30 Singularity, Residue

30.1 Singularities and Zeroes. Infinity.

- singular point : a z at which f(z) ceases to be analytic.
- zero : a z at which f(z) = 0.

isolated singularity : if $z = z_0$ has a neighborhood without further singularities of f(z)

Example)
$$\tan z$$
, $z = \pm \pi/2, \pm 3\pi/2$, etc

nonisolated singularity: Ex.) tan(1/z) at z=0

$$f' = -\frac{1}{z^2}\sec^2(1/z)$$

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n} \quad \text{valid in the immediate}$$
 neighborhood of $0 < |z-z_0| < R$

The 1^{st} series is analytic at $z=z_0$. The 2^{nd} series is called the principal part of (1)

(2)
$$\frac{b_1}{z - z_0} + \dots + \frac{b_m}{(z - z_0)^m} \qquad (b_m \neq 0)$$

simple poles (m=1)

Example 1. Poles. Essential singularities.

$$f(z) = \frac{1}{z(z-2)^5} + \frac{3}{(z-2)^2}$$
 a simple pole at $z=0$ a pole of fifth order at $z=2$

$$e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots$$
 isolated essential singularity at $z = 0$

also,
$$\sin \frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!z^{2n+1}} = \frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} + \cdots$$

Example 2. Behavior near a pole

 $f(z) = 1/z^2$ has a pole at z = 0, and $|f(z)| \to \infty$ as $z \to 0$ in any manner.

Theorem 1. (Poles)

If f(z) is analytic and has a pole at $z=z_0$, then $|f(z)|\to\infty$ as $z\to z_0$ in any manner.

Example 3. Behavior near an essential singularity

 $f(z) = e^{1/z}$ has an essential singularity at z = 0No limit for approach along the imaginary axis

$$(\because e^{1/iy} = e^{-i/y} = \cos(1/y) - i\sin(1/y))$$

$$e^{1/z} \to \infty \text{ as } z \to +0 \& e^{1/z} \to 0 \text{ as } z \to -0$$

$$e^{1/z} = e^{(\cos\theta - i\sin\theta)/r} = c_0 e^{i\alpha} \neq 0$$

$$e^{\cos\theta/r} = c_0 \Rightarrow \cos\theta = r \ln c_0 \& -\sin\theta = \alpha r.$$

$$\cos^2\theta + \sin^2\theta = r^2 (\ln c_0)^2 + \alpha^2 r^2 = 1$$

$$r^2 = \frac{1}{(\ln c_0)^2 + \alpha^2} \text{ and } \tan\theta = -\frac{\alpha}{\ln c_0}$$

Hence r can be made arbitrarily small by adding multiples of 2π to α , leaving c unaltered.

Theorem 2. (Picard's theorem)

If f(z) is analytic and has an isolated essential singularity at point z_0 , it takes on every value, with at most one exceptional value, in an arbitrarily small neighborhood of z_0

Zeros of Analytic Functions.

- zero : $z = z_0$ such that $f(z_0) = 0$ order $n: f' = f'' = \cdots = f^{(n-1)} = 0$ at $z = z_0$ but $f^{(n)}(z_0) \neq 0$
- 1^{st} order zero : simple zero.

Example 4. Zeros.

- i) $f(z) = 1 + z^2$ f'(z) = 2z
- \therefore simple zeros at $\pm i$.

ii)
$$f(z) = (1 - z^4)^2$$
, $f'(z) = -4z^3(1 - z^4) \cdot 2 = (-4z^3 + 4z^7) \cdot 2$

$$f''(z) = (-12z^2 + 28z^6) \cdots 2 = -4z^2(3 - 7z^4)(2)$$

 \therefore second-order zeros at ± 1 and $\pm i$

iii)
$$f(z) = (z - a)^3$$
, $f'(z) = 3(z - a)^2$, $f''(z) = 6(z - a)$, $f''' = 6$

