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30 Singularity, Residue

30.1 Singularities and Zeroes. Infinity.

- singular point : a z at which f(2) ceases to be analytic.
- zero : a z at which f(z) =0.

isolated singularity : if z = z¢ has a neighborhood without further singularities of f(2)
Example) tanz, z = 4m/2,£37/2, etc

nonisolated singularity : Ex.) tan(1/z) at z =0

f = —2—12 sec?(1/z)

oo oo bn
f(z) = E an(z — 20)" + E G_w)r valid in the immediate
— 20
n=0 n=1

neighborhood of 0 < |z — 2| < R

2nd

The 1% series is analytic at z = zy. The series is called the principal part of (1)

(2)
bl bm
+ot

z— 20 (z — zp)™

(bm # 0)

pole : z =2y isolated essential singularity
order : m when principal part of (1) has infinitely many terms.
simple poles (m =1)

Example 1. Poles. Essential singularities.

F(2) = 1 n 3 a simple pole at z =0
" 2(2—2)5 ' (2—2)2  apole of fifth order at z = 2

1 1 1

1/z _ o L o . . . .

e’* = E . o = 1+ p; + 3.2 + isolated essential singularity at z =0
n=
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Example 2. Behavior near a pole

f(2) =1/22 has a pole at z =0, and |f(z)| — oo as z — 0 in any manner.

Theorem 1. (Poles)

If f(z) is analytic and has a pole at z = zg, then |f(z)| — o0 as z — 2y in any manner.

Example 3. Behavior near an essential singularity

f(2) = e'/# has an essential singularity at z = 0
No limit for approach along the imaginary axis

(el = e Y = cos(1/y) — isin(1/y))

eVr S ooasz— 40 & €/* = 0as 2 — —0
el/z _ 6(cosH—isinH)/r _ Co@ia # 0
¢80/ — ¢g = cosf =rlncy & —sinf = ar.

cos? 0 +sin? 0 = 7"2(1n 00)2 +ar?=1

1 o

2
= d tanf = —
" (Incp)? + a? an an In ¢

Hence r can be made arbitrarily small by adding multiples of 27 to «, leaving ¢ unaltered.

Theorem 2. (Picard’s theorem)
If f(z) is analytic and has an isolated essential singularity at point zp, it takes on every value,
with at most one exceptional value, in an arbitrarily small neighborhood of z

Zeros of Analytic Functions.
- zero : z = zg such that f(z9) =0
—ordern: ff = f"=-.. = f=) =0 at z = z but f(z) #0

- 1% order zero : simple zero.

Example 4. Zeros.
) fe)=1+422 fi(z)=2
.. simple zeros at =+ 1.
i) fz)=(1—2%92  fl(2) =421 —2%) - 2= (—42° +427)- 2
f(2) = (—122% +282%) - - -2 = —42%(3 — 72%)(2)

‘. second-order zeros at =1 and +i



i) f(z)=(2—0a)*, f'(2) =3(z—0a) ['(z)=6(z—a), ["=6
.. third-order zero at z = a

iv)  f(z) = €® : no zeros
v) f(z)=sinz, [f(2)=cosz

*. simple zeros at 0, +7, +27, - -
vi) f(z) =sin?z f/(z) = 2sincosz = sin2z f(z) = 2cos 2z
*. second-order zeros at 0, +m, +2m, - - -
vil)  f(z) =1—cosz, f'(z)=sinz, f’(z)=cosz

*. second-order zeros at 0, =27, £47, - - -

viii)  f(2) = (1 —cosz)?, f/(z) = 2sinz(1 — cos 2)
f"(z2) = 2cosz(1 —cosz)+2sin®z = 2cos z(1 — cos z) + 2(1 — cos? 2)
= 2(1 —cosz)(2cosz+1)
1"(z) = 2sinz(2cosz+ 1)+ 2(1 — cos z)(—2sin 2)
= 2sinz(4cosz —1)
% = 2cosz(4cosz — 1)+ 2sin z(—4sin z)
8cos®z — 2cos z — 8sin? 2

.. fourth-order zeros at 0, £27, +4m, - --

Taylor Series at zero
f'(z0) = -+ = f D (2) = 0 at an n'* order. zero z = 2,

ap=a1 =az =" =dap-1 =0

(3)

f(z) = apn(z—20)" 4+ ant1(z — zo)”"’l 4.

