Lecture Note of Digital Computer Concept and Practice

C++ Programming

Ch. 11 Working with Classes

Spring 2014

Myung-Il Roh

Department of Naval Architecture and Ocean Engineering
Seoul National University

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh La b:}mtuw

Ch. 11 Ch. 11 Working with Classes

) oesen, |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh L bor tory !

Contents

M Elements of the Object Model

M Operator Overloading

M Introducing Friends

M Overloaded Operators

M State Members

M Automatic Conversions and Type Casts for Classes
M Summary

Design

5] oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Elements of the Object Model

M The following elements become
and fundamentals of object oriented language and
programming.

M These ideas are applied to various fields such as designing
program languages, analyzing problem spaces, and coding.

SYstem
Design

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh @ HLQ bﬂrntur‘y I

Elements of the Object Model
- Abstraction

M Abstraction is from specific
instances of those ideas at work. It means,
for objects.

M Abstraction focuses upon the essential characteristics of some
object, relative to the perspective of the viewer.

SYstem
) . B |
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory '

Elements of the Object Model
- Encapsulation

M Encapsulation means that
and access to it restricted to members of that
class.

M Encapsulation of an object.

SYstem !
W 3 : @ Design I
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory '

Elements of the Object Model
- Hierarchy (Inheritance)

M One well-defined abstraction is used for basis of the other
abstractions. Inheritance is when
, using the same implementation.

M A subclass may inherit the structure and behavior of its superclass.

SYstem !
- ; . @ Design I
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory '

Elements of the Object Model
- Polymorphism

M Polymorphism is creating
, wWith the programming context determining which
definition is used.

B Ex. Area(radius), Area(width, height)

Design

5] oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Operator Overloading (1/2)

M Example of C++ Polymorphism

B Adding two arrays element by element
® Ex.
for (inti = 0; i < 20; i++)
evening[i] = sam[i] + janet[i];
B Adding two array objects
® Ex. define arrays with classes, and overload the operator
evening = sam + janet;
M We can extend the overloading concept to operators, letting us
assign multiple meanings to C++ operators

M Use of a Special Function Form Called an ‘Operator Functlon

|||

: class SP // Example of operator overloading
: double sale;

: public:

: SP operator+(SP&); // Overloading of “+" operator

: // Example of using operator overloading

: SP sid, sara, district;

- district = sid + sara; // Compiler replaces the statement as below.
: // district = sid.operator+(sara);

5
LR RN R]

Design

&) E“”““
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory

Operator Overloading (2/2)

M Vector Class

B Vector class transforms polar coordinates to Cartesian coordinates,
and uses Cartesian coordinates for addition.

B We can represent vector addition as C = A + B by using overloaded
‘+" operator.

: class Vector

: {

: private:

: double x, y;

: public: :

i void show_polar() const; // Polar Coordinate (53.1 deg, 50 meter) :
void show_vector() const; // Cartesian Coordinate (x = 30, y = 40)

i Vector operator +(const Vector &b) const; // Operator overloading

)

: // Example of using operator overloading

: Vector A, B, C;

- // Initialization

:C=A+ B; // Overloaded ‘+’, C = A.operator+(B);

5] oeson
i ; ; g !
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh .~ Laboratory '

Introducing Friends (1/2)

M Overloaded operators can be

M Therefore, for
using overloaded operators.

|||

: // Function definition
: Vector Vector::Vector operator*(double n) const

o

return Vector(n * x, n * y);

: // Example of using operator overloading
: Vector bar = piano * 2.0; // OK

5] oeson
i ; ; g !
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh ; Laboratory '

Introducing Friends (2/2)

M Definition:

M Varieties of ‘friends’
B Friend functions
B Friend classes
B Friend member functions
M To do this, we declare a function with keyword ‘friend’ on the
class declaration

ll

: class Vector {

public: ;
: friend Vector operator*(double n, const Vector &a); // Friend declaration :
) :

: // Function definition
: Vector operator*(double n, const Vector &a)

{
H)

: // Example of using the friend function
: Vector bar = 2.0 * piano; // Now available!

return Vector(n * a.x, n * a.y);

S¥stem !
B B, |2
b~ Laboratory !

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

Overloaded Operators
- Restrictions (1/2)

M Some restrictions for operator overloading

Operators must be valid C++ operators.

The overloaded operator must have
. This prevents us from overloading operators for
the standard types.

® Ex. We can't redefine the minus operator ('-’) so that it yields the sum of
two integer values instead of their difference.

We can’t use an operator in a manner that violates the syntax rules
for the original operator.

