Value Engineering / Management, Life Cycle Costing

401.649 Cost Planning for Construction Projects

서울대학교 건설기술연구실

Moonseo Park

Associate Professor, PhD

39동 433 Phone 880-5848, Fax 871-5518 E-mail: mspark@snu.ac.kr

> Department of Architecture College of Engineering Seoul National University

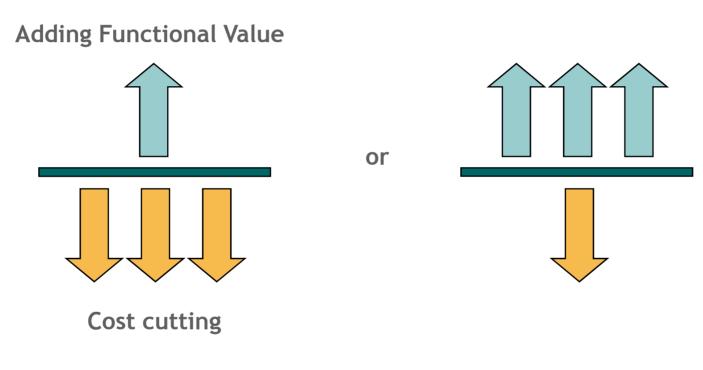
History

- Formal Value Analysis first developed by Larry Miles working with GE in US in 1947
- Adopted by US Department of Defence in 1955
- Introduced to the U.S. Army Corp of Engineers and the U.S Navy Bureau of Yards and Docks in 1962 as VE became a mandatory requirement in the Army Services Procurement Regulations
- Adopted by agencies like NASA, Department of Transportation

Value Engineering

"Systematic, <u>interdisciplinary examination</u> of factors affecting the cost of a product with the aim of devising a means to achieve its specific purpose at <u>a required standard of quality and</u> <u>reliability and at an acceptable cost</u>"

Cooper and Slagmulkder, 1997


- A disciplined procedure directed towards the achievement of necessary functions for <u>minimum cost</u>.
- VE is essentially retrospective and tends to take place <u>during the detailed design stage</u> in response to a projected cost overspend.

The Value Engineering (VE) approach considers cost in relation to function, recognising that there is a three-way relationship between function, cost and value.

Cost cutting or adding value?: VE vs VM

No-one got rich from getting smaller

Value Management

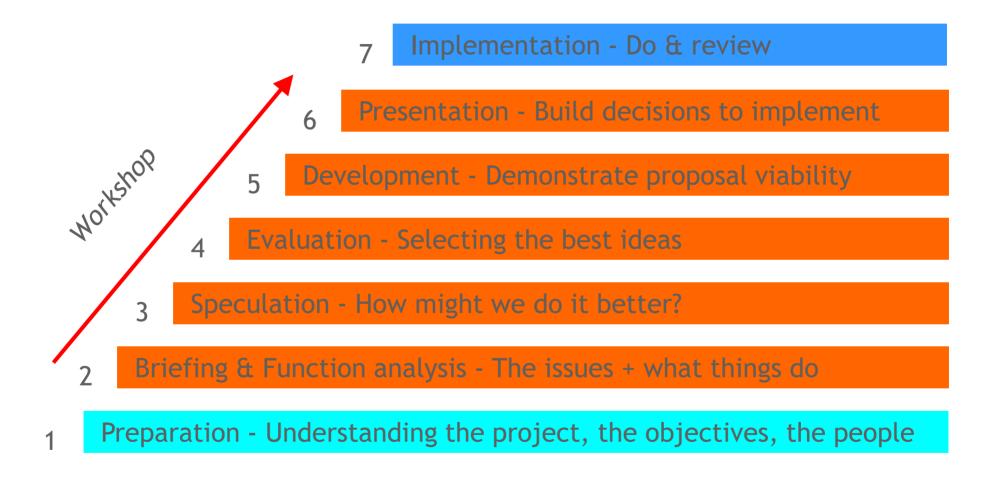
- A service that maximises the <u>functional</u> value of a project
- by managing its development <u>from concept to</u> <u>completion</u>
- through the comparison and audit of all decisions <u>against</u> the value system initially determined by the client

Core Concepts

- Based on <u>what things do</u> rather than <u>what they are</u>, thereby stimulating understanding and innovation.
- Short, structured, facilitated workshops, involving the whole multi-disciplinary teams, thus enabling mutual learning by all

