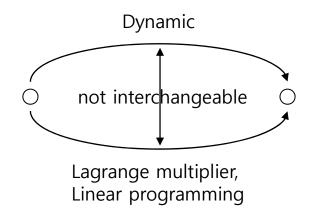
Optimal Design of Energy Systems Chapter 10 Dynamic Programming

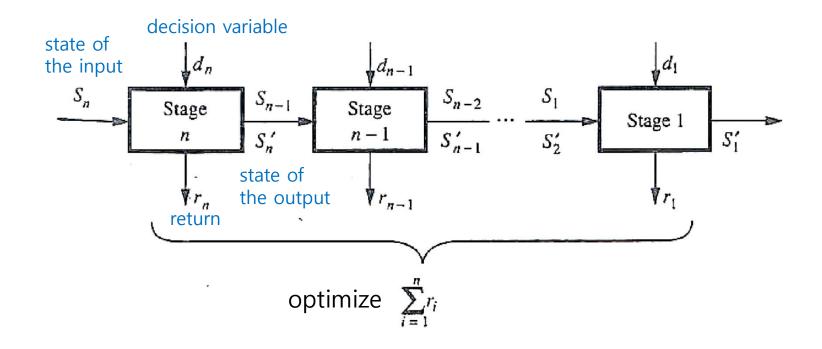
chapter ito bynamic i rogramming

Min Soo KIM


Department of Mechanical and Aerospace Engineering Seoul National University

10.1 (Uniqueness) Introduction

- applicable to staged process


to continuous functions which can be approximated by staged processes

- related to the calculus of variations
 - \rightarrow optimal function rather than an optimal state point

10.2 Symbolic Description

10.3 Characteristics of dynamic programming solution

<Example 10.1> optimal route

Example 10.1. A minimum-cost pipeline is to be constructed between points A and E, passing successively through one node of each, B, C, and D, as shown in Fig. 10-2. The costs from A to B and from D to E are shown in Fig. 10-2, and the costs between B and C and between C and D are given in Table 10.1.

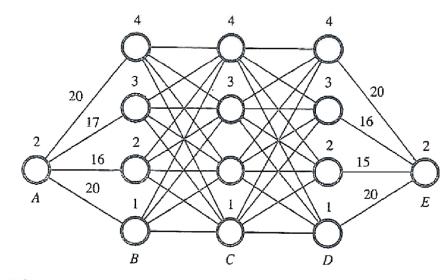


TABLE 10.1 Costs from *R* to *C* and *C* to *D* in Fig. 10

Costs	from	B	ίo	¢	and	C	to	D	123	Fig.	10-2	
11												

		T	ю	
From	1	2	3	4
1	12	15	21	28
2	15	16	17	24
3	21	17	16	15
4	28	24	15	12

10.3 Characteristics of dynamic programming solution

<solution>

TABLE 10.2 Example 10.1, D to E

From	Through	Cost	Optimum
D1	_	20	x
D2	-	15	х
D3 D4	-	16	x
D4		20	х .

TABLE 10.3 Example 10.1, C to E

			Cost						
From	Through	C to D	D to E	Total	Optimum				
C4	D4	12	20	32	_				
	D3	15	16	31	x				
	D2	24	15	39					
	D1	28	20	48					
C3	D4	15	20	35					
	D3	16	16	32	x				
	D2	17	15	32	x				
	D1	21	20	41					
C2	D4	24	20	44					
	D3	17	16	33					
	D2	16	15	31	x				
	D1	15	20	35					
C1	D4	28	20	48					
	D3	21	16	37					
	D2	15	15	30	х				
	D1	12	20	32					

10.3 Characteristics of dynamic programming solution

<so< th=""><th>lution></th></so<>	lution>
100	acioni

TABLE 10.4 Example 10.1, B to E

			Cost						
From	Through	B to C	C to E	Total	Optimum				
<i>B</i> 4	<i>C</i> 4	12	31	43	x				
	C3	15	32	47					
	C2	24	31	55					
	C1	28	30	58					
B 3	C4	15	31	46	x				
	C3	16	32	48					
	C2	17	31	48					
	C 1	21	30	51					
B2	C4	24	31	55					
	C3	17	32	49					
	C2	16	31	47					
	C1	15	30	45	х				
<i>B</i> 1	C4	28	31	59					
	C3	21	32	53					
	C2	15	31	46					
	C1	12	30	42	x				

SEOUL NATIONAL UNIVERSITY

10.3 Characteristics of dynamic programming solution

<solution></solution>	TABLE 10.5 Example 10	0.1, A to E				
				С	ost	
	To E from	Through	A to B	B to E	Total	Optimum
	A2	<i>B</i> 4	20	43	63	
		B3	17	46	63	
		B2	16	45	61	х
		B 1	20	42	62	

Optimum route : $A2 \rightarrow B2 \rightarrow C1 \rightarrow D2 \rightarrow E2$

Key feature

After an optimal policy has been determined from an intermediate state to the final state, future calculation passing through that state use only the optimal policy.