® Ex. We can’t overload the binary operator to the unary operator.
— Such as A+ overloaded operator for A+3 operation.

We of the operators.

® Ex. We can't overload '+’ operator that has higher precedence that ‘*’
operator.

SYstem
@ Design i
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Lubarntur‘y

Overloaded Operators
- Restrictions (2/2)

M Some restrictions for operator overloading (continued)

B We can’t create new operator symbols.
® Ex. We can’t define an operator**() function to denote exponentiation.

B We can’t overload the followmg operators.

sizeof : = 4 typeid
const_cast dynamic_cast remterpret_cast static_cast

Design

5] oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Overloaded Operators

- Overloadable Oeerators

M We can use only member function to overload the following

operators (Not allowed for friend function).

= Assignment operator

0 Function call operator
] Subscripting operator
-> Class member access by pointer operator

M Operators that can be overloaded

+ - x /

| ~= ! =

-= * = /= %=
<< > > S <<=
>= a& Il ++
- 0 [1 new

%
<

M=

delete

o &

> 4=

&= =

S I

' ->*
new[] delete[]

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

) oesen, |
Laboratory ! I

Using a State Member

M We can use objects selectively
by storing the information that
describe object’s state.

M For example, we can create
both rectangular coordinates
and polar coordinates by
improving ‘Vector’ constructor.

M Also, we can distinguish the
state of the object that is
rectangular or polar with
adding a

‘mode’.

||
[]

: class Vector

{

: private:

double x, y;

char mode; // polar? rectangular?

;Vectur::\fectur(duuble nl, double n2,
: char form = 'r")

: // default value is

: rectangular(Cartesian) coordinates
i

- mode = form;

if (form == ') {...}

else if (form == "p’) { ... }

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

S¥stem !
B e, e
b~ Laboratory !

Automatic Conversions and Type Casts for Classes

- ImEIicit Conversion

||

M Allowance of Implicit Conversion

B C++ constructors that have one
argument allow automatic type
conversion from the argument
type to the class type.

M Restriction of Implicit
Conversion

B If the class function is declared
as explicit ‘Stonewt(double Ibs);’,
implicit conversion is not
allowed.

B Therefore, in this case ‘myCat =
19.6;" is wrong.

Stonewt myCat;
: myCat = 19.6;

: class Stonewt

il
: public:

Stonewt(double Ibs);
/{ From double pounds

// Create an object. :

// Implicit conversion. Not alluwed'

i myCat = Stonewt(19.6);

// Explicit conversion

i myCat = (Stonewt)19.6

// C style type conversion

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

SYstem I
@ Design |
La bﬂrntur‘y

Automatic Conversions and Type Casts for Classes

- Conversion Function

M C++ allowed type conversion
from the class type to the
default type if we provide a
conversion function.

M Conversion function
B Must be a class method.
B Must not specify a return type.
B Must have no arguments.

M If just one conversion function
is defined, implicit conversion is
allowed.

M In this case, the object is output
by using conversion function

: class Stonewt

¥

: // Conversion functions
operator int() const;
operator double() const;

}

Stonewt poppins(9, 2.8);
: int host = int(poppins);
: int hosts = (int)poppins; // C style

: cout << “Poppins: “ << int(poppins)
: < “ pounds.Wn";

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

SYstem !
@ Design |
La bﬂrntur‘y

T

Summary

M Normally, the only way you can access private class members is by
using a class method. C++ alleviates that restriction with

M C++ extends
that describe how particular operators relate to
a particular class. An operator function can be a class member
function or a friend function.

M C++ lets us establish to and from class types.

Design

5] oeson
Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh Laboratory ' I

Practice

M Define Vector class.
M Define methods for Vector class.
M Use Vector class.

|||

class Vector { // Class declaration

public:
- Vector operator+(const Vector &b) const;
)
Vector Vector::operator+(const Vector &b) const { // Function definition
; double sx, sy;
sx = X + b
sy =y + by;
Vector sum = Vector(sx, sy);
: return sum;
)
void main() { // Using operator overloading
! Vector bobo1(20,30);
Vector bobo2(50,10);
Vector bobo = bobol + bobo2:

Digital Computer Concept and Practice, Spring 2014, Myung-Il Roh

	슬라이드1
	슬라이드2
	슬라이드3
	슬라이드4
	슬라이드5
	슬라이드6
	슬라이드7
	슬라이드8
	슬라이드9
	슬라이드10
	슬라이드11
	슬라이드12
	슬라이드13
	슬라이드14
	슬라이드15
	슬라이드16
	슬라이드17
	슬라이드18
	슬라이드19
	슬라이드20

