Optimal Design of Energy Systems
 Chapter 12 Linear Programming

Min Soo KIM
Department of Mechanical and Aerospace Engineering
Seoul National University

Chapter 12. Linear Programming

12.1 The origins of Linear Programming

- objective function
constraints
linear combinations
L equality or inequality

1930s, economic models
1947 USAF simplex method
L (United States Air Force)

Chapter 12. Linear Programming

12.2 Some examples

(1) blending application - oil company
(2) machine allocation - manufacturing plant
(3) inventory and production planning
(4) transportation

Chapter 12. Linear Programming

12.3 Mathematical statement

objective function

$$
y=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

constraints

$$
\left.\begin{array}{rl}
\phi_{1} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \geq r_{1} \\
& \vdots \\
\phi_{m} & =a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} \geq r_{m}
\end{array}\right\} \text { inequality constraints }
$$

cf) Lagrange method is applicable for equality constraints

Chapter 12. Linear Programming

12.4 Developing the mathematical statement

<Example 12.1> A simple power plant consist of an extraction turbine that drives a generator, as show in Fig. 12-1. The turbine receives $3.2 \mathrm{~kg} / \mathrm{s}$ of steam, and the plant can sell either electricity or extraction steam for processing purposes. The revenue rates are

Electricity, \$0.03 per kilowatthour
Low-pressure steam, $\$ 1.10$ per megagram

High-pressure steam, \$1.65 per megagram

FIGURE 12-1
Power plant in Example 12.1.

Chapter 12. Linear Programming

12.4 Developing the mathematical statement

<Example 12.1 continued>The generation rate of electric power depends upon the flow rate of steam passing through each of the sections A, B and C; these flow rates are w_{A}, w_{B} and w_{C} respectively. The relationships are

$$
\begin{array}{ll}
P_{A}, & k W=48 w_{A} \\
P_{B}, & k W=56 w_{B} \\
P_{C}, & k W=80 w_{C}
\end{array}
$$

Where the w's are in kilograms per second. The plant can sell as much electricity as it generates, but there are other restrictions.

Chapter 12. Linear Programming

12.4 Developing the mathematical statement

<Example 12.1 continued> To Prevent overheating the low-pressure section of the turbine, no less than $0.6 \mathrm{~kg} / \mathrm{s}$ must always flow through section C . Furthermore, to prevent unequal loading on the shaft, the permissible combination of extraction rates is such that if $x_{1}=0$, then $x_{2} \leq 1.8 \mathrm{~kg} / \mathrm{s}$, and for each kilogram of x_{1} extracted 0.25 kg less can be extracted of x_{2}.

The customer of the process steam is primarily interested in total energy and will purchase no more than

$$
4 x_{1}+3 x_{2} \leq 9.6
$$

Develop the objective function for the total revenue from the plant and also the constraint equations

Chapter 12. Linear Programming

12.4 Developing the mathematical statement
<Solution>

$$
\begin{aligned}
\text { Revenue }= & \frac{1.65}{1000}\left(3600 x_{1}\right)+\frac{1.10}{1000}\left(3600 x_{2}\right)+0.03\left(48 w_{A}+56 w_{B}+80 w_{C}\right) \\
& \left(w_{A}=3.2 \mathrm{~kg} / \mathrm{s}, w_{B}=3.2-x_{1}, w_{C}=3.2-x_{1}-x_{2}\right) \\
= & 17.66+1.86 x_{1}+1.56 x_{2} \\
\text { Maximize } \quad & y=1.86 x_{1}+1.56 x_{2} \\
\text { constraints } \quad & x_{1}+x_{2} \leq 2.6 \\
& x_{1}+4 x_{2} \leq 7.2 \\
& 4 x_{1}+3 x_{2} \leq 9.6
\end{aligned}
$$

Chapter 12. Linear Programming

12.5 Geometric Visualization of the Linear-Programming Problem

- Permitted region:ABDFG
- Optimal point: D
- Optimum solution lies at a corner

[^0]Constraints and lines of constant profit in Example 12.1.

seoutnational universtr

DEPARTMENT OF MECHANICAL \& AEROSPACE ENGINEERING

Chapter 12. Linear Programming

12.6 Introduction of Slack Variables

From Ex 12.1 inequalities can be converted into equalities by introduction of another variable in each equation.

