclosing the point πi (ccw)
∮

c

cos z

(z − πi)2
dz = 2πi(cos z)′|z=πi = −2πi sinπi = 2π sinhπ

Example 2. for any contour enclosing the point −i (ccw)

∮

c

z4 − 3z2 + 6
(z + i)3

dz = πi(z4 − 3z2 + 6)′′|z=−i = πi(4z3 − 6z)′|z=−i

= πi(12z2 − 6)|z=−i = πi(−12− 6) = −18πi

Example 3. for any contour for which 1 lies inside and ±2i lie outside (ccw)

∮
ez

(z − 1)2(z2 + 4)
dz = 2πi

(
ez

z2 + 4

)′∣∣∣∣
z=1

= 2πi
ez(z2 + 4)− ez(2z)

(z2 + 4)2

∣∣∣∣
z=1

= 2πi
e(5)− e(2)

25
=

6eπ

25
i ≈ 2.050i

26.2 Cauchy’s Inequality. Liouville’s and Morera’s Theorems.

Choose for C a circle of radius r and center z0 with |f(z)| ≤ M on C

|f (n)(z0)| = n!
2π

∣∣∣∣
∮

f(z)
(z − z0)n+1

dz

∣∣∣∣ ≤
n!
2π

M · 1
rn+1

2πr

(2)

|f (n)(z0)| ≤ n!M
rn

: Cauchy’s inequality
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Theorem 2 Liouville’s theorem

If an entire function f(z) is bounded in absolute value for all z, then f(z) must be a constant.
Proof. By assumption, |f(z)| is bounded, say, |f(z)| < k for all z. Using Cauchy’s inequality,
|f ′(z0)| < k/r. Since f(z) is entire, this is true for every r, so that we can take r as large as
we please and conclude that f ′(z0) = 0. Since z0 is arbitrary, f ′(z) = 0 for all z, and f(z) is
constant.

Theorem 3 Morera’s theorem (Converse of Cauchy’s integral theorem)

If f(z) is continuous in a simply connected domain D and if
(3) ∮

c
f(z)dz = 0

for every closed path in D, then f(z) is analytic in D.
Proof. If f(z) is analytic in D, then

F (z) =
∫ z

z0

f(z∗)dz∗

is analytic in D and F ′(z) = f(z). In the proof we used only the continuity of f(z) and the
property that its integral around every closed path in D is zero ; from these assumptions we
conclude that F (z) is analytic. By theorem 1, the derivative of F (z) is analytic, that is f(z)
is analytic in D.
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