
Radical Polymerization

Chapter 4



Ch 4 Sl 2Chain polym’n
 step vs chain polym’n
 step ~ growth by reaction of functional groups

 chain ~ growth by addition of monomer to active center

 I  R*  RM*  RMM*  ---  RMn*  RMn+1*
 I ~ initiator [開始劑]

 * ~ active center [活性㸃]
 * = • (free-radical) ~ radical polym’n

 * = + (cation) ~ cationic polym’n   Chapter 5

 * = − (anion) ~ anionic polym’n   Chapter 5

 * = coordination site ~ coordination polym’n  Chapter 6

 M ~ monomer [單量體, 單位體]



Ch 4 Sl 3Monomers for chain polym’n
 monomer ~ unsaturated compound with either

 double bond (C=C, C=O)

 ring ~ ring-opening polym’n  Chapter 7

 polymerizability of monomer       Table 5.1 p124

 C=O by ionic only

 CH(X)=CH(Y) ~ hardly polymerize  steric hindrance

 CH2=C(X)(Y) ~ can polymerize

 vinyl monomers  CH2=CH(X)
 with e− donating X ~ cationic or radical

 with e− withdrawing X ~ anionic or radical

 Most C=C monomers can be radical-polymerized.
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Ch 4 Sl 4Radical polym’n
 two types of radical polym’n
 (conventional) free-radical polym’n

 (newer) living radical polym’n Section 4.5

 mechanism of free-radical polym’n
 initiation   I  R•  RM•

 propagation RM•  RMM•  ---  RMn•

 termination RMn• + RMm•  RMn+mR or  RMn + RMm

 chain transfer RMn• + TA  RMnT + A•
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 2 steps I  R•  RM•

 1st step ~ formation of radical
 homolysis of initiator
 thermal initiators ~ containing peroxide or azo linkage
 thermolysis at (usually) 50 – 100 ºC   Table 4.2 p86
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 photochemical initiators ~ UV sensitive 
 photolysis ~ time- and space-controllable 

 redox initiation
 redox = reduction + oxidation  oxidant + reductant

 fast, at variety of Temp, in aqueous medium
 useful for low Temp polym’n and/or emulsion polym’n   Section 4.4.4
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 2nd step ~ addition of one monomer
 much faster than 1st step

 Not all R• initiate, since R• reacts with 
 other R• within the cage ~ ‘cage effect’

 other R• or polymer radical  termination

 solvent, polymer, initiator  chain transfer

 monomer  initiation

 initiator efficiency, f ~ 0.3 < f < 0.8 < 1  

 mode
predominant  steric + mesomeric

mesomeric = resonance 
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 addition of M to growing •

 mode

 head-to-tail configuration favored by > 98%
 proved by analysis

 may be < 98% for very small X with little mesomeric effect like F
 PVF ~ 90%; PVDF ~ 95%
 PVA > 98%

Propagation

predominant
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 disappearance of radical  polym’n stops

 two modes
 combination [coupling]
 one dead polymer

 (x+y)-mer

 disproportionation
 two dead polymers

 x-mer + y-mer
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 Combination requires low Ea.
 usually favored, esp at low Temp

 Mode highly dep on type of monomer.
 vinyl monomers favor combination
 eg PS

 α-methylvinyl monomers favor disproportionation
 eg PMMA

 additional C-H’s



Ch 4 Sl 11Chain transfer
 transfer of kinetic chain to other molecule
 transfer of active center from active chain

 abstraction of T (typically H) from other molecule

 A•, if reactive, may initiate a new kinetic chain.

 Other molecule can be initiator, monomer, solvent, chain 
transfer agent, or polymer.

 CT lowers MM.
 # of chains per # of initiations 

 except for CT to polymer
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 CT to initiator

 CT to solvent

 CT to chain transfer agent
 CTA ~ add to control MM

 What if using CTA as solvent?
 telomerization [popcorn polym’n]

 telomer - telogen

Fig 4.1 p67
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 CT to monomer

 not popular  vinylic H not reactive

 autoinhibition [degradative CT to monomer]

 leading to long-chain branch
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 CT to polymer  branching
 intramolecular CT and intermolecular CT

 MM not change (both), PDI increases (intermol)

 Radical polym’n of ethylene gives LDPE.   Fig 4.2 p69

 intramol CT [back-biting]  short-chain branching
 butyl, ethyl, ethylhexyl branches

 intermol CT  long-chain branching

 lower crystallinity [low density], lower mp, 
and lower shear-rate sensitivity than HDPE