= (2 —20)"[an + ant1(z — 20) + anta(z — 20)* + -] (am #0)

Theorem 3. (Zeros)

The zeros of an analytic function f(z)(# 0) are isolated ; that is, each of them has a neigh-
borhood that contains o further zeros of f(z)

Proof.In (3), the factor (z —zp)" is zero only at z = zp, The power series in the brackets [- - -]
represents an analytic function (by Theorem 5 in Sec.14.3), call it g(z). Now g(zo) = a,, # 0,
since analytic function is continuous, and because of this continuity, also g(z) # 0 in some
neighborhood of z = z9. Hence the same holds for f(z).

Theorem 4. (Poles and zeros)
Let f(z) be analytic at z = zp and have a zero of nth order at z = zyp. Then 1/f(z) has a pole
of nth order at z = zp. The same holds for h(z)/f(z) if h(z) is analytic at z = zp and h(zp) # 0



30.2 Residue

jl{f(z)dz =? C : simple closed path
C

-If f(2) is analytic everywhere on C and inside C, answer= 0 by Cauchy’s integral theorem.
-If f(2) has a singularity at a point z = z¢ inside C, but is otherwise analytic on C' and inside
C, then f(z) has a Laurent series:

b1 n bo
z—2z0 (22— 20)

f(z):Zan(z—zo)"+ 5+ (1)
n=0

This converges for all points near z = zy (except at z = zy itself), in some domain of the
form 0 < |z — 29| < R.

30.2.1 Definition
From (1),

by = 2%” fc f(2)dz = Res,—,, f(z) : residue

2miby = %f(z)dz

Example 1. Evaluation of an integral by means of a residue

jé Slzizdz =7 C:|z| =1 (cew)

Solution. ,
sin z 1 1 z z
&= =n-mta - at"
|z| >0
by =-1/31=-1/6
sin z . T
fi i dz = 2mib; = -3 |

Example 2. Be careful to use the right Laurent series !

JE) =1/ =2 Clel = 1/2 (ew)

Solution.
1111
by =1
dz , .
f,z?’—z‘l = —2miRes,—of(2) = —2mi
C



30.2.2 Two Formulas for Residues at Simple Poles.

For a simple pole at z = z,

b
f(z):Z 12 +a0+a1(z—zo)+a2(z—zo)2+~~ (0 < |z—20| <R)
— 20

(2 — 20)f(2) = b1 + (2 — 20)[a0 + a1(z — 20) + az2(z — 20)* + - -]

Now let z — zp, then

| Resemsy f(2) = by = lim. (2 — 20)/(2) | (2)

Example 3. Residue at a simple pole.

Res, 4 g 9eti_[9swi] 100
) i et —4)  |ezvd)| 2 "
If f(2) = %, p, q analytic, where p(z9) # 0 and ¢(z) has a simple zeros at z
2
z—z
a(2) = (2 20)d () + C ) 4
. p(z) . (2 — 20)p(2)
Res,—, f(z) = lim (z — z9)——= = lim
of 2= B =20y = B g Geo) + (= — o) 2
Res,—, f(2) = Res,—,, 522 = 5((2)) (3)

Example 4. Residue at a simple pole calculated by formula (3)

9 ] 9 ; 102
Res,—; Zrt = [ Z+Z] = Z——En'.
=i

z(22+1) 32241, -2

30.2.3 Formula for the Residue at a pole of Any Order

If f(2) has a pole of order m > 1 at z = zy, its Laurent series converging near zy (except at
a zg itself) is
bm bm—l b2 bl
1z) = (z—zo)m+(z—zo)m_1+ +(z—z0)2+z—z0+a0+
Fetar(z—z0) -

where b, # 0

(2 —20)"f(2) = b + bm—1(2 — 20) + - + ba(z — 20)" 2 + by (2 — 20)™ "
tag(z — 20)™ +ar(z — 2)"™ T 4 - -



by of f(2) at z = 2y is now the coefficient of the power (z — 29)™ ! in the Taylor series of the
function

9(2) = (z = 20)" f(2)

b = (ml_l)!g(ml)(zo)
Resseso f(2) = Gy s { el — 20) ™ £(2)]} (4)
(m=2)  Resif(2) = lim {[(z — 20/ (2)]}
Example 5. Residue at a pole of higher order
50z

T =G

d (50,2 ) . 50(z +4) — 50z
z—1

o d 2 L
Res.—1f(z) = lim -{(z = D)7f(2)] = lim o= { == (2 +4)2



