Optimal Design of Energy Systems

Chapter 12 Linear Programming

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

12.1 The origins of Linear Programming

```
objective function
linear combinations
constraints

equality or inequality

1930s, economic models
1947 USAF simplex method
(United States Air Force)
```

12.2 Some examples

- (1) blending application oil company
- (2) machine allocation manufacturing plant
- (3) inventory and production planning
- (4) transportation

12.3 Mathematical statement

objective function

$$y = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

constraints

$$\begin{aligned} \phi_1 &= a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \geq r_1 \\ &\vdots \\ \phi_m &= a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \geq r_m \end{aligned} \right\} \text{ inequality constraints}$$

cf) Lagrange method is applicable for equality constraints

12.4 Developing the mathematical statement

<Example 12.1> A simple power plant consist of an extraction turbine that drives a generator, as show in Fig. 12-1. The turbine receives 3.2 kg/s of steam, and the plant can sell either electricity or extraction steam for processing purposes. The revenue rates are

Electricity, \$0.03 per kilowatthour

Low-pressure steam, \$1.10 per megagram

High-pressure steam, \$1.65 per megagram

FIGURE 12-1 Power plant in Example 12.1.

12.4 Developing the mathematical statement

<Example 12.1 continued>The generation rate of electric power depends upon the flow rate of steam passing through each of the sections A, B and C; these flow rates are $w_{A'}$, w_{B} and $w_{C'}$, respectively. The relationships are

$$P_A, kW = 48w_A$$

$$P_B, kW = 56w_B$$

$$P_C, kW = 80w_C$$

Where the w's are in kilograms per second. The plant can sell as much electricity as it generates, but there are other restrictions.

12.4 Developing the mathematical statement

<Example 12.1 continued> To Prevent overheating the low-pressure section of the turbine, no less than 0.6 kg/s must always flow through section C. Furthermore, to prevent unequal loading on the shaft, the permissible combination of extraction rates is such that if $x_1 = 0$, then $x_2 \le 1.8$ kg/s, and for each kilogram of x_1 extracted 0.25 kg less can be extracted of x_2 .

The customer of the process steam is primarily interested in total energy and will purchase no more than

$$4x_1 + 3x_2 \le 9.6$$

Develop the objective function for the total revenue from the plant and also the constraint equations

12.4 Developing the mathematical statement

<Solution>

Revenue
$$= \frac{1.65}{1000} (3600x_1) + \frac{1.10}{1000} (3600x_2) + 0.03(48w_A + 56w_B + 80w_C)$$

$$(w_A = 3.2 \ kg \ / \ s, \ w_B = 3.2 - x_1, \ w_C = 3.2 - x_1 - x_2)$$

$$= 17.66 + 1.86x_1 + 1.56x_2$$

Maximize
$$y = 1.86x_1 + 1.56x_2$$

constraints
$$x_1 + x_2 \le 2.6$$

 $x_1 + 4x_2 \le 7.2$
 $4x_1 + 3x_2 \le 9.6$

12.5 Geometric Visualization of the Linear-Programming Problem

<Solution>

- Permitted region : ABDFG

- Optimal point : D

- Optimum solution lies at

a corner

FIGURE 12-2 Constraints and lines of constant profit in Example 12.1.

12.6 Introduction of Slack Variables

From Ex 12.1 inequalities can be converted into equalities by introduction of another variable in each equation.

$$x_1 + x_2 + x_3 = 2.6$$
 $x_3 \ge 0$
 $x_1 + 4x_2 + x_4 = 7.2$ $x_4 \ge 0$
 $4x_1 + 3x_2 + x_5 = 9.6$ $x_5 \ge 0$

slack variables : x_3 , x_4 , x_5

12.7 Preparation for simplex algorithm

objective function : $y - 1.86x_1 - 1.56x_2 = 0$

X ₁	X ₂	X ₃	X ₄	X ₅	
1	1	1			2.6
1	4		1		7.2
4	3			1	9.6
-1.86	-1.56				0

current value of objective function

12.9 Starting at the origin

Move from one corner to the next corner starting point $x_1=0$, $x_2=0$

x ₁ =0	x ₂ =0	X ₃	X ₄	X ₅	
1	1	1			2.6
1	4		1		7.2
4	3			1	9.6
-1.86	-1.56				0

12.10 The simplex algorithm

Decide the variable

Maximization – largest negative difference coefficient Minimization – largest positive difference coefficient

