
1
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

C++ Programming

Ch. 5 Loops and Relational Expressions

Lecture Note of Digital Computer Concept and Practice

Spring 2014

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering
Seoul National University

2
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Ch. 5 Loops and Relational
Expressions

3
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Contents

þ The ‘for’ Loop
þ Operators
þ Compound Statements or Blocks
þ The ‘while’ Loop
þ The ‘do while’ Loop
þ Loops and Text Input
þ Nested Loops and Two-Dimensional Arrays
þ Summary
þ Practice

4
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘for’ Loop (1/2)

þ A loop cycles through the same set of instructions repetitively, as
long as the loop test condition evaluates to true or nonzero, and
the loop terminates execution when the test condition evaluates
to false or zero.

þ A ‘for’ loop provides a step-by-step recipe for performing
repeated actions.

þ Steps for the ‘for’ Loop
n Setting a value initially
n Performing a test to see whether the loop should continue
n Executing the loop actions
n Updating value(s) used for the test

5
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘for’ Loop (2/2)

þ Expression
statement 1;
for (init-expression; test-expression; update-expression)

statement 2 or body;
statement 3;

þ Using Relational Operators
for the Test-Expression
n Ex. for (int i = 0; i < 5; i++)

þ Updating Value(s)
for the Update-Expression
n Ex. i++ or i = i + by

(by: user-defined variable)

Yes

No

statement 1

statement 3

Update

Initialize

statement 2Test

‘for’ loop

6
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (1/9)

þ Arithmetic Operators
n + (addition), - (subtraction), * (multiplication), / (division), % (taking

the modulus)

þ Assignment Operators
n The value of an expression becomes the value of the member on the

left.
n Ex.

x = 20;
maids = (cooks = 4) + 3; // cooks = 4, maids = 7.
x = y = z = 0; // Assignment associates right-to-left. Fast way to

set several variables to the same value.

7
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (2/9)

þ Combined Assignment Operators
n Combined addition and assignment operator that accomplishes the

same result more concisely
n Ex.

L += R; // Same as ‘L = L + R’. Assign L + R to L.
L -= R; // Same as ‘L = L – R’. Assign L - R to L.
L *= R; // Same as ‘L = L * R’. Assign L * R to L.
L /= R; // Same as ‘L = L / R’. Assign L / R to L.
L %= R; // Same as ‘L = L % R’. Assign L % R to L.

8
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (3/9)

þ Increment and Decrement Operators
n Increment operator (++): Prefix increment operator (e.g., ++i), Postfix

increment operator (e.g., i++)
n Decrement operator (--): Prefix decrement operator (e.g., --i), Postfix

decrement operator (e.g., i--)
n Ex.

++i; // Postfix increment operator. it is same as ‘i = i + 1’.
i++; // Prefix increment operator. it is same as ‘i = i + 1’.
--i; // Prefix decrement operator. it is same as ‘i = i - 1’.
i--; // Postfix decrement operator. it is same as ‘i = i - 1’.

9
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (4/9)

þ Increment and Decrement Operators (continued)
n The actions of operators are determined by the placement and

precedence of the operators.
n Ex.

int x = 5;
int y = ++x; // increment ‘x’ first, and assign the value to ‘y’

later. Thus, x = 6, y = 6.
int z = 5;
int y = z++; // assign ‘z’ (= 5) first, and increment ‘z’ later.

Thus, y = 5, z = 6.

10
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (5/9)

þ Increment/Decrement Operators and Pointers
n Adding an increment/decrement operator to a pointer

increases/decreases its value by the number of bytes in the type it
points to.

n The prefix increment (e.g., ‘++pt’), prefix decrement (e.g., ‘--pt’), and
dereferencing operators (‘*’) all have the same precedence and
associate from right to left (‘right-to-left association rule’).

n The postfix increment (e.g., ‘pt++’) and decrement (e.g., ‘pt--‘)
operators both have the same precedence, which is higher than the
prefix precedence.

11
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (6/9)

þ Increment/Decrement Operators and Pointers (continued)
n Ex.

double arr[5] = {21.1, 32.8, 23.4, 45.2, 37.4};
double *pt = arr; // pt points to arr[0], i.e. to 21.1.
++pt; // pt points to arr[1], i.e. to 32.8.
*++pt; // increment pointer, take the value; i.e., arr[2], or 23.4.

(First apply ‘++’ to ‘pt’ (because the ‘++‘ is to the right of the ‘*’) and then
apply ‘*’ to the new value of ‘pt’.)

++*pt; // increment the pointed to value; i.e., change 23.4 to 24.4.
pt remains pointing to arr[2].

(‘++*pt’ means obtain the value that ‘pt’ points to and then increment
that value.)

(*pt)++; // increment pointed-to value; i.e., change 24.4 to 25.4.
pt remains pointing at arr[2].