 \therefore third-order zero at z = a

iv)
$$f(z) = e^z$$
: no zeros

v)
$$f(z) = \sin z$$
, $f'(z) = \cos z$

 \therefore simple zeros at $0, \pm \pi, \pm 2\pi, \cdots$

vi)
$$f(z) = \sin^2 z$$
 $f'(z) = 2 \sin \cos z = \sin 2z$ $f''(z) = 2 \cos 2z$

 \therefore second-order zeros at $0, \pm \pi, \pm 2\pi, \cdots$

vii)
$$f(z) = 1 - \cos z$$
, $f'(z) = \sin z$, $f''(z) = \cos z$

 \therefore second-order zeros at $0, \pm 2\pi, \pm 4\pi, \cdots$

viii)
$$f(z) = (1 - \cos z)^2$$
, $f'(z) = 2\sin z(1 - \cos z)$
 $f''(z) = 2\cos z(1 - \cos z) + 2\sin^2 z = 2\cos z(1 - \cos z) + 2(1 - \cos^2 z)$
 $= 2(1 - \cos z)(2\cos z + 1)$
 $f'''(z) = 2\sin z(2\cos z + 1) + 2(1 - \cos z)(-2\sin z)$
 $= 2\sin z(4\cos z - 1)$
 $f^{iv} = 2\cos z(4\cos z - 1) + 2\sin z(-4\sin z)$
 $= 8\cos^2 z - 2\cos z - 8\sin^2 z$
 \therefore fourth-order zeros at $0, \pm 2\pi, \pm 4\pi, \cdots$

Taylor Series at zero

$$f'(z_0) = \dots = f^{(n-1)}(z_0) = 0$$
 at an n^{th} order. zero $z = z_0$
$$a_0 = a_1 = a_2 = \dots = a_{n-1} = 0$$

(3)

$$f(z) = a_n(z - z_0)^n + a_{n+1}(z - z_0)^{n+1} + \cdots$$

$$= (z - z_0)^n [a_n + a_{n+1}(z - z_0) + a_{n+2}(z - z_0)^2 + \cdots] \quad (a_m \neq 0)$$

Theorem 3. (Zeros)

The zeros of an analytic function $f(z) \neq 0$ are isolated; that is, each of them has a neighborhood that contains o further zeros of f(z)

Proof.In (3), the factor $(z-z_0)^n$ is zero only at $z=z_0$, The power series in the brackets $[\cdots]$ represents an analytic function (by Theorem 5 in Sec.14.3), call it g(z). Now $g(z_0)=a_n\neq 0$, since analytic function is continuous, and because of this continuity, also $g(z)\neq 0$ in some neighborhood of $z=z_0$. Hence the same holds for f(z).

Theorem 4. (Poles and zeros)

Let f(z) be analytic at $z = z_0$ and have a zero of nth order at $z = z_0$. Then 1/f(z) has a pole of nth order at $z = z_0$. The same holds for h(z)/f(z) if h(z) is analytic at $z = z_0$ and $h(z_0) \neq 0$

30.2 Residue

$$\oint_C f(z)dz = ?$$
 C: simple closed path

-If f(z) is analytic everywhere on C and inside C, answer= 0 by Cauchy's integral theorem. -If f(z) has a singularity at a point $z = z_0$ inside C, but is otherwise analytic on C and inside C, then f(z) has a Laurent series:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \cdots$$
 (1)

This converges for all points near $z = z_0$ (except at $z = z_0$ itself), in some domain of the form $0 < |z - z_0| < R$.

30.2.1 Definition

From (1),

$$b_1 = \frac{1}{2\pi i} \oint_C f(z) dz = \operatorname{Res}_{z=z_0} f(z)$$
 : residue

$$2\pi i b_1 = \oint_{\mathcal{E}} f(z) dz$$

Example 1. Evaluation of an integral by means of a residue

$$\oint_C \frac{\sin z}{z^4} dz = ? \quad C : |z| = 1 \text{ (ccw)}$$

Solution.

$$f(z) = \frac{\sin z}{z^4} = \frac{1}{z^3} - \frac{1}{3!z} + \frac{z}{5!} - \frac{z^3}{7!} + \cdots$$

$$|z| > 0$$

$$\therefore b_1 = -1/3! = -1/6$$

$$\therefore \oint_c \frac{\sin z}{z^4} dz = 2\pi i b_1 = -\frac{\pi i}{3}$$

Example 2. Be careful to use the right Laurent series!

