Optimal Design of Energy Systems Chapter 3

Min Soo KIM
Department of Mechanical and Aerospace Engineering
Seoul National University

Chapter 3. Economics

3.1 Introduction

Basis of engineering decision
$\left[\begin{array}{l}\text { Economics } \\ \text { (optimization) }\end{array} \quad \begin{array}{l}\text { Minimum investment cost } \\ \text { Minimum total lifetime cost }\end{array}\right.$
$\begin{array}{ll}\text { Noneconomic factors } & - \text { Legal concerns } \\ & \text { Social concerns }\end{array}$
Environmental concerns
Aesthetic concerns

Chapter 3. Economics

3.2 Interest

\square Rental charge for the use of money
The worth of money - 2 dimensions (dollar amount + time)

Chapter 3. Economics

3.3 Lump sum, annual compounding

- Interest available at the end of each year

	At start of year	Value $(\mathrm{i}=0.1)$	At end of year
Start	P	100	$\mathrm{P}+\mathrm{Pi}$
1 year	$\mathrm{P}(1+\mathrm{i})$	110	$\mathrm{P}(1+\mathrm{i})+\mathrm{P}(1+\mathrm{i}) \mathrm{i}$
2	$\mathrm{P}(1+\mathrm{i})^{2}$	121	
3	$\mathrm{P}(1+\mathrm{i})^{3}$	133	
4		146	\vdots
20	\vdots	673	
30		1745	$\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$

Chapter 3. Economics

3.4 Lump sum, compound more often than annually

Number of compounding periods per year

Chapter 3. Economics

3.5 Compound-Amount Factor (f/p) and Present-Worth Factor (p/f)

Future worth = (present worth) (f/p)
Present worth = (future worth) (p/f)

$$
f / p=\left(1+\frac{i}{m}\right)^{m n} \quad \text { and } \quad p / f=\frac{1}{(1+i / m)^{m n}}
$$

Where $\mathrm{i}=$ nominal annual interest rate
$\mathrm{n}=$ number of years
$\mathrm{m}=$ number of compounding periods per year

Chapter 3. Economics

3.5 Compound-Amount Factor (f/p) and Present-Worth Factor (p/f)

<Example> invest \$5000, compound 5\% interest quarterly, after 5yr ?

$$
\text { Future amount }=(\text { present amount })\left(f / p, \frac{0.05}{4}, 20 \text { periods }\right)
$$

where the meaning of the convention is (factor, rate, period).

$$
\text { Future amount }=(\$ 5000)\left(1+\frac{0.05}{4}\right)^{20}=(\$ 5000)(1.2820)=\$ 6410
$$

Chapter 3. Economics

3.6 Future worth (f/a) of a uniform series of amounts

R : uniform amount at each time period
S : future worth
$S=R(1+i)^{n-1}+R(i+i)^{n-2}+\cdots+R(1+i)+R$

$$
S=R(1+i)^{n}+R(i+i)^{n-1}+\cdots+R(1+i)
$$

First payment at the end of first period

Future worth

Chapter 3. Economics

3.6 Future worth (f/a) of a uniform series of amounts

$$
f / a=S / R=\frac{(1+i)^{n}-1}{(1+i)-1}
$$

Series compound amount factor(SCAF)

$$
a / f=\frac{i}{(1+i)^{n}-1}
$$

sinking fund factor (SFF)
Regular amount $\mathrm{R}=($ future worth) * (a/f)

Chapter 3. Economics

3.7 Present worth (p/a) of a uniform series of amounts

Present
worth
Present worth $=R\left[\frac{1}{1+i}+\frac{1}{(1+i)^{2}}+\cdots+\frac{1}{(1+i)^{n}}\right]$
Series present worth factor : $p / a=\frac{\frac{1}{1+i}\left(1-\frac{1}{(1+i)^{n}}\right)}{1-\frac{1}{1+i}}=\frac{(1+i)^{n}-1}{i(1+i)^{n}}$
Capital recovery factor: a / p