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}=2.6 & x_{3} \geq 0 \\
x_{1}+4 x_{2}+x_{4}=7.2 & x_{4} \geq 0 \\
4 x_{1}+3 x_{2}+x_{5}=9.6 & x_{5} \geq 0
\end{array}
$$

slack variables: x_{3}, x_{4}, x_{5}

Chapter 12. Linear Programming

12.7 Preparation for simplex algorithm
objective function : $y-1.86 x_{1}-1.56 x_{2}=0$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
	1	1	1			2.6
	1	4		1		7.2
	4	3			1	9.6
	-1.86	-1.56				0
current value of objective function						

Chapter 12. Linear Programming

12.9 Starting at the origin

Move from one corner to the next corner starting point $x_{1}=0, x_{2}=0$

	$x_{1}=0$	$x_{2}=0$	x_{3}	x_{4}	x_{5}	
	1	1	1			2.6
	1	4		1		7.2
	4	3			1	9.6
	-1.86	-1.56				0

Chapter 12. Linear Programming

12.10 The simplex algorithm

1. Decide the variable

Maximization - largest negative difference coefficient Minimization - largest positive difference coefficient
2. Determine the controlling constraint
3. Transfer of the controlling constraint
4. For all other boxes

Chapter 12. Linear Programming

12.11 Solution of Example 12.1

Table 1	$\mathrm{x}_{1}=0$	$\mathrm{x}_{2}=0$	x_{3}	x_{4}	x_{5}	
$2.6 / 1=2.6$	1	1	1			2.6
$7.2 / 1=7.2$	1	4		1		7.2
$9.6 / 4=2.4$	4	3			1	9.6
controlling constraint (smallest)	-1.86	-1.56				0

Step 1 : largest negative x_{1} should be programmed (increased from zero)

Step 2 : How much x_{1} can be increased?

$$
\begin{aligned}
& x_{1}=0 \rightarrow x_{1} \neq 0 \\
& x_{2}=0 \rightarrow x_{2}=0 \\
& x_{5} \neq 0 \rightarrow x_{5}=0 \Leftarrow x_{1} \text { increases until } x_{5} \text { becomes zero. }
\end{aligned}
$$

Chapter 12. Linear Programming

12.11 Solution of Example 12.1

Step 3:
\downarrow
4

Chapter 12. Linear Programming

12.11 Solution of Example 12.1

Table 2	x_{1}	$\mathrm{x}_{2}=0$	x_{3}	x_{4}	$\mathrm{x}_{5}=0$	
$0.2 / 0.25=0.8$	0	0.25	1	0	-0.25	0.20
$4.8 / 3.25=1.48$	0	3.25	0	1	-0.25	4.8
	1	0.75	0	0	0.25	2.4
controlling constraint (smallest)	0	-0.165	0	0	0.465	4.464
	Step 1 : largest negative (x_{2} is programmed next)					

Chapter 12. Linear Programming

12.11 Solution of Example 12.1

Step 2 : x_{2} increases to its limit until x_{3} becomes zero
Step 3 :

	x_{1}	x_{2}	$\mathrm{x}_{3}=0$	x_{4}	$\mathrm{x}_{5}=0$	
$\div 0.25$	0	1	4	0	-1	0.8
	$0-(3.25)(0)$	$3.25-$ $(3.25)(1)$	$0-(3.25)(4)$	$1-(3.25)(0)$	$-0.25-$ $(3.25)(-1)$	$4.8-$ $(3.25)(0.8)$
	$1-(0.75)(0)$	$0.75-$ $(0.75)(1)$	$0-(0.75)(4)$	$0-(0.75)(0)$	$0.25-$ $(0.75)(-1)$	$2.4-$ $(0.75)(0.8)$
	$0-(-0.165)(0)$	$-0.165-$ $(-0.165)(1)$	$0-(-0.165)(4)$	$0-(-0.165)(0)$	$0.465-$ $(-0.165)(-1)$	$4.464-$ $(-0.165)(0.8)$
Step 4:						