SCB LCB
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 CT to polymer (cont’d)
 PMA vs PVAc Read p68 and see Fig 4.3 & 4.4 p70

 polymer from 1,2-disubs vinyl monomers [CH2=CXY]
 no 3° backbone H  negligible CT to polymer

 polymer from 1,3-diene  Section 4.6.2.2
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 initiation

 propagation

 termination

Rt =
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 steady-state condition [approximation]
 Ri = Rt 

 true in early stage, except for very early stage

 rate of polym’n = rate of propagation

 thermolysis of initiator  
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 photoinitiation

 redox initiation
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 assuming no chain transfer, (xn)0

 thermolysis of initiator

 photoinitiation

 redox initiation

Kinetics: molar mass

 and                      (s-s approx)
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 kinetic chain length, ν
 ν = # repeat units/radical = Rp/Rt

 Rp and MM

 [I]   Rp  and MM  ~ trade-off in Rp and MM

 instantaneous equations ~ change with conversion
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 s-s approx valid only at conversion < 15-20%
 at higher conversion,
 [I]  and [M]  → Rp

 actually, Rp 

 become diffusion-controlled

Fig 4.5 p77
conv vs time at various [M]0

[MMA]0 in benzene
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 IA ~ steady-state

 IB ~ [M]  → Rp ~ may or may not occur

 II ~ autoacceleration
 viscosity  → diffusion of polymer   → kt 

 kp and kd not changed ( small monomer)

 Rp, xn  → viscosity  → heat diffusion  →
Temp  → Rp

 AA, gel effect, Trommsdorff-Norrish effect

 IIIA ~ at higher conv (>50%), kp also affected

 Rp levels off

 IIIB ~ glass effect
 Tg of mixture [M-plasticized polymer] 

becomes higher than polym’n Temp

 Rp decreases to stop

Rp vs conv
Odian pp282-287

%polymer
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 When kr < ki  Rp  and xn 

 When kr ≈ ki  only xn 

 C ~ chain transfer constant

kr

<cf> autoinhibition

Mayo(-Walling) Eqn

Mayo(-Lewis) Eqn ~ copolym’n
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 CM ~ small, little effect on xn

 CI ~ larger than CM, but lower effect on xn

 CS or CCTA ~ dep on bond strength    <cf> telomerization

Table 4.1 p79

C’s for radical 
polym’n of ST
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 special type of chain transfer to monomer
 Co(II) abstracts H• from growing radical

 Co(III) gives H• to monomer

 very effective [high C]
 for monomer with α-methyl

 resulting C=C end group

 macro(mono)mer

 with controlled MM

p80
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 substance reacts with
radical, and
 does not reinitiate ~ inhibitor

 slowly reinitiate ~ retarder

 O2

 harmful in polym’n awa in use

 Inhibition and retardation differs only in degree.
 eg, quinone ~ inhibitor for ST, retarder for MMA

inhibition

retardation

normal

induction
period Fig 4.7 p81

Inhibition and retardation
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 may be added deliberately
 for transportation, storage

 remove before or feed more initiator in polym’n 

 quinone, hindered phenol, radical scavenger

<cf> autoinhibition
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 MMD and its prediction much more complex than step polym’n
 modes of polymer formation; parameters change with conv

 At low conversion, ([M], [I], k’s constant)
 [M] and [I] decrease a little, actually.  Problem 4.1

 β ~ probability of growth of a radical
 β = Rp / (Rp+Rt+RCT)

 same to p in step polym’n

 termination by disproportionation
 probability of i-mer, 

 xn = 1/(1 - β) 

 xw = (1 + β)/(1 - β)

 PDI or D,

 PDI  2 when β  1  [Rp >> Rt, RCT]

for polymer 
fraction only, 
not for whole 
mixture!!
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 low conv (cont’d)
 termination by combination
 (j-mer) + (i – j-mer)  (i-mer)

 2 propagating chains terminated by 1 combination

Mi = i M0

(i – 1) ways 
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 weight fraction, wi

wi = i Ni / N0 = i N P(i) / N0

 PDI,

 PDI  1.5 when β  1  [Rp >> Rt, RCT]

 smaller PDI than disproportionation

eqn 3.11 p35

Mi = i M0
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 At higher conversion, MMD gets much broader.
 [I] decrease faster than [M] does.
 larger molecule at later stage

