Optimal Design of Energy Systems Chapter 13 Mathematical Modeling-Thermodynamic Properties

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

equation fitting

(conversion of data to equation form) physical relationship

complexity

accuracy

13.3 Criteria for fidelity of representation

(1) Sum of the deviations squared

$$SDS = \sum_{i=1}^{n} (y_i - Y_i)^2$$
eqn. exp.

(2) Average percent absolute deviation

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - Y_i)^2}$$
$$Bias = \frac{1}{n} \sum_{i=1}^{n} (y_i - Y_i)$$
$$AAD = \frac{1}{n} \sum_{i=1}^{n} |y_i - Y_i|$$

$$APD = \frac{100}{n} \sum_{i=1}^{n} \sqrt{\left(\frac{Y_i - y_i}{Y_i}\right)^2}$$

(3) Goodness of fit

$$GOF = 100\sqrt{1 - \frac{SDS}{G}}$$
 $G = \sum_{i=1}^{n} (Y_i - y_{mean})^2$

13.4 Linear regression analysis

- Parameters appear in linear form not the variable

y = a + bx

 $y = a + be^x + c \ln x$

$$y = a\sin x + b\cos 2x$$

13.5 Nonlinear regression analysis

- Steepest decent method – unconstrained optimization

ex)
$$y = ae^{bx} \rightarrow \ln y = \ln a + bx$$

 $Y = A$

 $y = a \sin bx$

13.6 Thermodynamic properties

Property equations

- 1. P v T Equations for vapor
- 2. c_p^o The specific heat at zero pressure
- 3. P T Relation for saturated conditions
- 4. ρ_f The density of liquid

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

13.7 Internal energy and enthalpy

$$\delta q = du + \delta w$$

$$\delta q)_{rev} = Tds, \ \delta w)_{rev} = Pdv$$

$$Tds = du + Pdv$$

$$du \xleftarrow{dq}_{Mass, m}$$

FIGURE 13-4 Energy balance in a closed system.

$$du = Tds - Pdv \qquad dh = \frac{\partial u}{\partial s} \bigg|_{v} = T, \ \frac{\partial u}{\partial v} \bigg|_{s} = -P \qquad \frac{\partial h}{\partial s} \bigg|_{s}$$

$$dh = Tds + vdP$$
$$\frac{\partial h}{\partial s}\Big|_{p} = T, \ \frac{\partial h}{\partial P}\Big|_{s} = v$$

Å

13.7 Internal energy and enthalpy

13.8 Clausius-Clapeyron equation

$$G = h - Ts$$

$$dG = dh - Tds - sdT$$

$$= du + pdv + vdP - Tds - sdT$$

$$= vdP - sdT$$

at saturation
$$dG = 0$$

 $G_f = G_g$
 $v_f dP - s_f dT = v_g dP - s_g dT$

13.8 Clausius-Clapeyron equation

$$\frac{dP}{dT} = \frac{s_g - s_f}{v_g - v_f} = \frac{h_{fg}}{T(v_g - v_f)}$$
$$\approx \frac{h_{fg}}{Tv_g} \quad (v_g \gg v_f, \ v_g = \frac{RT}{P})$$

$$\frac{dP}{dT} \approx \frac{Ph_{fg}}{RT^2}$$
$$\ln P = -\frac{h_{fg}}{RT} + C$$
$$\ln P = A + \frac{B}{T}$$

SEOUL NATIONAL UNIVERSITY
DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

FIGURE 13-7 Display of terms in Eq. (13.21) for several substances.

13.8 Clausius-Clapeyron equation

Example 13.3. At 50°C and 51°C, respectively, water has the following properties at saturated conditions, $v_f = 0.0010121$, 0.0010126 m³/kg, $v_g = 12.05$, 11.50 m³/kg; $h_f = 209.26$, 213.44 kJ/kg; and $h_g = 2592.2$, 2593.9 kJ/kg. Use the Clapeyron equation to predict the change in saturation pressure between 50 and 51°C.

<Solution>

calculation with Clausius-Clapeyron equation $\Delta P = \Delta T \frac{h_{fg}}{T(v_g - v_f)}$ $= (1K) \frac{(2593.1 - 211.4)}{(50.5 + 273.15)(11.775 - 0.0010124)} = 0.625 \ kPa$ calculation from steam table $12.961 - 12.335 = 0.626 \ kPa$

13.10 Maxwell Relations

$$\frac{\partial(P,v)}{\partial(T,s)} = 1 \qquad \begin{array}{c} Tds = du + Pdv & Tds = dh - vdP \\ -sdT = df + Pdv & -sdT = dg - vdP \end{array}$$

$$\frac{\partial T}{\partial v}\Big|_{s} = -\frac{\partial p}{\partial s}\Big|_{v} \qquad \frac{\partial T}{\partial p}\Big|_{s} = \frac{\partial v}{\partial s}\Big|_{p}$$
$$\frac{\partial v}{\partial T}\Big|_{p} = -\frac{\partial s}{\partial p}\Big|_{T} \qquad \frac{\partial p}{\partial T}\Big|_{v} = \frac{\partial s}{\partial v}\Big|_{T}$$