(First the pointer is dereferenced, yielding 24.4. Then the ‘++’ operator
increments that value to 25.4.)

*pt++; // dereference original location, then increment pointer
pt remains pointing to arr[3].

(The ‘++’ operator operates on ‘pt’, not on ‘*pt’, so the pointer is
incremented. The address that gets dereferenced is the original address,
‘&arr[2]’, not the new address. Thus, the value of ‘*pt++’ is ‘arr[2]’ or 25.4.)

12
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (7/9)

þ Relational Operators
n Types of relational operators

l < is less than
l <= is less than or equal to
l == is equal to
l > is greater than
l >= is greater than or equal to
l != is not equal to

n Each relational expression reduces to the bool value ‘true’ if the
comparison is true and to the bool value ‘false’ if the comparison is
false, so these operators are well suited for use in a loop test
expression.
l Ex.

for (x = 20; x > 5; x--) // continue while x is greater than 5.
for (x = 1; y != x; ++x) // continue while y is not equal to x.
for (cin >> x; x == 0; cin >> x)) // continue while x is 0.

13
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (8/9)

þ Relational Operators (continued)
n Precedence of operators

l The relational operators have a lower precedence than the arithmetic
operators. Æ “Arithmetic operators > Relational operators”

l Ex. That means this expression:
x + 3 > y - 2 // Expression 1
corresponds ti this:
(x + 3) > (y - 2) // Expression 2
and not to the following:
x + (3 > y) - 2 // Expression 3

n Caution
l Do not confuse comparison operator ‘==‘ with assignment operator ‘=‘.
l Ex.

musicians == 4 // comparison
musicians = 4 // assignment

14
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Operators (9/9)

þ Comma (‘,’) Operator
n Be used to separate two or more expressions that are included where

only one expression is expected.
n There is no precedence between expressions linked by comma

operator.
n Ex.

++j, --i // Two expressions count as one for syntax purposes.
int i, j; // Comma is a separator here, not an operator.

for (j = 0, i = 0; j <= i; i--, j++)
i = 20, j = 2 * i; // i = 20, j = 40

15
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Compound Statements or Blocks (1/2)

þ If the body of the loop is more than one statement, construct a
compound statement or block.

þ The block consists of paired braces ({, }) and the statements they
enclose and, for the purposes of syntax, counts as a single
statement.
n Ex.

for (int i = 0; i < 3; i++)
cout << i << “＼t”;
cout << “＼n”;

Result: 0 1 2

for (int j = 0; j < 3; j++) {
cout << i << “＼t”;
cout << “＼n”;

}
Result: 0

1
2

16
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Compound Statements or Blocks (2/2)

þ Variables declared in a block only can be used in the same block.
n Ex.

#include <iostream>
using namespace std;
int main(void)
{

int x = 20;
{ // start of block

int y = 100;
cout << x << “＼n”;
cout << y << “＼n”;

} // end of block
cout << x << “＼n”;
cout << y << “＼n”; // Error. This cannot be compiled.
return 0;

}

17
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘while’ Loop

þ A ‘while’ loop is a ‘for’ loop stripped of the initialization and
update parts; it has just a test expression and a body.

þ Expression
statement 1;
while (test-expression)

statement 2 or body;
statement 3;

n Ex.
while (time <1000)
{

…
}

Yes

No

statement 1

statement 3

statement 2Test

‘while’ loop

18
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘for’ Loop vs. The ‘while’ Loop (1/2)

þ In C++ the for and while loops are essentially equivalent.

General expression

for (init-expression; test-expression; update-expression)
{

statement(s)
}

init-expression;
while (test-expression)
{

statement(s)
update-expression;

}

Expression having test-expression only

for (; test-expression;) {
statement(s)

}

while (test-expression) {
statement(s)

}

Expression for infinite loop

for (; ;) { // always true
statement(s)

}

while (1) { // always true
statement(s)

}

19
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘for’ Loop vs. The ‘while’ Loop (2/2)

þ The ‘for’ loop
n We can repeat the loop as designated number because the ‘for’ loop

has the initial expression, test expression, and update expression.

þ The ‘while’ loop
n We can use the loop when we don’t know (or we don’t want to know)

in advance precisely how many times the loop will execute.

20
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

The ‘do while’ Loop

þ Execute the body of the loop first, only then evaluates the test
expression to see whether it should continue looping.

þ The loop always executes at least once because its program flow
must pass through the body of the loop before reaching the test.

þ Expression
statement 1;
do

statement 2 or body;
while (test-expression);

statement 3;
Yes

No

statement 1

statement 3

statement 2

Test

‘do while’ loop

21
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Loops and Text Input

þ Text Input Using ‘cin’
n The ‘cin’ doesn’t read white spaces (‘Space’ or ‘Tab’) and the new line

character (‘＼n’).
n The input to cin is buffered. That is, the characters we type don’t get

sent to the program until we press ‘Enter’.