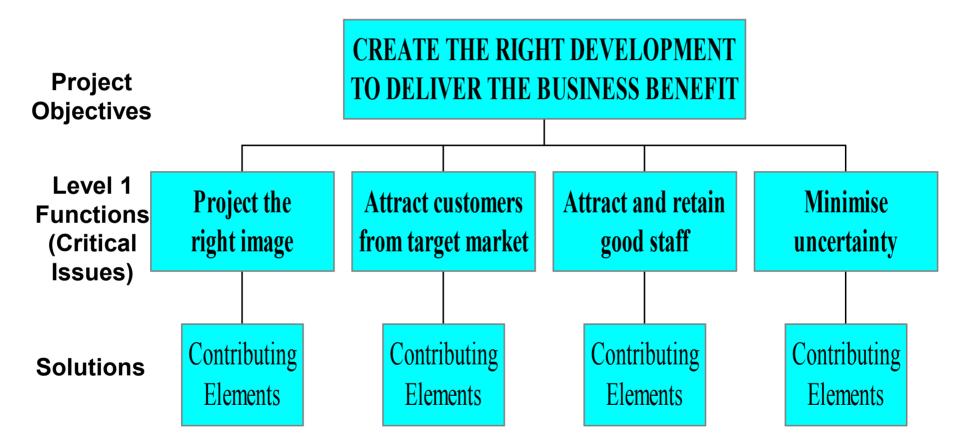
Core Concepts

- They result in proposals to add value for the Client, supported by the whole team
- Formal studies are underpinned throughout the project by Value Based Thinking


VM helps to solve problems

- Problems need not be negative.
- Problem is the gap between where we are and where we want to be.
- VM helps close that gap through a process of mutual learning.
- Through a <u>structured</u> facilitated process embracing the whole team.

Structure of VM


VE vs. VM

VE looks at 'hard' issues, while VM addresses soft issues.

Step 1 - Preparation

- Convene strategic briefing meeting
- Establish information base
- Identify people involved
- Compile documents, cost plans, etc.
- Agree timetable and logistics

Step 2 - Briefing & Function Analysis

What is the relative importance of the Critical Issues?

Think Functionally...

The classical approach to problem solving: element based

The function based approach

Wealth flows from innovation, not from perfecting the known

Step 3 - Speculation

- Generate Ideas
 - Brainstorm for better ways of doing things
 - o Reduce Costs
 - o Increase Revenue
 - Address Issues and Observations
 - Reduce Risks
 - o Other ideas to reflect Study Objectives
 - Defer evaluation

Hints for Generating Many Concepts

- Suspend judgment
- Generate a lot of ideas
- Infeasible ideas are welcome
- Use graphical and physical media
- Make analogies
- Wish and wonder
- Solve the conflict
- Use related stimuli
- Use unrelated stimuli
- Set quantitative goals
- Use the gallery method
- Trade ideas in a group

unrelated stimuli example

화장실

Step 4 - Evaluation

- Evaluate Ideas
 - Identify common Evaluation criteria
 - Score each idea against criteria
 - oe.g. 1 Must do it
 - 2 Worth looking at
 - 3 Consider in future
 - 4 Reject
 - Select best ideas for further development (within the study)
 - Identify owners for each idea selected for development

Step 5 - Development

- Develop proposals for value improvement
 - Advantages and disadvantages
 - Impact on Cost, Time and Quality
- Summarise on standard forms

Step 6 - Presentation

- Present proposals to decision making group
- Ownership, honesty and accountability
- Agree implementation plan

Project : XYZ Item :				Oriai	nator :
External Facade System :	Type of facade				ect ABC
Original Concept :					
Vision panel	2.10m)) 50) : 50 ratio			
Spandrel panel	2.10m)				
Proposed Change :					VM Proposal
Vision panel) : 60 ratio			Summary Sheet	
Spandrel panel	2.45m)				•/
Advantages :		Disa	dvantages :		
 Cost saving Ceiling line same [original provision 		-			SAMPLE
Cost Summary	\$		Ra	ating	
Original	14,000,000	1	Must do it		
Proposed	13,140,000	2	Worth looking	g at	
		3	Consider in f	uture	
Saving (-) / Extra (+)	-860,000	4	Reject		

Step 7 - Implementation

- Track implementation
- Review Project Outcome
- Feedback for continuous improvement