Chapter 12. Linear Programming

12.11 Solution of Example 12.1

Table 3	x_{1}	x_{2}	$\mathrm{x}_{3}=0$	x_{4}	$\mathrm{x}_{5}=0$	
	0	1	4	0	-1	0.80
	0	0	-13	1	3	2.2
	1	0	-3	0	1	1.8
	$\therefore x_{2}=0.8, \quad x_{1}=1.8, \quad x_{4}=2.2, \quad y=4.596$	4.596				

\rightarrow no negative coefficients
\rightarrow no further improvement is possible (second constraint has no influence)

Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

L by changing the coordinates so that the current point is always at origin

$$
\begin{aligned}
& \qquad \begin{array}{l}
y=1.86 x_{1}+1.56 x_{2} \\
\\
{\left[\begin{array}{l}
x_{1}+x_{2}+x_{3}=2.6 \\
x_{1}+4 x_{2}+x_{4}=7.2 \\
4 x_{1}+3 x_{2}+x_{5}=9.6
\end{array}\right.} \\
\text { Table 1 } \\
\text { Table 2 } \\
\text { Table 3 } \\
\text { Ta } x_{2}, x_{5} \\
x_{3}, x_{5}
\end{array} \begin{array}{l}
x_{2}=0, x_{5}=0 \\
x_{1}=0, x_{5}=0
\end{array}
\end{aligned}
$$

Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

Table $1 \quad$ Table 2
$3^{\text {rd }}$ constraint
$1^{\text {st }}$ constraint
$4 x_{1}+3 x_{2}+x_{5}=9.6 \rightarrow \quad x_{1}=-0.75 x_{2}-0.25 x_{5}+2.4$
$2^{\text {nd }}$ constraint

$$
x_{1}+x_{2}+x_{3}=2.6 .6, \quad 0.25 x_{2}+x_{3}-0.25 x_{5}=0.2
$$

$$
x_{1}+4 x_{2}+x_{4}=, 7.2 \rightarrow 3.25 x_{2}+x_{4}-0.25 x_{5}=4.8
$$

Objective function

$$
y-1.86 x_{1}+1.56 x_{2}=0 \rightarrow y-0.165 x_{2}+0.465 x_{5}=4.464
$$

Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

Table 2
Table 3
$1^{\text {st }}$ constraint
$2^{\text {nd }}$ constraint

$$
3.25 x_{2}^{4}+x_{4}-0.25 x_{5}=4.8,-13 x_{3}+x_{4}+3 x_{5}=2.2
$$

$3^{\text {rd }}$ constraint

$$
x_{1}=-0.75 x_{2}-0.2,5 x_{5}+2.4 \quad \rightarrow \quad x_{1}-3 x_{3}+x_{5}=1.8
$$

Objective function

$$
y-0.165 x_{2}+0.465 x_{5}=4.464 \rightarrow y+0.66 x_{3}+0.3 x_{5}=4.596
$$

Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

FIGURE 12-3
Tableau 2 expressed on $x_{5} x_{2}$ coordinates

Chapter 12. Linear Programming

12.14 \# of variables and \# of constraints

Chapter 12. Linear Programming

12.15 Minimization with greater than constraints

\checkmark Maximization with less than constraints

- Moving from one corner to another adjacent corner
(start from the origin)
$\rightarrow \checkmark$ Minimization with greater than constraints
- Locating the first feasible point - difficult
\rightarrow introduction of artificial variable (12.16)

Chapter 12. Linear Programming

12.16 Artificial variables

$$
\begin{aligned}
& 3 x_{1}+4 x_{2} \geq 12 \\
& 3 x_{1}+4 x_{2}-x_{3}=12 \quad x_{3} \geq 0
\end{aligned}
$$