 PDI ~ 3 - 5

 may be controlled by multiple charge of I

 autoacceleration
 PDI ~ 5 - 10

 CT to polymer
 PDI ~ 20 - 50

Hard to control AA and CT to polymer
 avoid bulk polym’n or stop at low conversion
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 Rp

 separation of reaction product
 step polym’n ~ distillation of small molecules

 chain polym’n ~ isolation of polymer (ppt in nonsolvent)

 chemical or spectroscopic analysis
 step ~ disappearance of functional group

 chain ~ disappearance of double bond

 dilatometry
 monitoring volume change
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 kd

 [I] by spectroscopy

 Table 4.2 p86

 f  f kd

 using radical scavenger
 color change by UV/vis

 end-group analysis
 low conc’n in polymer

 0.3 < f < 0.8 = Ri
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 kp and kt

 from kp/kt
½ and kp/kt

 kp/kt
½

 using [M]0 and [I]0 knowing Rp and f kd

 at s-s (low conv)

 kp/kt

 τ, avg life-time of radical

 τ measured using
‘rotating sector method’ ~ photopolym’n with on/off

 0.1 < τ < 10 sec Odian pp263-267
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 kp and kt separately by using pulsed-laser polym’n p87-88
 initiation/termination by short pulse (10 ns) laser

 MM of the product measured     

 chain transfer constants

 one by one. pp78-79
 CI (AIBN) ≈ 0
 plot 1/xn vs [I]0

½/[M]  CM

 with other I  CI

 with S  CS
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Odian p269
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 As T up, [M] up, and [M]2 up more rapidly. (p89) ?

Effect of Rxn Temp ~ Activation energy

> 0  ~ As T up, Rp up. 

< 0  ~ As T up, xn down.

Table 4.4 p89
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 photopolym’n
 Ed = 0

 Actually, may not.  Photoinitiators are thermally decomposed.

 chain transfer

> 0  ~ As T up, C up, and xn down.

> 0, but small ~ lower effect

> 0  ~ As T up, xn up! (p89)
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 Polym’n – depolym’n is an equili rxn

 ∆G = ∆H – T∆S
 ∆Hp < 0  (–50 ~ –100 kJ/mol)

 H(formation of σ bond) > H(breaking π bond)

 ∆Sp < 0  (–100 ~ –120 J/mol K)

 loss in DOF by decreased number of molecules

 disfavors polym’n

 |∆Hp| must be > |T∆Sp| for polymerization.
 T must be lower than Tc.
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 ceiling Temp Tc

 Tc largely depends on ∆H   ∆S similar
 ∆H depends on structure   Table 4.5 p90

 low Tc for 1,1-disubstituted monomers  small ∆H due to steric

 critical in carbonyl polym’n (ionic polym’n)

∆G = ∆G0 + RT ln K = 0
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 Floor Temp
 ∆Sp > 0 and ∆Hp > 0 (both very small)

 depolym’n vs thermal stability vs heat resistance
 Tg vs HDT (or VSP)
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 4 types of process
 bulk, solution, suspension polym’n ~ same kinetics

 emulsion polym’n ~ somewhat different 

 bulk polym’n
 simple and pure
 [M] fixed at max

 [I] and Temp controlled to compromise Rp and MM

 problems at high conversion
 heat, shrinkage, and autoacceleration

 stop at low conversion  recovery of monomer needed

 polymer may not be soluble in monomer ~ ppt polym’n
 eg, PVC; vs suspension
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 bulk polym’n (cont’d)
 2-stage polym’n for PMMA (large) sheet
 1st to a low conversion  viscous solution

 2nd in a sheet mold
 taking care of heat and shrinkage problems
 taking care (actually taking advantage) of autoacceleration

 Alternatively, polymer + monomer in the cast [mold]

 ‘cast polym’n’

 Plexiglas® (cell casting) 
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 solution polym’n
 use of solvent that dissolve M, I, and polymer
 no heat and autoacceleration problem

 low rate of polym’n  low [M]

