Lecture Note of Digital Computer Concept and Practice

C++ Programming

Ch. 10 Objects and Classes

Spring 2014

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering
Seoul National University

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh La b:}mtuw

Ch. 10 Objects and Classes

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh L bor tory !

Contents

M Abstraction and Classes

M Class Declaration

M Definition of Class Methods
M Using Classes

M Constructor

M Destructor

M The ‘this’ Pointer

M Creating Arrays of Objects
M Example of Using Class

M Summary

M Practice

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Abstraction and Classes (1/2)

: To express a set of complex data to the user
identification unit (by an identifier)

B To implement the abstract interface to the user-defined type in C++
B Class = Set of " or Set of

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Abstraction and Classes (2/2)

M Composition of a Class

(*.h)
® To describe the data component, in terms of
® To describe the public interface, in terms of (termed

methods)
(*.cpp)

® To describe how member functions are implemented

M Features of the Class
B Binding of data and methods into a single unit

_ I “and’ " keywords: To describe access control for class
members
B Data hiding: To define normal data with ’ " and member

r

functions with ’

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory

Class Declaration

W i ” keyword (private identification)
- It can (data
hiding).

- A private member can be accessed only through
the public member functions or friend functions.

- Default access control Describing data by
class members

W i ” keyword (public identification)

- It identifies class members that constitute the public
interface for the class (can be access from outside).

- It represents abstract components.
- In general,

Describing public
interface by member
functions

* Member functions are also called ‘methods’.

class Stock

{

private:

public:

char company[30];

int shares;
double share

_val;

double total_val;

void set_tot()

void acquire(..

void buy(...);
void sell(...);

void update(..

void show();

0

D

D

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

2

SYstem
Design
La bﬂruiury !

Definition of Class Methods

M Implementation of Class Methods (Member Functions)

B The function header for a member function uses
®» To indicate to which class the function belongs

® void Stock:update(double price)
® void bufoon:update()

B Class methods can

M Application of Class Methods to an Object

(Declaration of class variables)

® Stock kate, joe;
with declared objects

® kate.show();
® joe.show();

B Each object we create contains storage for its own internal variables,

l.e., class members.
B All objects of the same class share the same set of class methods,

with just copy of each method.

SYstem !
@ Design i
La bﬂrntur‘y !

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Using Classes

M Procedures for Applying a Class to a Program

B Step 1: (member
functions)

B Step 2:
B Step 3:

B Definition of class and methods

® Input of data values
— Company: NanoSmart
— Shares: 20
— Share Price: $12.50
— Total Worth: $250.00

® Declaration of data output method
— void show():

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Using Classes

- SteE 1: Declaration and Definition of Class and Methods

: #include <iostream>
: using namespace std;
: #include <cstring>

» [/ for using strncpy() function

class Stock
 {
private:
char company[30];
int shares;
double share_val;
double total_val;

void set_tot() { total_val = shares * share_val; }

"// Company name
*// Number of shares
»// Share price

»// Total worth

public: :
void acquire(const char* co, int n, double pr); : // Input of data by accessing
void show(); : to private members

5 :

SYstem !
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

Using Classes

- SteE 2: ImEIementation of Methods

||

: void Stock:acquire(const char * co, int n, double pr)

T

strncpy(company, co, 29); : Access to the each private
company[29] = "W0’; ' member and input data
shares = n; :
share_val = pr; i * ‘private’ member
: set_tot(); i - company[]: Company name
) i - shares: Number of shares
; . : - share_val: Share price
;'E'U'd Stock:show() : - set_tot(): Total worth
i cout << “Company name: " << company :
<< “ Number of shares: “ << shares << Wn" !
: << “ Price: $” << share_val :
: << " Total worth: $” << total_val << "Wn’;
)

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Using Classes

- SteE 3: Creation of Class Ob'lects

: int main()

{

Stock stock1; Creation of an object “stock1”

L 4

stockl.acquire(“Smart”, 20, 2.50); :

~ Calling of the object’s class method

stock1.show(); > (Access of private members through
: . the class method)

return 0;

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Constructors (1/3)

M Constructors

B Prototype for constructor
® Ex.
Stock(const char* co, intn =0, ...);
B Constructor definition

® Ex.
Stock::Stock(const char* co, int n, double pr)

{
}

® The constructor has no declared type ()-

B Features of constructors
® Timing when constructors are called: When a class object has defined
® They can define and initialize data members at once.