- 2. Determine the controlling constraint
- 3. Transfer of the controlling constraint
- 4. For all other boxes

12.11 Solution of Example 12.1

	Table 1	x ₁ =0	x ₂ =0	X ₃	X ₄	X ₅	
	2.6/1=2.6	1	1	1			2.6
-	7.2/1=7.2	1	4		1		7.2
Ś	9.6/4=2.4	4	3			1	9.6
controlling constraint	g constraint	-1.86	-1.56				0
	allest)	1					

Step 1 : largest negative x₁ should be programmed (increased from zero)

Step 2 : How much x_1 can be increased?

$$x_1 = 0 \rightarrow x_1 \neq 0$$

 $x_2 = 0 \rightarrow x_2 = 0$
 $x_5 \neq 0 \rightarrow x_5 = 0 \Leftarrow x_1$ increases until x_5 becomes zero.

(In fig 12-2, $A \rightarrow B$)

12.11 Solution of Example 12.1

Step 3:

	x ₁	x ₂ =0	X ₃	X ₄	x ₅ =0	
	1-(1)(1)	1-(1)(0.75)	1-(1)(0)	0-(1)(1)	0-(1)(0.25)	2.6-(1)(2.4)
	1-(1)(1)	4-(1)(0.75)	0-(1)(0)	1-(1)(0)	0-(1)(0.25)	7.2-(1)(2.4)
÷ 4	1	0.75	0	0	0.25	2.4
	-1.86- (-1.86)(1)	-1.56- (-1.86)(0.75)	0-(-1.86)(0)	0-(-1.86)(0)	0- (-1.86)(0.25)	0- (-1.86)(2.4)

Step 4

12.11 Solution of Example 12.1

	Table 2	X ₁	x ₂ =0	X ₃	X ₄	x ₅ =0	
	0.2/0.25=0.8	0	0.25	1	0	-0.25	0.20
•	4.8/3.25=1.48	0	3.25	0	1	-0.25	4.8
	2.4/0.75=3.2	1	0.75	0	0	0.25	2.4
	ng constraint mallest)	0	-0.165	0	0	0.465	4.464

Step 1: largest negative $(x_2 \text{ is programmed next})$

$$\rightarrow x_3 = 0.2, x_4 = 4.8, x_1 = 2.4, y = 4.464$$

12.11 Solution of Example 12.1

Step 2 : x_2 increases to its limit until x_3 becomes zero

Step 3:

		x ₁	x ₂	x ₃ =0	X ₄	x ₅ =0	
÷ 0.2	2 5	0	1	4	0	-1	0.8
		0-(3.25)(0)	3.25- (3.25)(1)	0-(3.25)(4)	1-(3.25)(0)	-0.25- (3.25)(-1)	4.8- (3.25)(0.8)
		1-(0.75)(0)	0.75- (0.75)(1)	0-(0.75)(4)	0-(0.75)(0)	0.25- (0.75)(-1)	2.4- (0.75)(0.8)
		0-(-0.165)(0)	-0.165- (-0.165)(1)	0-(-0.165)(4)	0-(-0.165)(0)	0.465- (-0.165)(-1)	4.464- (-0.165)(0.8)

Step 4 :