If $x_{1}=x_{2}=0$ (origin), it is not realistic
$3 x_{1}+4 x_{2}-x_{3}+x_{4}=12$

slack variable

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<Example 12.2> Determine the minimum value of y and the magnitudes of $x 1$ and $x 2$ at this minimum, where

$$
y=6 x_{1}+3 x_{2}
$$

Subject to the constraints

$$
\begin{aligned}
& 5 x_{1}+x_{2} \geq 10 \\
& 9 x_{1}+13 x_{2} \geq 74 \\
& x_{1}+3 x_{2} \geq 9
\end{aligned}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

$$
\begin{gathered}
{\left[\begin{array}{ccc}
5 x_{1}+x_{2}-x_{3} & +x_{6} & =10 \\
-9 x_{1}+13 x_{2}-x_{4} & =x_{7} & =74 \\
x_{1}+3 x_{2} & -x_{5} \\
y=6 x_{1}+3 x_{2}+P x_{6}+P x_{7}+P x_{8} & \\
P \rightarrow \text { a numerical value which is extremely large }
\end{array}\right.} \\
\begin{array}{c}
x_{3}, x_{4}, x_{5} \rightarrow \quad \text { slack variables } \\
x_{6}, \quad x_{7}, \quad x_{8} \rightarrow \quad \text { artificial variables }
\end{array}
\end{gathered}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>
Starting point-origin with all slack variable $=0$
artificial variable>0

$$
\begin{aligned}
& x_{6}=10-5 x_{1}-x_{2}+x_{3} \\
& x_{7}=74-9 x_{1}-13 x_{2}+x_{4} \\
& x_{8}=9-x_{1}-3 x_{2}+x_{5} \\
& y=(6-15 P) x_{1}+(3-17 P) x_{2}+P x_{3}+P x_{4}+P x_{5}+93 P
\end{aligned}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Table 1		x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
10	x_{6}	5	1	-1	0	0	10
$74 / 13$	x_{7}	9	13	0	-1	0	74
3	x_{8}	1	3	0	0	-1	9

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Table 1

Table 2

$$
\begin{aligned}
& x_{6}=10-5 x_{1}-x_{2}+x_{3} \rightarrow x_{6}=7-(14 / 3) x_{1}+x_{3}-(1 / 3) x_{5}+(1 / 3) x_{8} \\
& x_{7}=74-9 x_{1}-13 x_{2}+x_{4} \rightarrow x_{7}=35-(14 / 3) x_{1}+x_{4}-(13 / 3) x_{5}+(13 / 3) x_{8} \\
& x_{8}=9-x_{1}-3 x_{2}+x_{5} \rightarrow \grave{x}_{2}=3-(1 / 3) x_{1}+(1 / 3) x_{5}-(1 / 3) x_{8} \\
& y=(6-15 P) x_{1}+(3-17 P) x_{2}+P x_{3}+P x_{4}+P x_{5}+93 P \\
& \rightarrow y=\frac{15-28 P}{3} x_{1}+P x_{3}+P x_{4}+\frac{3-14 P}{3} x_{5}+\frac{-3+17 P}{3} x_{8}+42 P+9
\end{aligned}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Table 2		x_{1}	x_{3}	x_{4}	x_{5}	x_{8}	
$3 / 2$							
$105 / 14$	x_{6}	$14 / 3$	-1	0	$1 / 3$	$-1 / 3$	7
9	x_{7}	$14 / 3$	0	-1	$13 / 3$	$-13 / 3$	35
	$1 / 3$	0	0	$-1 / 3$	$1 / 3$	3	
controlling constraint (smallest)	largest positive difference coefficient						

