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Chapter 12. Linear Programming

12.1 The origins of Linear Programming

[ objective function

} linear combinations
constraints

L equality or inequality

1930s, economic models

1947 USCF simplex method
(

United States Air Force)

R
‘_)‘;{‘ DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING



Chapter 12. Linear Programming

12.2 Some examples
(1) blending application — oil company
(2) machine allocation — manufacturing plant
(3) inventory and production planning

(4) transportation
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Chapter 12. Linear Programming

12.3 Mathematical statement

objective function

y = C, X, + C,X, + -+ + C_X

n-'n

constraints

¢1 = ap; X+ apX, +-+a X, 20

inequality constraints

g, =a X, +a X, +--+a, X =T

m

cf) Lagrange method is applicable for equality constraints
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12.4 Developing the mathematical statement

<Example 12.1> A simple power plant consist of an extraction turbine that

drives a generator, as show in Fig. 12-1. The turbine receives 3.2 kg/s of steam,

and the plant can sell either electricity or extraction steam for processing

purposes. The revenue rates are

Electricity, $0.03 per kilowatthour

Low-pressure steam, $1.10 per megagram

High-pressure steam, $1.65 per megagram

R
v

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

X
L
/‘l‘kA

3.2 kg/s
[ /
|
| l
I |
A : B : C Generator
[ |
I I
|
Low-pressure steam
Xq kgl‘s
High-pressure steam
Xy kg/S
FIGURE 12-1

Power plant in Example 12.1,
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12.4 Developing the mathematical statement

<Example 12.1 continued>The generation rate of electric power depends upon
the flow rate of steam passing through each of the sections A, B and C; these

flow rates are w,, wg and wc, respectively. The relationships are

P,, KW =48w,
P,, KW =56w,
P., kW =80w,

Where the w's are in kilograms per second. The plant can sell as much

electricity as it generates, but there are other restrictions.
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12.4 Developing the mathematical statement

<Example 12.1 continued> To Prevent overheating the low-pressure section of
the turbine, no less than 0.6 kg/s must always flow through section C.
Furthermore, to prevent unequal loading on the shaft, the permissible
combination of extraction rates is such that if x; = 0, then x, < 1.8 kg/s, and for

each kilogram of x; extracted 0.25 kg less can be extracted of x..

The customer of the process steam is primarily interested in total energy and

will purchase no more than
4x, +3%X,<9.6

Develop the objective function for the total revenue from the plant and also

the constraint equations
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12.4 Developing the mathematical statement

<Solution>

Revenue = £(3600x1) + £(3600x2) +0.03(48w, + 56w, +80w,)

1000 1000
(wy, =3.2 kg/s, wyg=3.2-X,, W, =3.2-X,— X, )
=17.66+1.86x, +1.56X,

Maximize Yy =1.86x, +1.56X,

constraints X, + X, < 2.6
X, +4X,<7.2
4%, +3X, <9.6
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12.5 Geometric Visualization of the Linear-Programming Problem

<Solution>
2 4x,+31,£9.6
G _ x5=0
Pk - Permitted region : ABDFG
- Optimal point : D
N\ p - Optimum solution lies at
\ X +tx 2.6

a corner

1'3:0

C
1 L froe.
3 x
FIGURE 12-2
Constraints and lines of constant profit in Example 12.1.
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Chapter 12. Linear Programming

12.6 Introduction of Slack Variables

From Ex 121 inequalities can be converted

introduction of another variable in each equation.

into equalities by

X, + X, + X; = 2.6 Xy 20
X, +4X, + X, =7.2 X, 20
4X, +3X, + X, =9.6 X = 0

slack variables : X3, X,, X

'
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Chapter 12. Linear Programming

12.7 Preparation for simplex algorithm

objective function : y —1.86x, —1.56x, =0

Xq X5 X3 X, X
1 1 1 2.6
1 4 1 7.2
4 3 1 9.6

-1.86 | -1.56 Q

current value of objective function

'
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12.9 Starting at the origin