12.11 Solution of Example 12.1

Table 3	x ₁	x ₂	x ₃ =0	X ₄	x ₅ =0	
	0	1	4	0	-1	0.80
	0	0	-13	1	3	2.2
	1	0	-3	0	1	1.8
	0	0	0.66	0	0.3	4.596

$$x_2 = 0.8, x_1 = 1.8, x_4 = 2.2, y = 4.596$$

- → no negative coefficients
 - → no further improvement is possible (second constraint has no influence)

12.12 Another Geometric Interpretation of Table Transformation

by changing the coordinates so that the current point is always at origin

$$y = 1.86x_1 + 1.56x_2$$

$$- x_1 + x_2 + x_3 = 2.6$$

$$- x_1 + 4x_2 + x_4 = 7.2$$

$$4x_1 + 3x_2 + x_5 = 9.6$$

Table 1
$$x_1, x_2$$
 - physical variables $x_1 = 0, x_2 = 0$ origin

Table 2
$$x_2, x_5$$
 $x_2 = 0, x_5 = 0$

Table 3
$$x_3, x_5$$
 $x_5 = 0$

12.12 Another Geometric Interpretation of Table Transformation

Table 1

3rd constraint

$$4x_1 + 3x_2 + x_5 = 9.6 \rightarrow$$

$$4x_1 + 3x_2 + x_5 = 9.6 \rightarrow x_1 = -0.75x_2 - 0.25x_5 + 2.4$$

1st constraint

$$x_1 + x_2 + x_3 = 2.6 \rightarrow$$

$$0.25x_2 + x_3 - 0.25x_5 = 0.2$$

2nd constraint

$$x_1 + 4x_2 + x_4 = 7.2 \rightarrow 3.25x_2 + x_4 - 0.25x_5 = 4.8$$

$$3.25x_2 + x_4 - 0.25x_5 = 4.8$$

Objective function
$$y - 1.86x_1 + 1.56x_2 = 0 \rightarrow y - 0.165x_2 + 0.465x_5 = 4.464$$

12.12 Another Geometric Interpretation of Table Transformation

Table 2 Table 3

1st constraint

$$0.25x_2 + x_3 - 0.25x_5 = 0.2 \rightarrow$$

$$x_2 = -4x_3 + x_5 + 0.8$$

2nd constraint

$$3.25x_2 + x_4 - 0.25x_5 = 4.8 \rightarrow -13x_3 + x_4 + 3x_5 = 2.2$$

$$-13x_3 + x_4 + 3x_5 = 2.2$$

3rd constraint

$$x_1 = -0.75 x_2 - 0.25 x_5 + 2.4 \rightarrow x_1 - 3x_3 + x_5 = 1.8$$

$$x_1 - 3x_3 + x_5 = 1.8$$

Objective function
$$y - 0.165x_2 + 0.465x_5 = 4.464 \rightarrow y + 0.66x_3 + 0.3x_5 = 4.596$$

$$y + 0.66x_3 + 0.3x_5 = 4.596$$

12.12 Another Geometric Interpretation of Table Transformation

FIGURE 12-3 Tableau 2 expressed on x_5x_2 coordinates.

12.14 # of variables and # of constraints

n

(m = # of slack variables)

At optimum, n variables are zero (corner)

m>n m-n constraints play no role

m<n n-m variables are zero

FIGURE 12-5

Relation of number of physical and slack variables.

12.15 Minimization with greater than constraints

- Maximization with less than constraints
 - Moving from one corner to another adjacent corner (start from the origin)
- ✓ Minimization with greater than constraints
 - Locating the first feasible point difficult
 - → introduction of <u>artificial variable (12.16)</u>

