Optimal Design of Energy Systems

Chapter 14 Steady-State Simulation

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Performance prediction at $\left\{\begin{array}{c} \text{off-design} \\ \text{design} \end{array}\right\}$ conditions

Performance of componentsPropertiesconditions

14.2 Convergence and Divergence in successive substitution

<Example 14.1> Using the Gauss-Seidel method, solve for the x's in the following set of simultaneous linear equations:

A:
$$4x_1 - 3x_2 + x_3 = 12 \rightarrow x_1$$

B:
$$x_1 - 2x_2 + 2x_3 = 6 \rightarrow x_2$$

C:
$$2x_1 + x_2 + 3x_3 = 6 \rightarrow x_3$$

FIGURE 14-1

The Gauss-Seidel method as a successive substitution process.

14.2 Convergence and Divergence in successive substitution

<Example 14.1>

TABLE 14.1 Gauss-Seidel Solution of Example 14.1

Cycle	x_1	x_2	<i>x</i> ₃
1 2	3.0 1.75	-1.5 -1.625	0.5 1.375
10			• • • • •
10 ∞	2.045 2	-1.021 -1	0.977
	۷	-1	1

convergent

$$x_1 = 2$$
, $x_2 = -1$, $x_3 = 1$

14.2 Convergence and Divergence in successive substitution

<Example 14.1>

A:
$$4x_1 - 3x_2 + x_3 = 12 \rightarrow x_1$$

with different order

C:
$$2x_1 + x_2 + 3x_3 = 6 \rightarrow x_2$$

B:
$$x_1 - 2x_2 + 2x_3 = 6 \rightarrow x_3$$

TABLE 14.2 Example 14.1 with equations solved in the A-C-B sequence

Cycle	x_1	x_2	x_3
1	3	0	1.5
2	2.625	-3.75	-2.0625
3	0.703	10.78	13.43
4	7.29	-49.75	-50.61

divergent

14.2 Convergence and Divergence in successive substitution

For convergent case, <u>large-magnitude</u> coefficient in <u>diagonal position</u>

14.2 Convergence and Divergence in successive substitution

Multiply lowertriangular by λ

$$\lambda = 0$$
, $0.125 + 0.696i$, $0.125 - 0.696i$ $\lambda = 0$, 0.2713 , -4.146

$$|\lambda| < 1$$
 convergent $|\lambda| > 1$ divergent

$$\begin{vmatrix} 4\lambda & -3 & 1 \\ 2\lambda & 1\lambda & 3 \\ 1\lambda & -2\lambda & 2\lambda \end{vmatrix} = 0$$

$$\lambda = 0, 0.2713, -4.146$$

$$|\lambda| > 1$$
 divergen

14.3 Partial substitution in successive substitution

$$x_{j,i+1} = \beta x_{j,i+1^*} + (1 - \beta) x_{j,i}$$
new value previous computed from the eq.

Partial substitution factor

$$\beta = 1$$
 Successive substitution (Gauss-Seidel method)

$$\beta \downarrow$$
 Toward a more convergent process

14.4 Evaluation of Newton-Raphson technique

Successive Substitution

- ① straightforward to program
- 2 sparing computer memory

For small system

Newton-Raphson

- 1 more reliable
- 2 more rapidly convergent
- 3 not necessary to list the eq. in any special order

14.5 Some characteristics of the Newton-Raphson technique

FIGURE 14-6

First Newton-Raphson iteration may move the values of the variables further from the solution than the trial values.

14.8 Quasi-Newton Method

$$JX = F$$

$$JX = F$$

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} \end{bmatrix} \quad X = \begin{bmatrix} x_{1,t} - x_{1,c} \\ x_{2,t} - x_{2,c} \\ x_{3,t} - x_{3,c} \end{bmatrix} \quad F = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}$$

$$X = -HF$$

$$H = J^{-1}$$

$$V_{k+1} = X_{k+1} + X_k$$

$$Y_k = F_{k+1} - F_k$$

$$H_{k+1} = H_k + \frac{(X_k - H_k Y_k) X_k^T H_k}{X_k^T H_k Y_k}$$

14.8 Quasi-Newton Method

ex> Newton-Raphson vs. Quasi-Newton

duct
$$f_1 = 0.0625 + 0.653Q^{1.8} - P$$

fan
$$f_2 = 0.3 - 0.2 Q^2 - P$$

FIGURE 14-11

(a) A fan-duct system, and (b) the pressure-flow characteristics.