Move from one corner to the next corner starting point x;=0, x,=0

X;=0 | %,=0 X3 X4 X5
1 1 1 2.6
1 4 1 7.2
4 3 1 9.6
-1.86 | -1.56 0
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12.10 The simplex algorithm

1. Decide the variable

Maximization — largest negative difference coefficient
Minimization — largest positive difference coefficient

2. Determine the controlling constraint
3. Transfer of the controlling constraint

4. For all other boxes

New value = VvV — WZ

/ \
old value value in the preview

controlling equation
coefficient of the
variable being

. programmed
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‘,‘a‘*{‘ DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING



Chapter 12. Linear Programming

12.11 Solution of Example 12.1

2.6/1=26 1 1 1 26

7.2/1=7.2 1 4 1 7.2

9.6/4=2.4 4 3 1 9.6
controlling constraint -1.56 0

(smallest)

Step 1 : largest negative X should be programmed
(increased from zero)

Step 2 : How much x; can be increased?
X, =0 > x,#0
X, =0 - Xx,=0

Xe #0 — X, =0 < X, increases until X; becomes zero.

. (In fig 12-2, A—B)
R
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12.11 Solution of Example 12.1

Step 3 :
X1 ;=0 X3 X4 Xs=0
OO | 1075 | 1100 | 0@ | 0-W©25) | 26-1)24)
1M1 | 40075 | 0.0 | 1-00 | 0-W©.25) | 7.2-1)24)
s 1 0.75 0 0 0.25 24
(-fé%e)s(_l) (-1._8165(6(5)_.75) 0-(-1.86)(0) | 0-(-1.86)(0) (—1.825))_(0.25) (—1.8(6)5;(2.4)
Step 4 : /
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12.11 Solution of Example 12.1

Table 2 X1 X,=0 X3 Xy Xs=0
0.2/0.25=0.8 0 0.25 1 0 -0.25 0.20
/
4.8/3.25=%.48 0 3.25 0 1 -0.25 4.8
2.4/0.7?/=3.2 1 0.75 0 0 0.25 24
v
controlling constraint 0 -0.165 0 0 0.465 4464
(smallest)

Step 1 : largest negative (x, is programmed next)
—> X, =0.2, x,=4.8, x,=2.4, y=4.464
YR
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12.11 Solution of Example 12.1

Chapter 12. Linear Programming

Step 2 : x, increases to its limit until x; becomes zero

Step 3 :
X1 X x3=0 X4 X5=0
2025 0 1 4 0 1 08
0-B290) | ey | 0B | 1620 | 39507 | 30608
1-0790) | ey | 0079@ | 010750 | S| oo
O—(/;O.l65)(0) (_69i1€3(55§('1) 0-(-0.165)(4) | 0-(-0.165)(0) (_0%65?('_1) (_Of‘fé?f(})_g)
Step 4 : /
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12.11 Solution of Example 12.1

Table 3 Xq X5 X3=0 X, Xs=0
0 1 4 0 -1 0.80
0 0 -13 1 3 e
1 0 3 0 1 1.8
0 0 0.66 0 0.3 4.596

X, =08, x,=1.8, x,=2.2, y= 4.596/

— no negative coefficients

— no further improvement is possible (second constraint has no influence)
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Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

L by changing the coordinates so that the current point is always at origin

y =1.86x%x, +1.56x,
X, + X, + X, =2.6
X, +4X, + X, =7.2

4X, +3X,+ X, =9.6

Table 1 X,, X, - physical variables X, =0, X, =0 origin
Table 2 X21 X5 X2 = O, X5 - O
Table 3 Xgy Xg X, =0, x, =0
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12.12 Another Geometric Interpretation of Table Transformation

Table 1 Table 2
3rd constraint 4%, +3X, + X, =9.6 — X, =—-0.75X, —0.25x, + 2.4
‘,,—"—’——— /,’// ///
1St Constralnt Xl + X2 + X3 :/2¢_’6 —)/,' O.25X2 + X3 - 0.25)(5 — 0.2
A~ g ,’,
2nd constraint X, +4X, + X, =71.2 — 3.25%, + X, —0.25%x, = 4.8

