Robust Design

4013.315 Architectural Engineering System Design

June 3rd, 2009

Moonseo Park

Associate Professor, PhD

Phone 880-5848, Fax 871-5518
E-mail: mspark@snu.ac.kr

Department of Architecture
College of Engineering
Seoul National University
Robust Design: Experiments for Better Products

Teaching materials to accompany:

Product Design and Development
Chapter 13

Karl T. Ulrich and Steven D. Eppinger
Chapter Table of Contents
1. Introduction
2. Development Processes and Organizations
3. Product Planning
4. Identifying Customer Needs
5. Product Specifications
6. Concept Generation
7. Concept Selection
8. Concept Testing
9. Product Architecture
10. Industrial Design
11. Design for Manufacturing
12. Prototyping
13. Robust Design
14. Patents and Intellectual Property
15. Product Development Economics
16. Managing Projects
Robust Design and Quality in the Product Development Process

- Planning
- Concept Development
- System-Level Design
- Detail Design
- Testing and Refinement
- Production Ramp-Up

- Robust Concept and System Design
- Robust Parameter Design
- Quality efforts are typically made here, when it is too late.
Goals for Designed Experiments

• Modeling
 – Understanding relationships between design parameters and product performance
 – Understanding effects of noise factors

• Optimizing
 – Reducing product or process variations
 – Optimizing nominal performance
Robust Designs

A robust product or process performs correctly, even in the presence of noise factors.

Noise factors may include:

– parameter variations
– environmental changes
– operating conditions
– manufacturing variations
Robust Design Example: Seat Belt Experiment
Who is the better target shooter?

Sam

John
Who is the better target shooter?

Sam can simply adjust his sights.

John requires lengthy training.
Exploiting Non-Linearity to Achieve Robust Performance

Response = \(f_A(A) + f_B(B) \)

What level of factor B gives the robust response?
How do we use factor A?
Robust Design Procedure
Step 1: Parameter Diagram

Step 1: Select appropriate controls, response, and noise factors to explore experimentally.

- Control factors (input parameters)
- Noise factors (uncontrollable)
- Performance metrics (response)
The “P” Diagram

Control Factors → Product or Process → Performance Metrics

Noise Factors
Parameter Diagram

Control Factors
- Belt webbing stiffness
- Belt webbing friction
- Lap belt force limiter
- Upper anchorage stiffness
- Buckle cable stiffness
- Front seatback bolster
- Tongue friction
- Attachment geometry

Passenger Restraint Process

Noise Factors
- Shape of rear seat
- Type of seat fabric
- Severity of collision
- Wear of components
- Positioning of passenger
- Positioning of belts on body
- Size of passenger
- Type of clothing fabric
- Web manufacturing variations
- Latch manufacturing variations

Performance Metrics
- Back angle
- Slip of buttocks
- Hip rotation
- Forward knee motion
Example: Brownie Mix

• Control Factors
 – Recipe Ingredients (quantity of eggs, flour, chocolate)
 – Recipe Directions (mixing, baking, cooling)
 – Equipment (bowls, pans, oven)

• Noise Factors
 – Quality of Ingredients (size of eggs, type of oil)
 – Following Directions (stirring time, measuring)
 – Equipment Variations (pan shape, oven temp)

• Performance Metrics
 – Taste Testing by Customers
 – Sweetness, Moisture, Density
Robust Design Procedure

Step 2: Objective Function

Step 2: Define an objective function (of the response) to optimize.

- maximize desired performance
- minimize variations
- target value
- signal-to-noise ratio
Types of Objective Functions

Larger-the-Better
- e.g. performance
 \[\eta = \mu^2 \]

Nominal-the-Best
- e.g. target
 \[\eta = 1/(\mu-t)^2 \]

Smaller-the-Better
- e.g. variance
 \[\eta = 1/\sigma^2 \]

Signal-to-Noise
- e.g. trade-off
 \[\eta = 10\log[\mu^2/\sigma^2] \]
Robust Design Procedure

Step 3: Plan the Experiment

Step 3: Plan experimental runs to elicit desired effects.

• Use full or fractional factorial designs to identify interactions.

• Use an orthogonal array to identify main effects with minimum of trials.