® Objects doesn’t call constructors, but constructors are being used to create
objects.

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Constructors (2/3)

M Using Constructors (Way to Initialize an Object)

B Method 1: Calling of the constructor

® Ex.
Stock food = Stock(“world cabbage”, 250, 1.25);

B Method 2: Calling of the constructor

® Ex.
Stock food(“world cabbage”, 250, 1.25);

B Method 3: Use of

® Ex.
Stock *food = Stock(“world cabbage”, 250, 1.25);

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Constructors (3/3)

M Default Constructors

B If the program doesn’t provide a constructor, the compiler
automatically supplies a default constructor.

B Providing a non-default constructor without providing a default
constructor is error!!

B Way to define default constructors

® Method 1: Providing default values for all the arguments to the existing
constructor
— Ex. Stock(const char* co = “Error”, int n = 0, double pr = 0.0);

® Method 2: Using function overloading to define the second constructor
which has no arguments
— Ex. Stock();

B Declaration of object variables without initializing them explicitly
® Stock Stock1 = Stock(); // Call default constructor explicitly.
® Stock Stock1; // Call default constructor implicitly.

SYstem
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

Destructors (1/2)

M Destructors

B A program automatically calls a do-nothing destructor if we don’t
provide a destructor. If our constructor uses ‘new’ to allocate memory,
the destructor should be use ‘delete’ to free that memory.

B Prototype for destructor

® Ex.
~Stock();

B Destructor definition

® Ex.
Stock::~Stock()

{
}

SYstem
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

Destructors (2/2)

M Calling Destructors

B Our code shouldn’t explicitly call a destructor (called automatically by
the compiler).

B If we create a static storage class object, the destructor is called
automatically when the program terminates.

B If we create an automatic storage class object, the destructor is called

automatically when the program exits the block of code in which the
object is defined.

B If the object is created by using ‘'new’, the destructor is called
automatically when we use ‘delete’ to free the memory.

SYstem !
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

The ‘this’ pointer (1/4)

M A pointer that points to the object itself used to invoke a member
function

M Ex. A method that returns a reference of larger value between two
‘Stock’ objects

B Method for prototype declaration

B Ex
Stock&) ;

: Passing the object to the function ‘topval’ by calling by
reference

: The function won't modify the implicitly accessed object.

: The function returns a reference to one of two constant objects, the
return type also has to be a constant reference.

Design

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

The ‘this’ pointer (2/4)

B Method prototype declaration (continued)
B Ex.

class Stock
{
private:
char company[30];
int shares:
double share_val;
double total _val;
void set_tot() { total_val = shares * share_val; }
public:
Stock(); // default constructor
Stock(const char * co, int n, double pr);
~Stock() {} // do-nothing destructor
void show() const;
const Stock& topval(const Stock &s) const;

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

The ‘this’ pointer (3/4)

B Method definition and calling

W Ex.
const Stock& Stock:topval(const Stock &s) const

{

if (s.total_val > total_val)
return s;

else
return itself?

Cf. Is it possible that ‘total_val’ which is private can access to ‘total_val’in ‘s’?

Accessing control is done by the class level. Thus, objects in the same class can
access to the private components of each other. Therefore, it is possible that a
method of one object can access to the private component (‘s.total_val’) of
another object (‘s’) in the same class.

Design

28} [oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

The ‘this’ pointer (4/4)

Stock kate(“W.Inc”, 100, 63);

|

Stock joe(“P.Inc”, 120, 30);

|

const Stock& Stock:topval(const Stock &s) const

{
if (s.total_val > total val)
return s;
else
return *this;
}

|

kate.topval(joe);

This invokes ‘topval()’ with ‘kate’,
so ‘s’ is ‘joe’, this points to ‘kate’,
and ‘*this’ is ‘kate’.

|

joe.topval(kate);

This invokes ‘topval()’ with ‘joe’,
so ‘s’ is ‘kate’, this points to ‘joe’,
and ‘“*this’ is ‘joe’.