Objective function ~ y —1.86X, +1.56x, =0 — y—0.165x, +0.465X, = 4.464
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12.12 Another Geometric Interpretation of Table Transformation

Table 2 Table 3
1st constraint 0.25%, + X, —0.25%x, =0.2 — X, =—=4X;+ X, + 0.8
2nd constraint 3.25%,F X, — 0.25x, = 4 8 JEY —13X, + X, + 3%, = 2.2
3rd constraint X, = —0.75x,~ 0.25%;, +2.4 — X, —3X;+ X; =1.8

e

Objective function Y — 0.165X2‘:i- 0.465x, =4.464 —» y+0.66x;+0.3x;, =4.596
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Chapter 12. Linear Programming

12.12 Another Geometric Interpretation of Table Transformation

X3 'y

Constraint 2

1
FIGURE 12-4
Tab,’leau 3 expressed on xs5Xx3 coordinates.
1
v
y=4.596 at x; =0, x;=0
0 . | 1 - .
0 [ 2 e
FIGURE 12-3

Tableau 2 expressed on xsx, coordinates.
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12.14 # of variables and # of constraints
n (m = # of slack variables)

At optimum, n variables are zero (corner)
m>n  m-n constraints play no role

m<n Nn-m variables are zero

X2 A m>n N | m<n

FIGURE 12-5
. Relation of number of physical and slack variables.
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Chapter 12. Linear Programming

12.15 Minimization with greater than constraints

// Maximization with less than constraints
- Moving from one corner to another adjacent corner

(start from the origin)

— v/ Minimization with greater than constraints
- Locating the first feasible point - difficult

— introduction of artificial variable (12.16)
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12.16 Artificial variables

3X, +4x, 212

3X, +4X, — X, =12 Xy 20

If X, = X, =0 (origin), it is not realistic

3X; +4X, — X3+ X, =12

1 |
artificial variable

slack variable
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Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem

<Example 12.2> Determine the minimum value of y and the

magnitudes of x1 and x2 at this minimum, where

y =6X, +3X,
Subject to the constraints

5X, + X, 210
9x, +13x, =2 74
X, +3X, =29

'
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12.17 Simplex algorithm to minimization problem

<solution>

OX; + X, — X + Xg =10
9x, +13x, — X, + X, =174
X, + 3X, — X + Xg =

y =6Xx,+3X, + PXs + PX, + PXg

P — a numerical value which is extremely large

X3, X4, X5 —> slack variables

Xe1 X,y Xg —> artificial variables
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Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem
<solution>

Starting point-origin with all slack variable=0

artificial variable>0

X¢ =10 -5X, — X, + X,

X; =74 -9x, —13X, + X,

Xg =9 — X, —3X, + X

y=(6-15P)x, +(3-17P)Xx, + Px, + Px, + Px, + 93P

~

'

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

/”ik -
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12.17 Simplex algorithm to minimization problem

<solution>
Table 1 X1 X, X3 X, X
10 Xg 5 1 -1 0 0 10
74/13 X7 9 13 0 -1 0 74
3 Xg 1 3 0 0 -1 9
\
15P-6 -P -P -P 93P

controlling constraint
(smallest) largest positive
difference coefficient

R
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12.17 Simplex algorithm to minimization problem

<solution>
Table 1 Table 2

Xe =10-=5X, =X, + X3 = Xy =7-24/3)X, + X, —(1/3)x; +(1/3)xq

v\

AN

X, = 74— 9x, —13x2\4~\>\<4 > X, =35 (14/3)X, + X, — (13/3)%, + (13/3)X,

) 3

X, =9— X, ~3%, + X, = X, =3—-(L/3)x + (1/3)% - (1/3)x,

¥
y=(6-15P)x, +(3-17P)Xx, + Px, + Px, + Px; + 93P

y:15_28p x1+Px3+Px4+$x5+_3+317P Xs + 42P + 9

_)
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12.17 Simplex algorithm to minimization problem