12.16 Artificial variables

$$3x_1 + 4x_2 \ge 12$$

$$3x_1 + 4x_2 - x_3 = 12$$

$$x_3 \ge 0$$

If $x_1 = x_2 = 0$ (origin), it is not realistic

$$3x_1 + 4x_2 - x_3 + x_4 = 12$$

$$\uparrow \qquad \uparrow \qquad \qquad$$
artificial variable
slack variable

12.17 Simplex algorithm to minimization problem

<Example 12.2> Determine the minimum value of y and the magnitudes of x1 and x2 at this minimum, where

$$y = 6x_1 + 3x_2$$

Subject to the constraints

$$5x_1 + x_2 \ge 10$$

$$9x_1 + 13x_2 \ge 74$$

$$x_1 + 3x_2 \ge 9$$

12.17 Simplex algorithm to minimization problem

<solution>

$$\begin{bmatrix}
5x_1 + x_2 - x_3 + x_6 & = 10 \\
9x_1 + 13x_2 - x_4 + x_7 & = 74 \\
x_1 + 3x_2 - x_5 + x_8 = 9
\end{bmatrix}$$

$$y = 6x_1 + 3x_2 + Px_6 + Px_7 + Px_8$$

 $P \rightarrow a$ numerical value which is extremely large

$$x_3, x_4, x_5 \rightarrow \text{slack variables}$$

 $x_6, x_7, x_8 \rightarrow \text{artificial variables}$

12.17 Simplex algorithm to minimization problem

<solution>

Starting point-origin with all slack variable=0

artificial variable>0

$$x_6 = 10 - 5x_1 - x_2 + x_3$$

$$x_7 = 74 - 9x_1 - 13x_2 + x_4$$

$$x_8 = 9 - x_1 - 3x_2 + x_5$$

$$y = (6 - 15P)x_1 + (3 - 17P)x_2 + Px_3 + Px_4 + Px_5 + 93P$$

12.17 Simplex algorithm to minimization problem

<solution>

<u>Table</u>	1	x ₁	x ₂	x ₃	X ₄	X ₅	
10	x ₆	5	1	-1	0	0	10
74/13	x ₇	9	13	0	-1	0	74
3	x ₈	1	3	0	0	-1	9
		15P-6	17P-3 /	-P	-P	-P	93P
controlling constraint (smallest) largest positive difference coefficient							

12.17 Simplex algorithm to minimization problem

<solution>

Table 1 $x_{6} = 10 - 5x_{1} - x_{2} + x_{3} \rightarrow x_{6} = 7 - (14/3)x_{1} + x_{3} - (1/3)x_{5} + (1/3)x_{8}$ $x_{7} = 74 - 9x_{1} - 13x_{2} + x_{4} \rightarrow x_{7} = 35 - (14/3)x_{1} + x_{4} - (13/3)x_{5} + (13/3)x_{8}$ $x_{8} = 9 - x_{1} - 3x_{2} + x_{5} \rightarrow x_{2} = 3 - (1/3)x_{1} + (1/3)x_{5} - (1/3)x_{8}$ $y = (6 - 15P)x_{1} + (3 - 17P)x_{2} + Px_{3} + Px_{4} + Px_{5} + 93P$

$$y = (6 - 13P)x_1 + (3 - 17P)x_2 + Px_3 + Px_4 + Px_5 + 93P$$

$$\Rightarrow y = \frac{15 - 28P}{3}x_1 + Px_3 + Px_4 + \frac{3 - 14P}{3}x_5 + \frac{-3 + 17P}{3}x_8 + 42P + 9$$

12.17 Simplex algorithm to minimization problem

<solution>

<u>Tak</u>	ole	2	X ₁	X ₃	X ₄	X ₅	x ₈	
3/2		X ₆	14/3	-1	0	1/3	-1/3	7
105/14	1	X ₇	14/3	0	-1	13/3	-13/3	35
9		x ₂	1/3	0	0	-1/3	1/3	3
			(28P-15)/3	-P	-P	(14P-3)/3	(-17P+3)/3	42P+9
controlling (sma				positive nce coefficient				