13.11 Specific heats

$$c_{v} = \frac{\partial u}{\partial T} \bigg|_{v} \qquad c_{p} = \frac{\partial h}{\partial T} \bigg|_{p}$$

$$\frac{1}{T} \frac{\partial h}{\partial T} \bigg|_{p} = \frac{\partial s}{\partial T} \bigg|_{p}$$

$$c_{p}$$

$$\frac{1}{T} \frac{\partial c_{p}}{\partial p} \bigg|_{T} = \frac{\partial^{2} s}{\partial p \partial T} = \frac{\partial}{\partial T} \bigg[\bigg(\frac{\partial s}{\partial p} \bigg)_{T} \bigg]_{p} = -\frac{\partial^{2} v}{\partial T^{2}}$$
If ideal gas : $pv = RT$, $\frac{\partial c_{p}}{\partial p} \bigg|_{T} = -T \frac{\partial^{2} v}{\partial T^{2}} = 0$

13.12 P-v-T equations

$$pv = RT$$

$$pv = ZRT$$

$$p = \frac{RT}{v} \left(1 + \frac{B(T)}{v} + \frac{C(T)}{v^2} + \cdots \right)$$

$$p = \frac{RT}{v-b} - \frac{a}{v^2}$$
Van der Waals
$$p = \frac{RT}{v-b} - \frac{a}{T^{1/2}v(v+b)}$$
Redlich-Kwong

13.13 Building a full set of data

13.13 Building a full set of data

<Example 13.6> Starting with a base enthalpy of h=0 kJ/kg for saturated liquid water at 0°C, the enthalpy of superheated vapor at 4000 kPa and 500°C using the following equations: (1) Redlich-Kwong equation of state (a=43.951, b=0.001171), (2) c_{p_0} from Table 13.3 and (3) the p-T equation for saturation conditions at low pressure,

 $\ln P = 19.335 - 5416 / T$. TABLE

TABLE 13.3 Equations for zero-pressure c_p in the range of 300 to 3500 K, where $\Theta = T/100$ (Ref. 3).

Gas	c _{po} , kJ/(kg · K)		
H ₂	$28.253 - 351.37\Theta^{-0.75} + 582.5\Theta^{-1} - 280.35\Theta^{-1.5}$		
CH4	$-42.054 + 27.483\Theta^{0.25} - 2.228\Theta^{0.75} + 11.423\Theta^{-3}$		
H ₂ O	$7.947 - 10.20\Theta^{0.25} + 4.597\Theta^{0.5} - 0.2055\Theta$		
N_2	$1.395 - 18.314\Theta^{-1.5} + 38.31\Theta^{-2} - 29.3\Theta^{-3}$		
O ₂	$1.1698 = 0.000628\Theta^{1.5} = 5.580\Theta^{-1.5} + 7.4025\Theta^{-2}$		
CO ₂	$-0.0849 + 0.6938\Theta^{0.5} - 0.09326\Theta + 0.000550\Theta^{2}$		

13.13 Building a full set of data

<Solution>

at 0°C,
$$p = 0.6108 \ kPa$$

$$\frac{dp}{dT} = p \frac{5416}{T^2} = 0.04434 \ kPa / K$$

From the Redlich-Kwong equation, $v_g = 206.54 m^3 / kg$

Clapeyron equation :

$$\frac{dp}{dT} = \frac{h_{fg}}{T(v_g - v_f)} \approx \frac{h_{fg}}{Tv_g}$$

 $\rightarrow h_{fg} = 0.0434 \times 273.15 \times 206.54 = 2501.5 \ kJ \ / \ kg$
 $\rightarrow h_g \ at \ 0^{\,o}C = 0 + 2501.5 = 2501.5 \ kJ \ / \ kg$

13.13 Building a full set of data

<Solution> From Table 13.3

$$c_{p0} = 1.8703 \ at \ 0^{\circ}C$$

$$c_{p0} = 1.9603 \ at \ 250^{\circ}C$$

$$c_{p0} = 2.1319 \ at \ 500^{\circ}C$$
Equation fitting (t is in °C)
$$c_{p0} = 1.8703 + 0.0001968t + 0.6528 \times 10^{-6}t^{2}$$

Integration from 0 to 500°C at 0.6108 kPa

$$\int_{0^{\circ}C}^{500^{\circ}C} c_{p0} dt = 986.95$$

$$h_{500^{\circ}C \& 0.6108 \ kPa} = 2501.5 + 986.95 = 3488.5 \ kJ \ / \ kg$$

13.13 Building a full set of data

<Solution> From the Redlich-Kwong equation $t = 499.9 \,{}^{o}C$ $v_a = 0.085963245748$ $t = 500.0^{\circ}C$ $v_{b} = 0.085975713311$ $t = 500.1^{\circ}C$ $v_c = 0.085988180541$ $\rightarrow v - T \frac{\partial v}{\partial T} \bigg|_{T} = v_b - \frac{773.15 \times (v_c - v_a)}{0.2} = -0.010 \ m^3 / kg$ $h_{500^{\circ}C \& 4000 \ kPa} = dh = c_p dT + \left[v - T \frac{\partial v}{\partial T}\right]_{T} dp$ $= 3488.5 + (-0.010) \times (4000 - 0.61) = 3448.5 \ kJ / kg$

13.13 Building a full set of data

<Solution>

	Vapor enthalpies, kJ/kg	
p, kPa	Table	Example 13.6
0.6108 0.6108	2501.6 3489.2 3445.0	2501.5 3488.5 3448.5
	p, kPa 0.6108 0.6108 4000	vapor en p, kPa Table 0.6108 2501.6 0.6108 3489.2 4000 3445.0

TABLE 13.4 Comparison of Example 13.6 calculations with tabular values⁶

