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Abstraction and Classes (1/2)

: To express a set of complex data to the user
identification unit (by an identifier)

B To implement the abstract interface to the user-defined type in C++
B Class = Set of " or Set of
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Abstraction and Classes (2/2)

M Composition of a Class

(*.h)
® To describe the data component, in terms of
® To describe the public interface, in terms of (termed

methods)
(*.cpp)

® To describe how member functions are implemented

M Features of the Class
B Binding of data and methods into a single unit

_ I “and’ " keywords: To describe access control for class
members
B Data hiding: To define normal data with ’ " and member

r

functions with ’
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Class Declaration

W i ” keyword (private identification)
- It can (data
hiding).

- A private member can be accessed only through
the public member functions or friend functions.

- Default access control Describing data by
class members

W i ” keyword (public identification)

- It identifies class members that constitute the public
interface for the class (can be access from outside).

- It represents abstract components.
- In general,

Describing public
interface by member
functions

* Member functions are also called ‘methods’.

class Stock

{

private:

public:

char company[30];

int shares;
double share

_val;

double total_val;

void set_tot()

void acquire(..

void buy(...);
void sell(...);

void update(..

void show();
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Definition of Class Methods

M Implementation of Class Methods (Member Functions)

B The function header for a member function uses
®» To indicate to which class the function belongs

® void Stock:update(double price)
® void bufoon:update()

B Class methods can

M Application of Class Methods to an Object

(Declaration of class variables)

® Stock kate, joe;
with declared objects

® kate.show();
® joe.show();

B Each object we create contains storage for its own internal variables,

l.e., class members.
B All objects of the same class share the same set of class methods,

with just copy of each method.
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Using Classes

M Procedures for Applying a Class to a Program

B Step 1: (member
functions)

B Step 2:
B Step 3:

B Definition of class and methods

® Input of data values
— Company: NanoSmart
— Shares: 20
— Share Price: $12.50
— Total Worth: $250.00

® Declaration of data output method
— void show():
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Using Classes

- SteE 1: Declaration and Definition of Class and Methods

: #include <iostream>
: using namespace std;
: #include <cstring>

» [/ for using strncpy() function

class Stock
 {
private:
char company[30];
int shares;
double share_val;
double total_val;

void set_tot() { total_val = shares * share_val; }

"// Company name
*// Number of shares
»// Share price

»// Total worth

public: :
void acquire(const char* co, int n, double pr); : // Input of data by accessing
void show(); : to private members

5 :
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Using Classes

- SteE 2: ImEIementation of Methods

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

: void Stock:acquire(const char * co, int n, double pr)

T

strncpy(company, co, 29); :  Access to the each private
company[29] = "W0’; ' member and input data
shares = n; :
share_val = pr; i * ‘private’ member
:  set_tot(); i - company[]: Company name
) i - shares: Number of shares
; . : - share_val: Share price
;'E'U'd Stock:show( ) : - set_tot(): Total worth
i cout << “Company name: " << company :
<< “ Number of shares: “ << shares << Wn" !
: << “ Price: $” << share_val :
: << " Total worth: $” << total_val << "Wn’;
)
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Using Classes

- SteE 3: Creation of Class Ob'lects

: int main()

{

Stock stock1; Creation of an object “stock1”

L 4

stockl.acquire(“Smart”, 20, 2.50); :

~ Calling of the object’s class method

stock1.show(); > (Access of private members through
: . the class method)

return 0;
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Constructors (1/3)

M Constructors

B Prototype for constructor
® Ex.
Stock(const char* co, intn =0, ...);
B Constructor definition

® Ex.
Stock::Stock(const char* co, int n, double pr)

{
}

® The constructor has no declared type ( )-

B Features of constructors
® Timing when constructors are called: When a class object has defined
® They can define and initialize data members at once.

® Objects doesn’t call constructors, but constructors are being used to create
objects.
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Constructors (2/3)

M Using Constructors (Way to Initialize an Object)

B Method 1: Calling of the constructor

® Ex.
Stock food = Stock(“world cabbage”, 250, 1.25);

B Method 2: Calling of the constructor

® Ex.
Stock food(“world cabbage”, 250, 1.25);

B Method 3: Use of

® Ex.
Stock *food = Stock(“world cabbage”, 250, 1.25);
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Constructors (3/3)

M Default Constructors

B If the program doesn’t provide a constructor, the compiler
automatically supplies a default constructor.

B Providing a non-default constructor without providing a default
constructor is error!!

B Way to define default constructors

® Method 1: Providing default values for all the arguments to the existing
constructor
— Ex. Stock(const char* co = “Error”, int n = 0, double pr = 0.0);

® Method 2: Using function overloading to define the second constructor
which has no arguments
— Ex. Stock();

B Declaration of object variables without initializing them explicitly
® Stock Stock1 = Stock(); // Call default constructor explicitly.
® Stock Stock1; // Call default constructor implicitly.
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Destructors (1/2)

M Destructors

B A program automatically calls a do-nothing destructor if we don’t
provide a destructor. If our constructor uses ‘new’ to allocate memory,
the destructor should be use ‘delete’ to free that memory.

B Prototype for destructor

® Ex.
~Stock();

B Destructor definition

® Ex.
Stock::~Stock()

{
}
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Destructors (2/2)

M Calling Destructors

B Our code shouldn’t explicitly call a destructor (called automatically by
the compiler).

B If we create a static storage class object, the destructor is called
automatically when the program terminates.

B If we create an automatic storage class object, the destructor is called

automatically when the program exits the block of code in which the
object is defined.