<solution>
Table 2 X1 X3 Xy X Xg
377 Xg 14/3 -1 0 1/3 -1/3 7
|
105/1\4 X7 14/3 0 -1 13/3 -13/3 35
9 \ X, 1/3 0 0 -1/3 1/3 3
x (28 -P -P (14P-3)/3 | (-17P+3)/3 | 42P+9

controlling constraint
(smallest)

FoR
?5-'.,';(“\

largest positive

difference coefficient

¥ DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING



Chapter 12. Linear Programming

12.17 Simplex algorithm to minimization problem

<solution>
Table 2 Table 3

Xe =7 —-Q4/3)x, + X, —A/3)X, +(1/3)xg = X, =312+ (3/14)x, - (1/14)x, —(3/14)x,+ (1/14)x,

-z

X, =35—-(14/3)x, X, —(131}/};))(5'4"@:3»/3 Xg —> X, = 28— X, + X, —4X, + X, +4X,

- -
- Phd

x2:3—(1/3)X1J:’(1/3)x5/—/(1’f§)x8 — X, =5/2-(1/14)x,+(5/14)x, + (1/14)x, — (5/14)x,

-
-
-
-
-

yzwxlfﬁ))%_i_ PX4+3_ﬂX5+_3+%X5+42P+9
15-14P 9-56P -15+ 28P -9+ 70P 56P + 33
y=—-"—"X,+ Px, + X + Xg + —————Xg + ————
14 14 14 2

W T g

o &%

13l
-

v

X
B .
/‘l‘kA
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12.17 Simplex algorithm to minimization problem

<solution>
Table 3 X3 X4 Xs Xg Xg
21 Xq -3/14 0 1/14 3/14 -1/14 3/2
7\ X, 1 -1 4 -1 -4 28
—7\ X5 1/14 0 -5/14 -1/14 5/14 5/2
(14P-15) (-28P+15) (-70P+9) (56P+33)/
/14 /14 /14 2

controlling constraint
(smallest)

¥R
3y

largest positive

difference coefficient
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12.17 Simplex algorithm to minimization problem

<solution>

Table 3 Table 4

~
~
~

X, =3/2+(3/14)x, - (1/14)x5‘— (8/14)x, + (1/14)x;, > x, =1+ (13/56)x,—-(1/56)x, —(13/56)x,+ (1L/56)x,

’

X, = 28— Xy + X, — X + X +AX, = Ko =T — (L1 4%y + (L 4)x, + (L] 4) %, — (1] 4)%, + X
xz:5/2—(1/14)x3+(5/l4)x55r/(1/1,1,4)x6—(5/14)x8 — X, =5-(9/56)x;+(5/56)x, +(9/56)x, —(5/56)x,

15-14P 9-56P % -15+28P -9+ 70P 56P +33
y="—"—X+PX,+ ——— Xt —————— X+t ———— Xyt ————
14 14 14 2

51 9 15 9
= —X;+—X, +| P—— X, +| P - X, + Pxg+21
Y =567 56 ( 56) ° ( 56] ! °
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12.17 Simplex algorithm to minimization problem

<solution>
Table 4 X3 Xy Xg X5 Xg
Xy -13/56 1/56 13/56 -1/56 0 1
Xs 1/4 -1/4 -1/4 Y -1 ;
X5 9/56 -5/56 -9/56 5/56 0 i
-51/56 -9/56 -P+51/56 -P+9/56 -P 21
Xlzl’ X5=7, X2 5’ y:21 /

ot
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12.17 Simplex algorithm to minimization problem

<solution>

[

0

b2
L
(=2
cc 5
=
=

0
FIGURE 12-7 FIGURE 12-8
M inimization in Example 12.2. Points represented by successive tableaux in Example 12.2.
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