26 Series, Convergence tests

26.1 Derivatives of Analytic Functions.

Theorem 1 (Derivatives of an analytic function)
If $f(z)$ is analytic in a domain D, then it has derivatives of all orders in D, which are then also analytic functions in D. The values of derivatives at a point z_{0} in D are given by the formulas
(1')

$$
f^{\prime}\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{c} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z,
$$

$$
\begin{equation*}
f^{\prime \prime}\left(z_{0}\right)=\frac{2}{2 \pi i} \oint_{c} \frac{f(z)^{3}}{\left(z-z_{0}\right.} d z, \tag{1"}
\end{equation*}
$$

and in general
(1)

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{c} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad(n=1,2, \cdots) ;
$$

here C is any simple closed path in D that encloses z_{0} and whose full interior belongs to D. Proof.

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

By Cauchy's integral formula ;

$$
\begin{aligned}
& \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{1}{2 \pi i \Delta z}\left[\oint \frac{f(z)}{z-\left(z_{0}+\Delta z\right)} d z-\oint \frac{f(z)}{z-z_{0}} d z\right] \\
&=\frac{1}{2 \pi i \Delta z} \oint \frac{f(z)\left\{z-z_{0}-\left[z-\left(z_{0}+\Delta z\right)\right]\right\}}{\left[z-\left(z_{0}+\Delta z\right)\right]\left[z-z_{0}\right]} d z \\
& \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{1}{2 \pi i} \oint \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z
\end{aligned}
$$

We consider the difference between these two integrals.

$$
\begin{aligned}
\oint_{c} \frac{f(z)}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)} d z-\oint_{c} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z & =\oint_{c} \frac{f(z)\left[z-z_{0}-\left(z-z_{0}-\Delta z\right)\right]}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)^{2}} d z \\
& =\oint^{\frac{f(z) \Delta z}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)^{2}} d z}
\end{aligned}
$$

Being analytic, the function $f(z)$ is continuous on C, hence bounded in absolute value, $\mid f(z) \leq K$, Let d be the smallest distance from z_{0} to the points of C.

$$
\left|z-z_{0}\right|^{2} \geq d^{2}, \quad \text { hence } \quad \frac{1}{\left|z-z_{0}\right|^{2}} \leq \frac{1}{d^{2}}
$$

By the triangle inequality,

$$
d \leq\left|z-z_{0}\right|=\left|z-z_{0}-\Delta z+\Delta z\right| \leq\left|z-z_{0}-\Delta z\right|+|\Delta z|
$$

let $|\Delta z| \leq d / 2$, so that $-|\Delta z| \geq-d / 2$

$$
\left|\oint_{c} \frac{f(z) \Delta z}{\left(z-z_{0}-\Delta z\right)\left(z-z_{0}\right)^{2}} d z\right| \leq K L|\Delta z| \cdot \frac{1}{d} \cdot \frac{1}{d^{2}}
$$

This approaches zero as $\Delta z \rightarrow 0$

Example 1. Evaluation of line integrals.
for any contour enclosing the point $\pi i(\mathrm{ccw})$

$$
\oint_{c} \frac{\cos z}{(z-\pi i)^{2}} d z=\left.2 \pi i(\cos z)^{\prime}\right|_{z=\pi i}=-2 \pi i \sin \pi i=2 \pi \sinh \pi
$$

Example 2. for any contour enclosing the point -i (ccw)

$$
\begin{aligned}
\oint_{c} \frac{z^{4}-3 z^{2}+6}{(z+i)^{3}} d z & =\left.\pi i\left(z^{4}-3 z^{2}+6\right)^{\prime \prime}\right|_{z=-i}=\left.\pi i\left(4 z^{3}-6 z\right)^{\prime}\right|_{z=-i} \\
& =\left.\pi i\left(12 z^{2}-6\right)\right|_{z=-i}=\pi i(-12-6)=-18 \pi i
\end{aligned}
$$

Example 3. for any contour for which 1 lies inside and $\pm 2 i$ lie outside (ccw)

$$
\begin{aligned}
\oint \frac{e^{z}}{(z-1)^{2}\left(z^{2}+4\right)} d z & =\left.2 \pi i\left(\frac{e^{z}}{z^{2}+4}\right)^{\prime}\right|_{z=1}=\left.2 \pi i \frac{e^{z}\left(z^{2}+4\right)-e^{z}(2 z)}{\left(z^{2}+4\right)^{2}}\right|_{z=1} \\
& =2 \pi i \frac{e(5)-e(2)}{25}=\frac{6 e \pi}{25} i \approx 2.050 i
\end{aligned}
$$

26.2 Cauchy's Inequality. Liouville's and Morera's Theorems.

Choose for C a circle of radius r and center z_{0} with $|f(z)| \leq M$ on C

$$
\left|f^{(n)}\left(z_{0}\right)\right|=\frac{n!}{2 \pi}\left|\oint \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z\right| \leq \frac{n!}{2 \pi} M \cdot \frac{1}{r^{n+1}} 2 \pi r
$$

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{r^{n}} \quad: \text { Cauchy's inequality } \tag{2}
\end{equation*}
$$

Theorem 2 Liouville's theorem

If an entire function $f(z)$ is bounded in absolute value for all z, then $f(z)$ must be a constant. Proof. By assumption, $|f(z)|$ is bounded, say, $|f(z)|<k$ for all z. Using Cauchy's inequality, $\left|f^{\prime}\left(z_{0}\right)\right|<k / r$. Since $f(z)$ is entire, this is true for every r, so that we can take r as large as we please and conclude that $f^{\prime}\left(z_{0}\right)=0$. Since z_{0} is arbitrary, $f^{\prime}(z)=0$ for all z, and $f(z)$ is constant.

Theorem 3 Morera's theorem (Converse of Cauchy's integral theorem)
If $f(z)$ is continuous in a simply connected domain D and if (3)

$$
\oint_{c} f(z) d z=0
$$

for every closed path in D, then $f(z)$ is analytic in D.
Proof. If $f(z)$ is analytic in D, then

$$
F(z)=\int_{z_{0}}^{z} f\left(z^{*}\right) d z^{*}
$$

is analytic in D and $F^{\prime}(z)=f(z)$. In the proof we used only the continuity of $f(z)$ and the property that its integral around every closed path in D is zero ; from these assumptions we conclude that $F(z)$ is analytic. By theorem 1 , the derivative of $F(z)$ is analytic, that is $f(z)$ is analytic in D.

