Optimal Design of Energy Systems Introduction

Min Soo KIM

Department of Mechanical and Aerospace Engineering Seoul National University

Flow Diagram

FIGURE 1-1
Possible flow diagram in evaluating and planning an engineering undertaking.

Project Management

Design Group: Ken Fensin, David Birdsong, Jim Morrissey

FIGURE 1.7. Bar chart of smaller jobs to be performed in completing the Heat Recovery Project.

Project Management

Design Group: Ken Fensin, David Birdsong, Jim Morrissey

FIGURE 1.8. Modified bar chart of smaller jobs to be performed in completing the Heat Recovery Project.

<Example> Figure 3.7 shows a portion of a piping system used to convey $4.54 \times 10^{-3} \text{ m}^3/\text{s}$ of ethyl alcohol. The system contains 55 m of commercial steel pipe. All fittings are of the long radius type and are flanged. Calculate the pressure drop over this portion of the pipeline if $z_1 = z_2$.

FIGURE 3.7. The piping system of Example 3.6.

<Solution> The control volume we select includes all the liquid in the pipe and extends to each pressure gage. The calculation procedure is as follows.

$$\rho = 787 \ kg / m^3$$

Ethyl alcohol
$$\rho = 787 \ kg \ / \ m^3 \qquad \qquad \mu = 1.10 \times 10^{-3} \ N \cdot s \ / \ m^2$$

Pipe

$$D = 0.303 \ m$$

$$D = 0.303 \ m$$
 $A = 0.0722 \ m^2$

commercial steel

$$\varepsilon = 0.00457$$
 cm

Flow velocity V=Q/A:

$$Q = 4.54 \times 10^{-3} \ m^3 / s$$
 $V = 0.629 \ m / s$

$$V = 0.629 \ m/s$$

Reynolds number, $\operatorname{Re} = \rho VD / \mu$, relative roughness, and friction factor

$$Re = \frac{787 \times 0.629 \times 0.303}{1.10 \times 10^{-3}} = 1.36 \times 10^{5}$$

$$\frac{\varepsilon}{D} = \frac{0.00457 \ cm}{0.303 \ m} = 0.000151$$

$$f = 0.018$$
 (Figure 3.3)

Modified Bernoulli Equation:

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + \frac{fL}{D_h} \frac{V^2}{2g} + \sum K \frac{V^2}{2g}$$

Property evaluation:

$$V_1 = V_2;$$
 $z_1 = z_2;$ $L = 55 m$

$$\sum K = 2K_{45^{\circ}elbow} + 4K_{90^{\circ}elbow} = 2(0.17) + 4(0.22) = 1.22$$

Equation of motion:

$$\frac{p_1}{\rho g} = \frac{p_2}{\rho g} + \left(\frac{0.018 \times 55}{0.303} + 1.22\right) \frac{0.629^2}{2g}$$

$$p_1 - p_2 = 698.6 \ N / m^2 = 698.6 \ Pa$$

Professor

Name: KIM, Min Soo

Homepage: http://reflab.snu.ac.kr

E-mail: minskim@snu.ac.kr

Tel: 02-880-8362

Mobile: 010-6207-8362

Office hour: right after the class

Location : Class/ 301-1507

T/A: YOO, Jin Woo (301-218)

Tel: 02-880-1648

E-mail: tomttl@snu.ac.kr