10.4 Efficiency of Dynamic Programming

(dynamic programming)	Additional stage
Total 40 calculations in example 10.1	(+16) = 56 calculations

(exhaustive examination)

of total possible routes $64 \leftarrow 4 \times 4 \times 4 \times 1$ (x4) = 256 calculations

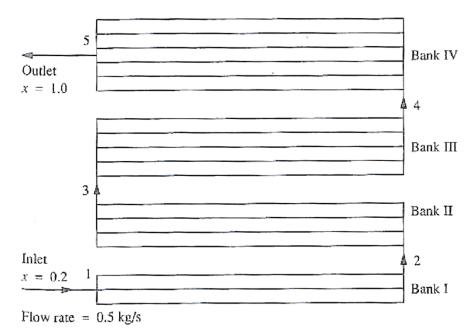
10.6 Apparently constrained problems

constrained, but converted into unconstrained form (example 10.1)

<Example 10.3> An evaporator which boils liquid inside tubes consists of four banks of tubes. Each bank consists of a number of tubes in parallel, and the banks are connected in series, as shown in Fig. 10-5. A mixture of liquid and vapor enters the first bank with a fraction of vapor x = 0.2, and the fluid leaves the evaporator as saturated vapor, x = 1.0. The flow rate is 0.5 kg/s, and each tube is capable of vaporizing 0.01 kg/s and thus of increasing x by 0.02.

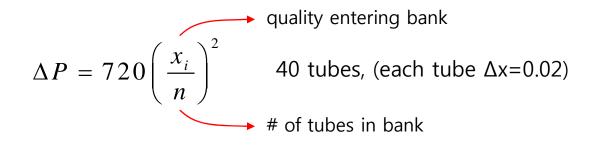
Forty tubes are to be arranged in the banks so that the minimum total pressure drop prevails in the evaporator. The pressure drop in a bank is approximately proportional to the square of the velocity, and a satisfactory expression for the pressure drop Δp is

$$\Delta P = 720 \left(\frac{x_i}{n}\right)^2$$


10.6 Apparently constrained problems

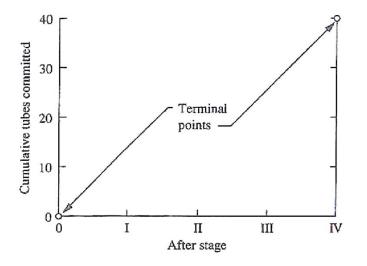
```
<Example 10.3>
```

where x_i = vapor fraction entering bank


n = number of tubes in bank

Use dynamic programming to determine the distribution of the 40 tubes so that the total pressure drop in the evaporator is minimum.

10.6 Apparently constrained problems



Selection of # of tubes in a stage is not productive \rightarrow state variable : cumulative tubes

 \rightarrow state variable : cumulative tubes

10.6 Apparently constrained problems

TABLE 10.	13		
Example	10.3.	stage	I

Total tubes committed	Tubes in stage I	Total Δp , kPa
2	2	7.20
3	3	3.20
4	4	1.80
5	5	1.15
6	6	0.80

TABLE 10.15 TABLE 10.14 Example 10.3, stages I and III Example 10.3, stages I and II Tubes Total Tubes Total Total Ap, kPa in III Total Δp , kPa in II tubes tubes 0.80 + 2.95 = 3.755 9 2.16 + 1.88 = 4.0422 11 6 $1.15 + 1.80 = 2.95^*$ 10 $2.47 + 1.39 = 3.86^*$ 7 $1.80 + 1.15 = 2.95^*$ 11 2.95 + 1.05 = 4.003.20 + 0.76 = 3.968 9 7.20 + 0.51 = 7.709 1.95 + 2.05 = 4.0023 10 2.16 + 1.52 = 3.680.80 + 2.05 = 2.856 12 11 $2.47 + 1.15 = 3.62^*$ 7 1.15 + 1.32 = 2.47*12 2.95 + 0.88 = 3.838 1.80 + 0.88 = 2.683.20 + 0.60 = 3.689 10 1.95 + 1.66 = 3.6124 $2.16 + 1.26 = 3.42^*$ 11 0.80 + 1.50 = 2.307 13 8 $1.15 + 1.01 = 2.16^*$ 12 2.47 + 0.97 = 3.449 1.80 + 0.73 = 2.5313 2.95 + 0.75 = 3.7010 3.20 + 0.49 = 3.691.71 + 1.80 = 3.5125 10 0.59 + 1.70 = 2.297 14 11 1.95 + 1.37 = 3.328 $0.80 + 1.15 = 1.95^*$ 12 $2.16 + 1.06 = 3.22^*$ 9 $1.15 + 0.80 = 1.95^*$ 2.47 + 0.82 = 3.2913 10 1.80 + 0.56 = 2.3626 11 1.71 + 1.49 = 3.208 0.59 + 1.30 = 1.8915 $1.95 + 1.15 = 3.00^*$ 12 9 $1.15 + 0.80 = 1.71^*$ 13 2.16 + 0.90 = 3.0610 1.15 + 0.65 = 1.80

10.6 Apparently constrained problems

SEOUL NATIONAL UNIVERSITY

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

10.6 Apparently constrained problems

TABLE 10.16

Total tubes	Tubes in IV	Total Δp , kPa
40	13	2.93 + 2.33 = 5.26
	14	3.00 + 1.90 = 4.90
	15	3.22 + 1.57 = 4.79
	15	3.42 + 1.30 = 4.72
	17	3.62 + 1.09 = 4.71
	18	3.86 + 0.91 = 4.77

The optimal distribution of tubes : 5, 7, 11, 17 Total pressure drop of 4.71 kPa