• Use inner and outer arrays to see the effects of noise factors.
Experiment Design: Full Factorial

• Consider k factors, n levels each.
• Test all combinations of the factors.
• The number of experiments is n^k.
• Generally this is too many experiments, but we are able to reveal all of the interactions.

<table>
<thead>
<tr>
<th>Expt #</th>
<th>Param A</th>
<th>Param B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>B2</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>B3</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>B1</td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>B2</td>
</tr>
<tr>
<td>6</td>
<td>A2</td>
<td>B3</td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
<td>B1</td>
</tr>
<tr>
<td>8</td>
<td>A3</td>
<td>B2</td>
</tr>
<tr>
<td>9</td>
<td>A3</td>
<td>B3</td>
</tr>
</tbody>
</table>

2 factors, 3 levels each:

$$n^k = 3^2 = 9 \text{ trials}$$

4 factors, 3 levels each:

$$n^k = 3^4 = 81 \text{ trials}$$
Experiment Design: One Factor at a Time

- Consider k factors, n levels each.
- Test all levels of each factor while freezing the others at nominal level.
- The number of experiments is $nk+1$.
- BUT this is an unbalanced experiment design.

<table>
<thead>
<tr>
<th>Expt #</th>
<th>Param A</th>
<th>Param B</th>
<th>Param C</th>
<th>Param D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>B1</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>B3</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>6</td>
<td>A2</td>
<td>B2</td>
<td>C1</td>
<td>D2</td>
</tr>
<tr>
<td>7</td>
<td>A2</td>
<td>B2</td>
<td>C3</td>
<td>D2</td>
</tr>
<tr>
<td>8</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D1</td>
</tr>
<tr>
<td>9</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D3</td>
</tr>
</tbody>
</table>
Experiment Design: Orthogonal Array

- Consider k factors, n levels each.
- Test all levels of each factor in a balanced way.
- The number of experiments is order of $1+k(n-1)$.
- This is the smallest balanced experiment design.
- BUT main effects and interactions are confounded.

<table>
<thead>
<tr>
<th>Expt #</th>
<th>Param A</th>
<th>Param B</th>
<th>Param C</th>
<th>Param D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>B1</td>
<td>C2</td>
<td>D3</td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>B2</td>
<td>C3</td>
<td>D1</td>
</tr>
<tr>
<td>6</td>
<td>A2</td>
<td>B3</td>
<td>C1</td>
<td>D2</td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
<td>B1</td>
<td>C3</td>
<td>D2</td>
</tr>
<tr>
<td>8</td>
<td>A3</td>
<td>B2</td>
<td>C1</td>
<td>D3</td>
</tr>
<tr>
<td>9</td>
<td>A3</td>
<td>B3</td>
<td>C2</td>
<td>D1</td>
</tr>
</tbody>
</table>

4 factors, 3 levels each:

$1+k(n-1) = 1+4(3-1) = 9$ trials
Using Inner and Outer Arrays

- Induce the same noise factor levels for each combination of controls in a balanced manner

4 factors, 3 levels each: L9 inner array for controls

3 factors, 2 levels each: L4 outer array for noise

<table>
<thead>
<tr>
<th>Inner x Outer</th>
<th>E1</th>
<th>E1</th>
<th>E2</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1</td>
<td>F2</td>
<td>F1</td>
<td>F2</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>G1</td>
<td>G2</td>
<td>G1</td>
</tr>
</tbody>
</table>

inner x outer = L9 x L4 = 36 trials
Robust Design Procedure

Step 4: Run the Experiment

Step 4: Conduct the experiment.
• Vary the control and noise factors
• Record the performance metrics
• Compute the objective function
Paper Airplane Experiment

<table>
<thead>
<tr>
<th>Expt</th>
<th>Weight</th>
<th>Winglet</th>
<th>Nose</th>
<th>Wing</th>
<th>Trials</th>
<th>Mean</th>
<th>Std Dev</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>B1</td>
<td>C1</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A1</td>
<td>B3</td>
<td>C3</td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>B1</td>
<td>C2</td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A2</td>
<td>B2</td>
<td>C3</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A2</td>
<td>B3</td>
<td>C1</td>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
<td>B1</td>
<td>C3</td>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A3</td>
<td>B2</td>
<td>C1</td>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A3</td>
<td>B3</td>
<td>C2</td>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Robust Design Procedure
Step 5: Conduct Analysis

Step 5: Perform analysis of means.