B If the object is created by using ‘'new’, the destructor is called
automatically when we use ‘delete’ to free the memory.
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The ‘this’ pointer (1/4)

M A pointer that points to the object itself used to invoke a member
function

M Ex. A method that returns a reference of larger value between two
‘Stock’ objects

B Method for prototype declaration

B Ex
Stock& ) ;

: Passing the object to the function ‘topval’ by calling by
reference

: The function won't modify the implicitly accessed object.

: The function returns a reference to one of two constant objects, the
return type also has to be a constant reference.
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The ‘this’ pointer (2/4)

B Method prototype declaration (continued)
B Ex.

class Stock
{
private:
char company[30];
int shares:
double share_val;
double total _val;
void set_tot() { total_val = shares * share_val; }
public:
Stock(); // default constructor
Stock(const char * co, int n, double pr);
~Stock() {} // do-nothing destructor
void show() const;
const Stock& topval(const Stock &s) const;
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The ‘this’ pointer (3/4)

B Method definition and calling

W Ex.
const Stock& Stock:topval(const Stock &s) const

{

if (s.total_val > total_val)
return s;

else
return itself?

Cf. Is it possible that ‘total_val’ which is private can access to ‘total_val’in ‘s’?

Accessing control is done by the class level. Thus, objects in the same class can
access to the private components of each other. Therefore, it is possible that a
method of one object can access to the private component (‘s.total_val’) of
another object (‘s’) in the same class.
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The ‘this’ pointer (4/4)

Stock kate(“W.Inc”, 100, 63);

|

Stock joe(“P.Inc”, 120, 30);

|

const Stock& Stock:topval(const Stock &s) const

{
if (s.total_val > total val)
return s;
else
return *this;
}

|

kate.topval(joe);

This invokes ‘topval()’ with ‘kate’,
so ‘s’ is ‘joe’, this points to ‘kate’,
and ‘*this’ is ‘kate’.

|

joe.topval(kate);

This invokes ‘topval()’ with ‘joe’,
so ‘s’ is ‘kate’, this points to ‘joe’,
and ‘“*this’ is ‘joe’.
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An Array of Objects

M We can create multiple objects which are in the same class.

M Array of Objects and Its Uses

m Ex
Stock mystuff[4]; // Create an array of 4 Stock objects.
mystuff[3].show(); // Apply ‘show()’ method to 4t element.

M Initialization of the array

B Ex. Use a constructor to initialize the array elements.
Stock stocks[STKS] = {
Stock(“NanoSmart”, 12, 20.0),
Stock(“Boffo Objects”, 200, 2.0),
Stock(“Monolithic Obelisks”, 130, 3.25),
Stock(“Fleep Enterprises”, 60, 6.5)
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Example of Using Classes

M An example of using constructor, destructor, this pointer, and
array of objects

B Output the most valuable shares you have

B Input data

Company name No.of Shares Price
NanoSmart 12 $20.0
Boffo 200 $2.0
Fleep 60 $6.5

B Programming procedures
® Definition of a class
® Implementation of class methods
® Implementation of the ‘main’ function
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Example of Using Classes
- Class Definition

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

* Private (dat b : #ifndef _STOCK_H_
e e | #define _STOCK_H_
- Company nhame: ‘company g
- Number of shares: ‘shares’ ?355 Stock
- Price: ‘share_val’ ! private:
:  char company[30];
int shares;
double share_val;
double total_val;
void set_tot()
{ total_val = shares * share_val;}
* Public (methods) : public: :
B Oulpul Lunichion of member . Stock(); /1 Default constructor
show() i Stock(const char * co, int n, double pr);
- Comparing function of two objects: : ~Stock() {3
‘topval( )’ i void show() const;
const Stock& topval(const Stock &s) const;
: 3
: #endif
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Example of Using Classes

- ImEIementation of Class Methods

* Cf. void Stock::show() const
- Definition of the method  {
- Using ‘this’ pointer :

”

cout << “Company name : ” << company
<< “ Number of shares : ” << shares << \n'
<< “ Price : §” << share_val

<< “ Total worth : §” << total_val << \n’;

3
const Stock& Stock::topval(const Stock &s) const

return ;
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Example of Using Classes

- ImEIementation of the ‘main’ Function

*Cf const int STKS = 3;
- Initialization of an array of objects :

- Calling function of the array of i{”t main()
objects: :
stc:ck[st].shuw( ): g Stock stocks[STKS] = {

Stock("NanoSmart”, 12, 20.0),
Stock("Boffo Objects”, 200, 2.0),
Stock("Fleep Enterprises”, 60, 6.5)

top.topval(stocks[st]);

5

int st;

for (st = 0; st < STKS; st++)
stocks|[st].show();

Stock top = stocks[O];

for (st = 1; st < STKS; st++)
top = top.topval(stocks(st]);

cout << "WnMost valuable shares:#Wn";

top.show();

return O;
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Summary

, and

, Whereas
, also called methods,
. The class combines , and
the private aspect accomplishes data hiding.

M If we want a member function to act on more than one object, we
can pass additional objects to the method as arguments.

M If a method needs to refer explicitly to the object that evoked it, it
can use the this pointer. The this pointer is set to the address of
the evoking object, so
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Practice

M Make an illustrated animal book program using ‘animal’ class.
Define class and its methods and using them on your program.

B The ‘animal’ class has the kind (int), the height (average height,
double), and the weight (average weight, double) as class members.

B A default constructor should be “0” (unknown), height = 0.0, weight
= 0.0 when there are no arguments. If there are three arguments, the
first parameter is the kind, and the second and third parameters
should be the height and the weight.

B Define a public method that prints out the average height and the
average weight of the animal when we input the kind.
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