14.8 Quasi-Newton Method

ex> Newton-Raphson vs. Quasi-Newton

✓ Newton-Raphson

$$JX = F$$

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial P} & \frac{\partial f_1}{\partial Q} \\ \frac{\partial f_2}{\partial P} & \frac{\partial f_2}{\partial Q} \end{bmatrix} \quad X = \begin{bmatrix} P_t - P_c \\ Q_t - Q_c \end{bmatrix} \quad F = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$J = \begin{bmatrix} -1 & 1.1759 \\ -1 & -0.4 \end{bmatrix} \quad F = \begin{bmatrix} 0.6155 \\ 0 \end{bmatrix}$$

$$J^{-1} = \begin{bmatrix} -0.2539 & -0.7461 \\ 0.6345 & -0.6345 \end{bmatrix} \quad X = \begin{bmatrix} -0.156 \\ 0.392 \end{bmatrix} \qquad \begin{array}{c} P_t = 0.256 \\ Q_t = 0.608 \end{array}$$

14.8 Quasi-Newton Method

ex> Newton-Raphson vs. Quasi-Newton

✓ Newton-Raphson

TABLE 14.9 Newton-Raphson simulation of fan-duct system

Iteration	Variables	Matrix of Partial Derivatives	Inverse of Matrix	
At trial values	P = 0.1 $Q = 1.0$	-1.0 1.1759 -1.0 -0.4000	$ \begin{array}{rrr} -0.2539 & -0.7461 \\ 0.6345 & -0.6345 \end{array} $	
1	P = 0.256 Q = 0.608	-1.0 0.7902 -1.0 -0.2435	-0.2356 -0.7644 0.9674 -0.9674	
2	P = 0.250 Q = 0.508	$ \begin{array}{rrr} -1.0 & 0.6836 \\ -1.0 & -0.2032 \end{array} $	-0.2291 -0.7709 1.1276 -1.1276	$P = 0.25 \ kPa$
3	P = 0.250 $Q = 0.500$	$ \begin{array}{rrr} -1.0 & 0.6748 \\ -1.0 & -0.1999 \end{array} $	$ \begin{array}{rrr} -0.2285 & -0.7715 \\ 1.1432 & -1.1432 \end{array} $	$Q=0.5 m^3/s$
4	P = 0.250 Q = 0.500	-1.0 -1.0		

14.8 Quasi-Newton Method

ex> Newton-Raphson vs. Quasi-Newton

✓ Quasi-Newton

$$\begin{split} F_k &= \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 0.6155 \\ 0 \end{bmatrix} \\ X_k &= \begin{bmatrix} P_{1,c} - P_{1,t} \\ Q_{1,c} - Q_{1,t} \end{bmatrix} = -\begin{bmatrix} -0.25392 & -0.74608 \\ 0.63449 & -0.63449 \end{bmatrix} \begin{bmatrix} 0.6155 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.15629 \\ -0.39053 \end{bmatrix} \\ V_{k+1} &= \begin{bmatrix} 0.1 \\ 1.0 \end{bmatrix} + \begin{bmatrix} 0.15629 \\ -0.39053 \end{bmatrix} = \begin{bmatrix} 0.25629 \\ 0.60947 \end{bmatrix} = new \ values \ of \ the \ variables \\ F_{k+1} &= \begin{bmatrix} 0.07402 \\ -0.03058 \end{bmatrix}, \ Y_k &= F_{k+1} - F_k = \begin{bmatrix} 0.07402 \\ -0.03058 \end{bmatrix} - \begin{bmatrix} 0.6155 \\ 0 \end{bmatrix} = \begin{bmatrix} -0.54148 \\ -0.03058 \end{bmatrix} \\ H_{k+1} &= H_k + \frac{(X_k - H_k Y_k) X_k^T H_k}{X_k^T H_k Y_k} = \begin{bmatrix} -0.24630 & -0.74956 \\ 0.76030 & -0.69190 \end{bmatrix} \end{split}$$

14.8 Quasi-Newton Method

ex> Newton-Raphson vs. Quasi-Newton

✓ Quasi-Newton

TABLE 14.10 Quasi-Newton simulation of the fan-duct system

Iteration	Variables, V	Functions, F	Inverse, H	
1	0.25629	0.074024	-0.24630	-0.74956
	0.60947	-0.030579	0.76030	-0.69190
2	0.25160	0.020603	-0.23200	-0.76370
	0.53203	-0.008211	1.04286	-0.97139
3	0.25011	0.001656	-0.22850	-0.76713
	0.50257	-0.000624	1.13130	-1.05802
4	0.25001	0.000042	-0.22744	-0.76816
	0.50004	-0.000016	1.16053	-1.08636

Newton-Raphson	Quasi-Newton	
Fast convergence if the trial values are good	Wider convergence range than NR method	