Chapter 3. Economics

3.10 Bonds

- Face value will be returned at maturity

Semiannual interest

- May be sold

Chapter 3. Economics

3.10 Bonds

P_{b} : price to be paid for bond now
i_{c} : current interest rate
i_{b} : interest rate on bond
n : years to maturity

$$
\begin{aligned}
& P_{b}\left(1+\frac{i_{c}}{2}\right)^{2 n}=F V+F V \frac{i_{b}}{2} \frac{\left(1+\frac{i_{c}}{2}\right)^{2 n}-1}{\frac{i_{c}}{2}} \\
& \left(\frac{f}{p}, \frac{i_{c}}{2}, 2 n\right) \\
& \left(\frac{f}{a}, \frac{i_{c}}{2}, 2 n\right)
\end{aligned}
$$

Future worth of investment
Future worth of uniform series of the semiannual interest payment on the bond

Chapter 3. Economics

3.11 Shift in time of a series

$$
\left(\frac{f}{a}\right)_{\text {shift }}=(1+i) \frac{(1+i)^{n}-1}{i}
$$

Actual situation : first amount appears at time 0 no amount appears at the end

Chapter 3. Economics

3.14 Evaluating Potential Investments

<Example> The rate of return on each building?

Economic data	Building A	Building B
First cost	$\$ 800,000$	$\$ 600,000$
Annual income from rent	160,000	155,000
Annual operating and	73,000	50,300
maintenance cost		
Anticipated selling price	960,000	540,000

Chapter 3. Economics

3.14 Evaluating Potential Investments

<Example> The rate of return on each building?
Building A :

$$
800,000=(160,000-73,000)(p / a, i \%, 5)+(960,000)(p / f, i \%, 5)
$$

Building B :

$$
\begin{gathered}
600,000=(155,000-50,300)(\mathrm{p} / \mathrm{a}, \mathrm{i} \%, 5)+(540,000)(\mathrm{p} / \mathrm{f}, \mathrm{i} \%, 5) \\
i= \begin{cases}13.9 \% & \text { building A } \\
16.0 \% & \text { building B }\end{cases}
\end{gathered}
$$

Chapter 3. Economics

3.15 Taxes
\square Money for operating the government

Chapter 3. Economics

3.16 Depreciation

- Annual expense

For replacement of the facility at the end of its life

Straight line depreciation $=\frac{\text { First cost }- \text { salvage cost }}{\# \text { of years of tax life }}$

L Sum of the year's digits (SYD) method $=\frac{N+1-t}{N(N+1) / 2}(P-S)$
t : year in question
N : tax life

Chapter 3. Economics

3.16 Depreciation

SYD : greater depreciation in the early portion of the life
: more of tax is paid in later years

Chapter 3. Economics

3.18 Continuous compounding

\& daily compounding

- compound amount factor for continuous compounding

$$
\begin{aligned}
\frac{f}{p}=(1 & \left.+\frac{i}{m}\right)^{m n} \\
\left(\frac{f}{p}\right)_{\text {cont }} & =\lim _{m \rightarrow \infty}\left(1+\frac{i}{m}\right)^{m n} \\
\ln \left(\frac{f}{p}\right)_{\text {cont }} & =\lim _{m \rightarrow \infty} m n \ln \left(1+\frac{i}{m}\right)=i \times n \\
\left(\frac{f}{p}\right)_{\text {cont }} & =e^{i \times n}
\end{aligned}
$$

Chapter 3. Economics

3.18 Continuous compounding

- Series compound amount factor with continuous compounding

$$
\left(\frac{f}{a}\right)_{\text {cont }}=e^{i(n-1)}+e^{i(n-2)}+\cdots+e^{i}+1=\frac{e^{i n}-1}{e^{i}-1}
$$

- Continuous flow future worth factor
\$1 per year $\rightarrow \mathrm{m}$ equal amount spread uniformly over the entire year

$$
\begin{gathered}
\left(\frac{f}{a}\right)_{\text {flow }}=\frac{1}{m}\left(1+\frac{i}{m}\right)^{m n-1}+\cdots+\frac{1}{m}\left(1+\frac{i}{m}\right)^{1}+\frac{1}{m}=\frac{\frac{1}{m}\left\{\left(1+\frac{i}{m}\right)^{m n}-1\right\}}{\left(1+\frac{i}{m}\right)-1} \\
\lim _{m \rightarrow \infty}\left(\frac{f}{a}\right)_{\text {flow }}=\frac{e^{i n}-1}{i}
\end{gathered}
$$