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem

<solution>

Table 2

Table 3

$$
\begin{aligned}
& x_{6}=7-(14 / 3) x_{1}+x_{3}-(1 / 3) x_{5}+(1 / 3) x_{8} \rightarrow x_{1}=3 / 2+(3 / 14) x_{3}-(1 / 14) x_{5}-(3 / 14) x_{6}+(1 / 14) x_{8} \\
& x_{7}=35-(14 / 3) x_{1} \neq x_{4}-(13 / 3) x_{5} \mp(13 / 3) x_{8} \rightarrow x_{7}=28-x_{3}+x_{4}-4 x_{5}+x_{6}+4 x_{8} \\
& x_{2}=3-(1 / 3) x_{1}+(1 / 3) x_{5}-\left(1 /\left\ulcorner\frac{1}{}\right) x_{8} \rightarrow x_{2}=5 / 2-(1 / 14) x_{3}+(5 / 14) x_{5}+(1 / 14) x_{6}-(5 / 14) x_{8}\right. \\
& y=\frac{15-28 P}{3} x_{1}+P x_{3}+P x_{4}+\frac{3-14 P}{3} x_{5}+\frac{-3+17 P}{3} x_{5}+42 P+9 \\
& \rightarrow y=\frac{15-14 P}{14} x_{3}+P x_{4}+\frac{9-56 P}{14} x_{5}+\frac{-15+28 P}{14} x_{6}+\frac{-9+70 P}{14} x_{8}+\frac{56 P+33}{2}
\end{aligned}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Table 3		x_{3}	x_{4}	x_{5}	x_{6}	x_{8}	
21	x_{1}	$-3 / 14$	0	$1 / 14$	$3 / 14$	$-1 / 14$	$3 / 2$
7	x_{7}	1	-1	4	-1	-4	28
-7	x_{2}	$1 / 14$	0	$-5 / 14$	$-1 / 14$	$5 / 14$	$5 / 2$
		$(14 \mathrm{P}-15)$ $/ 14$	-P	$(56 \mathrm{P}-9) / 14$	$(-28 \mathrm{P}+15)$ $/ 14$	$(-70 \mathrm{P}+9)$ $/ 14$	$(56 \mathrm{P}+33) /$ 2
controlling constraint (smallest)	largest positive difference coefficient						

stoul national universtry
DEPARTMENT OF MECHANICAL \& AEROSPACE ENGINEERING

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem

<solution>
Table 3
Table 4

$$
\begin{aligned}
& x_{1}=3 / 2+(3 / 14) x_{3}-(1 / 14) x_{5}-(3 / 14) x_{6}+(1 / 14) x_{8} \rightarrow x_{1}=1+(13 / 56) x_{3}-(1 / 56) x_{4}-(13 / 56) x_{6}+(1 / 56) x_{7} \\
& x_{7}=28-x_{3}+x_{4}-4 x_{5}+x_{6}+4 x_{8} \rightarrow \bar{x}_{5}=7-(1 / 4) x_{3}+(1 / 4) x_{4}+(1 / 4) x_{6}-(1 / 4) x_{7}+x_{8} \\
& x_{2}=5 / 2-(1 / 14) x_{3}+(5 / 14) x_{5}+(1 / 14) x_{6}-(5 / 14) x_{8} \rightarrow x_{2}=5-(9 / 56) x_{3}+(5 / 56) x_{4}+(9 / 56) x_{6}-(5 / 56) x_{7} \\
& y=\frac{15-14 P}{14} x_{3}+P x_{4}+\frac{9-56 P}{14} x_{5}+\frac{-15+28 P}{14} x_{6}+\frac{-9+70 P}{14} x_{8}+\frac{56 P+33}{2} \\
& \\
& \rightarrow y=\frac{51}{56} x_{3}+\frac{9}{56} x_{4}+\left(P-\frac{15}{56}\right) x_{6}+\left(P-\frac{9}{56}\right) x_{7}+P x_{8}+21
\end{aligned}
$$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Table 4	x_{3}	x_{4}	x_{6}	x_{7}	x_{8}	
x_{1}	$-13 / 56$	$1 / 56$	$13 / 56$	$-1 / 56$	0	1
x_{5}	$1 / 4$	$-1 / 4$	$-1 / 4$	$1 / 4$	-1	7
x_{2}	$9 / 56$	$-5 / 56$	$-9 / 56$	$5 / 56$	0	5
	$-51 / 56$	$-9 / 56$	$-P+51 / 56$	$-P+9 / 56$	$-P$	21

$\therefore x_{1}=1, x_{5}=7, x_{2}=5, y=21$

Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem

FIGURE 12-7
Minimization in Example 12.2

FIGURE $12-8$
Points represented by successive tableaux in Example 12.2.

[^0]: FIGURE 12-2