12.17 Simplex algorithm to minimization problem

<solution>

Table 2

Table 3

$$x_{6} = 7 - (14/3)x_{1} + x_{3} - (1/3)x_{5} + (1/3)x_{8} \rightarrow x_{1} = 3/2 + (3/14)x_{3} - (1/14)x_{5} - (3/14)x_{6} + (1/14)x_{8}$$

$$x_{7} = 35 - (14/3)x_{1} + x_{4} - (13/3)x_{5} + (13/3)x_{8} \rightarrow x_{7} = 28 - x_{3} + x_{4} - 4x_{5} + x_{6} + 4x_{8}$$

$$x_{2} = 3 - (1/3)x_{1} + (1/3)x_{5} - (1/3)x_{8} \rightarrow x_{2} = 5/2 - (1/14)x_{3} + (5/14)x_{5} + (1/14)x_{6} - (5/14)x_{8}$$

$$y = \frac{15 - 28P}{3}x_{1} + Px_{3} + Px_{4} + \frac{3 - 14P}{3}x_{5} + \frac{-3 + 17P}{3}x_{5} + 42P + 9$$

$$\Rightarrow y = \frac{15 - 14P}{14}x_{3} + Px_{4} + \frac{9 - 56P}{14}x_{5} + \frac{-15 + 28P}{14}x_{6} + \frac{-9 + 70P}{14}x_{8} + \frac{56P + 33}{2}$$

12.17 Simplex algorithm to minimization problem

<solution>

<u>Table</u>	3	x ₃	X ₄	x ₅	x ₆	x ₈	
21	X ₁	-3/14	0	1/14	3/14	-1/14	3/2
7	x ₇	1	-1	4	-1	-4	28
-7	x ₂	1/14	0	-5/14	-1/14	5/14	5/2
		(14P-15) /14	-P	(56P-9)/14	(-28P+15) /14	(-70P+9) /14	(56P+33)/ 2

controlling constraint (smallest)

largest positive difference coefficient

12.17 Simplex algorithm to minimization problem

<solution>

Table 3

Table 4

$$x_{1} = 3 / 2 + (3 / 14)x_{3} - (1 / 14)x_{5} - (3 / 14)x_{6} + (1 / 14)x_{8} \rightarrow x_{1} = 1 + (13 / 56)x_{3} - (1 / 56)x_{4} - (13 / 56)x_{6} + (1 / 56)x_{7}$$

$$x_{7} = 28 - x_{3} + x_{4} - 4x_{5} + x_{6} + 4x_{8} \rightarrow x_{5} = 7 - (1 / 4)x_{3} + (1 / 4)x_{4} + (1 / 4)x_{6} - (1 / 4)x_{7} + x_{8}$$

$$x_{2} = 5 / 2 - (1 / 14)x_{3} + (5 / 14)x_{5} + (1 / 14)x_{6} - (5 / 14)x_{8} \rightarrow x_{2} = 5 - (9 / 56)x_{3} + (5 / 56)x_{4} + (9 / 56)x_{6} - (5 / 56)x_{7}$$

$$y = \frac{15 - 14P}{14}x_{3} + Px_{4} + \frac{9 - 56P}{14}x_{5} + \frac{-15 + 28P}{14}x_{6} + \frac{-9 + 70P}{14}x_{8} + \frac{56P + 33}{2}$$

$$\Rightarrow y = \frac{51}{56}x_{3} + \frac{9}{56}x_{4} + \left(P - \frac{15}{56}\right)x_{6} + \left(P - \frac{9}{56}\right)x_{7} + Px_{8} + 21$$

12.17 Simplex algorithm to minimization problem

<solution>

Table 4	X ₃	X ₄	x ₆	x ₇	x ₈	
X ₁	-13/56	1/56	13/56	-1/56	0	1
X ₅	1/4	-1/4	-1/4	1/4	-1	7
x ₂	9/56	-5/56	-9/56	5/56	0	5
	-51/56	-9/56	-P+51/56	-P+9/56	-P	21

$$x_1 = 1, x_5 = 7, x_2 = 5, y = 21$$

12.17 Simplex algorithm to minimization problem