þ Text Input Using ‘cin.get(char)’
n The ‘cin.get(char)’ reads all characters including white spaces and the

new line character.

n Review
cin >> name; // Read by a word. Ignore the initial white-space character.

Consider white-space character as the end of the string.
cin.getline(name, 50); // Read up to 50 characters or until a newline character.

Discard the newline character in the input queue.
cin.get(name, 50); // Read up to 50 characters or until a newline character.

Leave the newline character in the input queue.
cin.get(); // Read one character regardless of its type.

22
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Nested Loops and Two-Dimensional Arrays (1/2)

þ A nested loop is a loop within a loop. Nested loops provide a
natural way to process two-dimensional arrays.

þ Initialization of One-dimensional Arrays
n Ex. int atom[5] = {1, 2, 3, 4, 5};

þ Initialization of Two-dimensional Arrays
n Initialize as one-dimensional arrays

l Ex.
int atom[2][3] = {1, 2, 3, 4, 5, 6};
or
atom[0][0]=1; atom[0][1]=2; atom[0][3]=3;
atom[1][0]=4; atom[1][1]=5; atom[1][2]=6;

n Initialize as two-dimensional arrays
l Ex.

int atom[2][3] = {{1, 2, 3}, {4, 5, 6}}

values of atom[1]
values of atom[0]

23
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Nested Loops and Two-Dimensional Arrays (2/2)

þ Access of Two-dimensional Arrays with Nested Loops
n Ex.

for (int i = 0; i < 2; i++)
{

for (int j = 0; j < 3; j++)
cout << atom[i][j] << “＼t”;

cout << “＼n”;
}

Result:
1 2 3
4 5 6

24
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Summary (1/2)

þ C++ offers three varieties of loops: for loops, while loops, and do
while loops.

þ The for loop and the while loop are entry-condition loops,
meaning that they examine the test condition before executing
the statements in the body of the loop.

þ The do while loop is an exit-condition loop, meaning that it
examines the test condition after executing the statements in the
body of the loop.

þ The syntax for each loop calls for the loop body to consist of a
single statement. However, that statement can be a compound
statement, or block, formed by enclosing several statements
within paired curly braces.

25
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Summary (2/2)

þ C++ offers various operators for loops: arithmetic operators,
assignment operators, increment/decrement operators, relational
operators, and comma operator.

þ Relational expressions by relational operators, which compare two
values, are often used as loop test conditions. Relational
expressions are formed by using one of the six relational
operators: <, <=, ==, >=, >, or !=. Relational expressions evaluate
to the type bool values true and false.

þ A nested loop is a loop within a loop. Nested loops provide a
natural way to process two-dimensional arrays.

26
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Practice 1

þ Make a program that calculates the value of the integral as below.
To do this, use the mensuration by parts.

dxxxy)sin(log
2

1

2
10ò +=

Preprocessor directives
#include <cmath>
// This header file has definitions of functions as below.
// ‘float sin(float);’ for sin function
// ‘float log10(float);’ for log10 (common logarithm) function.

int main(void)
{

declare variables.
delta = 1.0 / N;
ans = 0;
for (i = 0; i < N; i++) {

x = 1 + delta * i;
ans = ans + log(x + sin2(x)) * delta;

}
} å=

i
xxfArea d)(

xd

()f x
x

y

27
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Practice 2

þ Make a program that calculates the volume and the surface area
of the ellipsoidal solid.
n Get the values of a and b when the program is running.
n A formula for a ellipse is as below.

1
22

=÷
ø
ö

ç
è
æ+÷

ø
ö

ç
è
æ

b
y

a
x

x

y

a

b

28
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Practice 3

þ Make a program that reads exam scores for Korean, Mathematics,
and English of 10 students and calculates the average score of
each student and the average score of each subject for all
students.
n Use two-dimensional arrays for storing the scores of students.

29
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Practice 4

þ Make a sorting program that sorts an array as below, in
descending order, and stores the result to the array ‘a’.
n int a[10] = {7, 2, 5, 9, 4, 1, 2, 10, 5, 6};

n Refer to the sort algorithms as below.
for i = 0 to 8 {

max = a[i];
for j = (i + 1) to 9

if (a[j] > max)
swap a[j] and max;

a[i] = max;
}

30
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Practice 5

þ Make a program that calculates the multiplication of matrices.
n In matrices, C = A∙B.

n Use two-dimensional arrays for storing components of the matrix.

[] ú
û

ù
ê
ë

é
= å

k
kjikij bac

31
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Reference Slides

32
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

[Appendix] Pointer for Arrays vs. Pointer Arrays

þ ‘[]’ is prior to the ‘*’.

// Pointer arrays
char *p[3];

char*

char*

char*

char char char

// Pointer for array
char (*p)[3];

Four pointer arrays
‘*p[3]’ for char
type pointer

Pointer for char
type arrays ‘p[3]’