Life-Cycle Costing

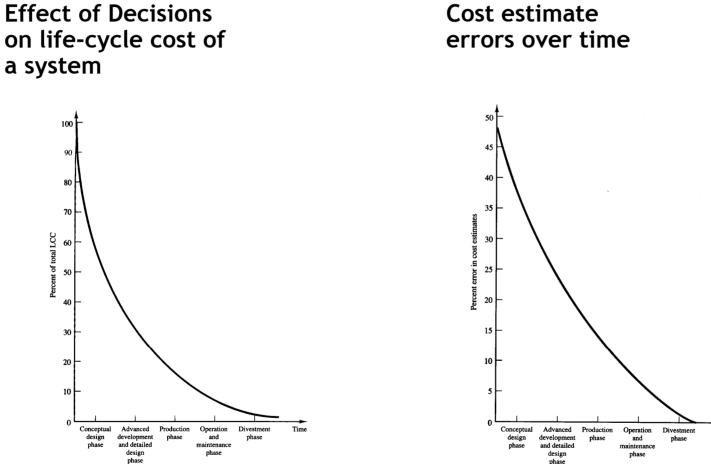
- Accurate cost measurement is one of the most important requirements of a successful VE program.
- Most cost records and estimates in the construction industry deal with capital cost.
- The life of facility will extend from 20 to 50 or more years.
- During this period the cost of maintaining and servicing the facility will equal or exceed the capital cost.

- LCC is the total cost of ownership of a product, structure, or system over its useful life.
- The five life-cycle phases of a system:
 - Conceptual design phase
 - Advanced development and detailed design phase
 - Production phase
 - Project termination and system operation and maintenance phase
 - System divestment phase
- The need to LCC arises because decisions made during the <u>early</u> stages of a project inevitably have an impact on future outlays.

How to help

 LCC is designed to help designers identify and evaluate the economic consequences of their decisions

Air conditioners Useful life: 10 years				igerators years	Televisions 12 years		Gas ranges 15 years			
Cost element										
Acquisition	\$204	(58.7%)	\$295	(40.9%)	\$400	(60.2%)	\$211	(50.8%)		
Operations	131	(37.8%)	392	(54.3%)	178	(26.8%)	159	(38.3%)		
Service	4	(1.2%)	19	(2.6%)	79	(11.9%)	35	(8.5%)		
Disposal	8	(2.3%)	16	(2.2%)	7	(1.1%)	<u> 10</u>	(2.4%)		
-	\$347	(100%)	\$722	(100%)	\$664	(100%)	\$415	(100%)		


٩

When it is useful...

 The development and use of LCC models is particularly justified when a number of alternatives exist in the early stages of a project's life cycle and the selection of an alternative has a noticeable influence on the total life-cycle cost

Uncertainties in LCC Models

- In the conceptual design phase little is known about the system, the activities required to design and manufacture it, its mode of operation, and the maintenance philosophy to be employed - Highest degree of uncertainty in the LCC model.
- <u>Most critical decision are made when uncertainty is</u> <u>highest</u>

Cost estimate

Time

Example of an LCC Model

Quarter	System life-cycle phase										
	Conceptual design		Advanced development and detailed design		Production		Project termination/ operation and maintenance		Divestment		
	Labor	Mat'l	Labor	Mat'l	Labor	Mat'l	Labor	Mat'l	Labor	Mat'l	Total
1	2								a.		2
2	3										3
3	3										3
4	1		3								4
5			4	1							5
6			5	ĺ	10	3					19
7			5	1	12	4					22
8			3	1	15	6					25
9					10	5	3	1			19
10					7	3	4	2			16
11							5	3			8
12							5	3			8
13							5	3			8
14							5	3	1		9
15							4	2	1		7
16							4	2			6
17							3	1	1		5
18			_	_	<u>.</u>						
	9	·	$\overline{20}$	4	54	21	38	20	3		169

References

- Avraham Shtub, Jonathan F. Bard, Shlomo Globerson, "Project management : engineering, technology, and implementation", Englewood Cliffs, NJ, Prentice Hall, 1994
- Frederick E. Gould, Nancy Joyce, Chapter 8, "Construction project management", Upper Saddle River, NJ, Prentice Hall, 1999
- James M. Lyneis *, Kenneth G. Cooper, Sharon A. Els, "Strategic management of complex projects: a case study using system dynamics", System Dynamics Review, Vol. 17, No. 3, 2001
- Christopher M. Gordon, "Choosing appropriate construction contracting method", J. of Construction Engineering & Management, Vol. 120, No. 1, 1994
- Feniosky Pena-Mora, Jim Lyneis, "Project control and management", MIT 1.432J Lecture Material, 1998
- Barrie, D.S., and Paulson, B.C., "Professional Construction Management", McGraw Hill, 1992
- Halpin, D.W., "Financial and Cost concepts for construction management", John Wiley & Sons, 1995
- Yehiel Rosenfeld, "Project Management", MIT 1.401J Course Material, 2000
- Sarah Slaughter, "Innovation in construction", MIT 1.420 Course Material, 1999
- Gray and Hughes, "Building Design Management",.
- Murdoch and Hughes, "Construction Contracts: Law and Management", E&FN SPON, 1996
- Gray, Hughes and Bennett, "The Successful Management of Design", Reading, 1994