$$f(z) = 1/(z^3 - z^4)$$
 $C: |z| = 1/2$ (cw)

Solution.

$$0 < |z| < 1 \qquad \frac{1}{z^3 - z^4} = \frac{1}{z^3} + \frac{1}{z^2} + \frac{1}{z} + 1 + z + \cdots$$

$$b_1 = 1$$

$$\oint_c \frac{dz}{z^3 - z^4} = -2\pi i \operatorname{Res}_{z=0} f(z) = -2\pi i$$

30.2.2 Two Formulas for Residues at Simple Poles.

For a simple pole at $z=z_0$,

$$f(z) = \frac{b_1}{z - z_0} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots \quad (0 < |z - z_0| < R)$$
$$(z - z_0)f(z) = b_1 + (z - z_0)[a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots]$$

Now let $z \to z_0$, then

$$Res_{z=z_0} f(z) = b_1 = \lim_{z \to z_0} (z - z_0) f(z)$$
(2)

Example 3. Residue at a simple pole.

$$\operatorname{Res}_{z=i} \frac{9z+i}{z(z^2+1)} = \lim_{z \to i} (z-i) \frac{9z+i}{z(z+i)(z-i)} = \left[\frac{9z+i}{z(z+i)} \right] = \frac{10i}{-2} = -5i.$$

If $f(z) = \frac{p(z)}{q(z)}$, p, q analytic, where $p(z_0) \neq 0$ and q(z) has a simple zeros at z_0

$$q(z) = (z - z_0)q'(z_0) + \frac{(z - z_0)^2}{2!}q''(z_0) + \cdots$$

$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} (z - z_0) \frac{p(z)}{q(z)} = \lim_{z \to z_0} \frac{(z - z_0)p(z)}{(z - z_0)[q'(z_0) + (z - z_0)q''/2 + \cdots]}$$

$$\operatorname{Res}_{z=z_0} f(z) = \operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$$
(3)

Example 4. Residue at a simple pole calculated by formula (3)

$$\operatorname{Res}_{z=i} \frac{9z+i}{z(z^2+1)} = \left[\frac{9z+i}{3z^2+1}\right]_{z=i} = \frac{10i}{-2} = -5i.$$

30.2.3 Formula for the Residue at a pole of Any Order

If f(z) has a pole of order m > 1 at $z = z_0$, its Laurent series converging near z_0 (except at a z_0 itself) is

$$f(z) = \frac{b_m}{(z - z_0)^m} + \frac{b_{m-1}}{(z - z_0)^{m-1}} + \dots + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{z - z_0} + a_0 + \dots + a_1(z - z_0) + \dots$$

where $b_m \neq 0$

$$(z-z_0)^m f(z) = b_m + b_{m-1}(z-z_0) + \dots + b_2(z-z_0)^{m-2} + b_1(z-z_0)^{m-1} + a_0(z-z_0)^m + a_1(z-z_0)^{m+1} + \dots$$

 b_1 of f(z) at $z=z_0$ is now the coefficient of the power $(z-z_0)^{m-1}$ in the Taylor series of the function

$$g(z) = (z - z_0)^m f(z)$$

$$b_1 = \frac{1}{(m-1)!} g^{(m-1)}(z_0)$$

$$\operatorname{Res}_{z=z_0} f(z) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} [(z - z_0)^m f(z)] \right\}$$

$$(m = 2) \qquad \operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} \{ [(z - z_0)^2 f(z)]' \}$$

$$(4)$$

Example 5. Residue at a pole of higher order

$$f(z) = \frac{50z}{(z+4)(z-1)^2}$$

$$\operatorname{Res}_{z=1} f(z) = \lim_{z \to 1} \frac{d}{dz} [(z-1)^2 f(z)] = \lim_{z \to 1} \frac{d}{dz} \left(\frac{50z}{z+4} \right) = \lim_{z \to 1} \frac{50(z+4) - 50z}{(z+4)^2}$$
$$= \frac{200}{5^2} = 8$$