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

SYstem I
@ Design |
La bﬂrntur‘y

An Array of Objects

M We can create multiple objects which are in the same class.

M Array of Objects and Its Uses

m Ex
Stock mystuff[4]; // Create an array of 4 Stock objects.
mystuff[3].show(); // Apply ‘show()’ method to 4t element.

M Initialization of the array

B Ex. Use a constructor to initialize the array elements.
Stock stocks[STKS] = {
Stock(“NanoSmart”, 12, 20.0),
Stock(“Boffo Objects”, 200, 2.0),
Stock(“Monolithic Obelisks”, 130, 3.25),
Stock(“Fleep Enterprises”, 60, 6.5)

Design

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Example of Using Classes

M An example of using constructor, destructor, this pointer, and
array of objects

B Output the most valuable shares you have

B Input data

Company name No.of Shares Price
NanoSmart 12 $20.0
Boffo 200 $2.0
Fleep 60 $6.5

B Programming procedures
® Definition of a class
® Implementation of class methods
® Implementation of the ‘main’ function

SYstem
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

Example of Using Classes
- Class Definition

|||

* Private (dat b : #ifndef _STOCK_H_
e e | #define _STOCK_H_
- Company nhame: ‘company g
- Number of shares: ‘shares’ ?355 Stock
- Price: ‘share_val’ ! private:
: char company[30];
int shares;
double share_val;
double total_val;
void set_tot()
{ total_val = shares * share_val;}
* Public (methods) : public: :
B Oulpul Lunichion of member . Stock(); /1 Default constructor
show() i Stock(const char * co, int n, double pr);
- Comparing function of two objects: : ~Stock() {3
‘topval()’ i void show() const;
const Stock& topval(const Stock &s) const;
: 3
: #endif

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Example of Using Classes

- ImEIementation of Class Methods

* Cf. void Stock::show() const
- Definition of the method {
- Using ‘this’ pointer :

”

cout << “Company name : ” << company
<< “ Number of shares : ” << shares << \n'
<< “ Price : §” << share_val

<< “ Total worth : §” << total_val << \n’;

3
const Stock& Stock::topval(const Stock &s) const

return ;

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh La barutuw

Example of Using Classes

- ImEIementation of the ‘main’ Function

*Cf const int STKS = 3;
- Initialization of an array of objects :

- Calling function of the array of i{”t main()
objects: :
stc:ck[st].shuw(): g Stock stocks[STKS] = {

Stock("NanoSmart”, 12, 20.0),
Stock("Boffo Objects”, 200, 2.0),
Stock("Fleep Enterprises”, 60, 6.5)

top.topval(stocks[st]);

5

int st;

for (st = 0; st < STKS; st++)
stocks|[st].show();

Stock top = stocks[O];

for (st = 1; st < STKS; st++)
top = top.topval(stocks(st]);

cout << "WnMost valuable shares:#Wn";

top.show();

return O;

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Summary

, and

, Whereas
, also called methods,
. The class combines , and
the private aspect accomplishes data hiding.

M If we want a member function to act on more than one object, we
can pass additional objects to the method as arguments.

M If a method needs to refer explicitly to the object that evoked it, it
can use the this pointer. The this pointer is set to the address of
the evoking object, so

Design

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Practice

M Make an illustrated animal book program using ‘animal’ class.
Define class and its methods and using them on your program.

B The ‘animal’ class has the kind (int), the height (average height,
double), and the weight (average weight, double) as class members.

B A default constructor should be “0” (unknown), height = 0.0, weight
= 0.0 when there are no arguments. If there are three arguments, the
first parameter is the kind, and the second and third parameters
should be the height and the weight.

B Define a public method that prints out the average height and the
average weight of the animal when we input the kind.

SYstem
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

	슬라이드1
	슬라이드2
	슬라이드3
	슬라이드4
	슬라이드5
	슬라이드6
	슬라이드7
	슬라이드8
	슬라이드9
	슬라이드10
	슬라이드11
	슬라이드12
	슬라이드13
	슬라이드14
	슬라이드15
	슬라이드16
	슬라이드17
	슬라이드18
	슬라이드19
	슬라이드20
	슬라이드21
	슬라이드22
	슬라이드23
	슬라이드24
	슬라이드25
	슬라이드26
	슬라이드27