- Compute the mean value of the objective function for each factor setting.
- Identify which control factors reduce the effects of noise and which ones can be used to scale the response. (2-Step Optimization)
Analysis of Means (ANOM)

• Plot the average effect of each factor level.

Factor Effects on S/N Ratio

Choose the best levels of these factors

Scaling factor?

Prediction of response:

\[E[\eta(A_i, B_j, C_k, D_l)] = \mu + a_i + b_j + c_k + d_l \]
Robust Design Procedure

Step 6: Select Setpoints

Step 6: Select control factor setpoints.

• Choose settings to maximize or minimize objective function.

• Consider variations carefully. (Use ANOM on variance to understand variation explicitly.)

Advanced use:

• Conduct confirming experiments.

• Set scaling factors to tune response.

• Iterate to find optimal point.

• Use higher fractions to find interaction effects.

• Test additional control and noise factors.
Confounding Interactions

- Generally the main effects dominate the response. BUT sometimes interactions are important. This is generally the case when the confirming trial fails.
- To explore interactions, use a fractional factorial experiment design.
Alternative Experiment Design Approach: Adaptive Factor One at a Time

- Consider k factors, n levels each.
- Start at nominal levels.
- Test each level of each factor one at a time, while freezing the previous ones at best level so far.
- The number of experiments is $nk+1$.
- Since this is an unbalanced experiment design, it is generally OK to stop early.
- Helpful to sequence factors for strongest effects first.
- Generally found to work well when interactions are present.

4 factors, 2 levels each:

\[nk+1 = 2 \times 4 + 1 = 9 \text{ trials} \]

<table>
<thead>
<tr>
<th>Expt #</th>
<th>Param A</th>
<th>Param B</th>
<th>Param C</th>
<th>Param D</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A2</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>5.95</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>5.63</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>B2</td>
<td>C2</td>
<td>D2</td>
<td>6.22</td>
</tr>
<tr>
<td>4</td>
<td>A3</td>
<td>B1</td>
<td>C2</td>
<td>D2</td>
<td>6.70</td>
</tr>
<tr>
<td>5</td>
<td>A3</td>
<td>B3</td>
<td>C2</td>
<td>D2</td>
<td>6.58</td>
</tr>
<tr>
<td>6</td>
<td>A3</td>
<td>B1</td>
<td>C1</td>
<td>D2</td>
<td>4.85</td>
</tr>
<tr>
<td>7</td>
<td>A3</td>
<td>B1</td>
<td>C3</td>
<td>D2</td>
<td>5.69</td>
</tr>
<tr>
<td>8</td>
<td>A3</td>
<td>B1</td>
<td>C2</td>
<td>D1</td>
<td>6.60</td>
</tr>
<tr>
<td>9</td>
<td>A3</td>
<td>B1</td>
<td>C2</td>
<td>D3</td>
<td>6.98</td>
</tr>
</tbody>
</table>

Ref: Forthcoming paper by Dan Frey
Key Concepts of Robust Design

• Variation causes quality loss
• Two-step optimization
• Matrix experiments (orthogonal arrays)
• Inducing noise (outer array or repetition)
• Data analysis and prediction
• Interactions and confirmation
References

• Taguchi, Genichi and Clausing, Don
 “Robust Quality”

• Byrne, Diane M. and Taguchi, Shin
 “The Taguchi Approach to Parameter Design”
 Quality Progress, Dec 1987.

• Phadke, Madhav S.
 Quality Engineering Using Robust Design

• Ross, Phillip J.
 Taguchi Techniques for Quality Engineering
DOE Plan and Data

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>N-</th>
<th>N+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3403</td>
<td>0.2915</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.4608</td>
<td>0.3984</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.3682</td>
<td>0.3627</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.2961</td>
<td>0.2647</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.4450</td>
<td>0.4398</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.3517</td>
<td>0.3538</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.3758</td>
<td>0.3580</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4504</td>
<td>0.4076</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>N-</th>
<th>N+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.3159</td>
<td>0.0488</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.4296</td>
<td>0.0624</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.3655</td>
<td>0.0055</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.2804</td>
<td>0.0314</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.4424</td>
<td>0.0052</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.3528</td>
<td>0.0021</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.3669</td>
<td>0.0178</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.4290</td>
<td>0.0428</td>
</tr>
</tbody>
</table>