 CT to solvent

 isolation of polymer needed 
 evaporation of solvent or precipitation in non-solvent

 useful only for polymer used as solution (paint, adhesive)
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 suspension polym’n
 M+I suspended in (heated) water to form droplets
 with vigorous stirring  determine size (.05 – 2 mm)

 with dispersion stabilizer (water-soluble polymer like PVA)
and surfactant

 bulk polym’n in droplet
 problems of bulk polym’n resolved

 droplet  bead ~ ‘bead polym’n’

 commonly used industrially
 for many polymers esp for PVC

 not for low-Tg polymers

 What if monomer and/or polymer water soluble?
 inverse suspension polym’n, eg acrylamide [PAM]
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 emulsion = colloidal dispersion

 particle size < few µm (suspension < few mm)

 monomer micelles in water 

 polym’n to form latex (= polymer particles in water)

 recipe
 water-insoluble M

 water-soluble I ~ usually redox (like persulfate)

 surfactant [emulsifier] (like SLS)

 water

 3 phases

monomer-swollen
micelle (10 nm)
(when conc’n > CMC)

monomer droplet
(10 µm)
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 mechanism
 Interval I: particle nucleation
 I  R  oligomer radical [O]

 micellar nucleation (z-mer)
 O into micelle and polym’n
 M from droplet thru aq phase
 surfactant from inactive micelle

 homogeneous nucleation (j-mer)
 less water-insoluble M
 to form primary particle 

Fig 4.9 p95
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 mechanism (cont’d)
 Interval II: particle growth
 polym’n in the particles

 M from droplet through aq phase

 radical from aq phase: repeat initiation/termination

 Interval III: completion
 no more monomer droplet

 polym’n of residual M

 autoacceleration may occur
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 rate of emulsion polym’n

 Np  ~ # of particles [active micelles at the end of interval I]
 n ~ avg # of radicals/particle  0.5
 [M]p ~ monomer conc’n in a particle

 at Interval I, Np  Rp

 at Interval II, Rp constant 
 [M] constant

 at Interval III, [M]p   Rp

Fig 4.10 p96

Rp
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 MM

 ρ = molar rate of radical formation from initiator

 possible to enhance Rp and MM at the same time.
 by increasing Np  increasing conc’n of surfactant

 reason ~ compartmentalization

 applications of emulsion polym’n
 water-borne paints, adhesives, coatings

 core-shell particles

 water soluble monomers? inverse emulsion polym’n
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 start with small (~100 nm) 

monomer droplet 
 polymer part’l

 compared to macroemulsion;
 high shear

 costabilizer ~ highly water-insoluble
 like C16H34 or oligomer

 osmotic P against Ostwald ripening

 applications
 water-insoluble additives

 in-situ polym’n in droplet
 eg, epoxy latex
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 micron-size crosslinked polymer

 temperature-sensitive microgel
 water-insoluble at polym’n Temp > LCST ~ deswell

 water-soluble at lower Temp < LCST ~ swell

 eg, pNIPAAm ~ useful in drug delivery

Fig 14.2 p321
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 living polym’n
 polym’n with no termination
 originally in anionic polym’n
 for limited monomers

 gives low PDI
 enables (block) copolymer structure control

 living radical polym’n
 became available very recently
 not truly living, though
 termination reduced, not absent
 quasi- or pseudo-living

 living radical polym’n = controlled radical polym’n
= reversible-deactivation radical polym’n (IUPAC)



Ch 4 Sl 55Two types of strategies

Fig 4.11 p100

S1. reversible 
end-capping

 very low [M]

 very low Rt (∝ [M]2)

 low Rp also

S2. reversible CT
 [M] similar to

conventional

 Rp also similar 

 Rt very low 
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 quasi-living radicals
 very effective and fast activation-deactivation

 very short (transient) life-time  trad ~ .01 - .1 ms
 conventional  τ ~ .1 - 10 s

 gives short chain/period
 x = kp [M] trad ~ .02 - 35 repeat unit/period  p100

 termination suppressed
 MM increase linearly with conversion

 narrow MMD

 block copolymer can be prepared
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 nitroxide-mediated radical polym’n

 living-like polym’n possible due to
 stable nitroxide ~ no self rxn ~ ‘persistent radical’

 weak C-O bond

 small K  most chains dormant  very low [M] 
 negligible termination

 equal chance to growth, no AA  low PDI

NMP



Ch 4 Sl 58

 developments
 ST polym’n with TEMPO at 125 ºC
 with conventional initiator

 ‘stable-free-radical(-mediated) polym’n (SFRP)’

 ST, acrylates, dienes at lower Temp 
 with TIPNO, SGI

 use of monomer-alkoxyamine as initiator
 better control of [M]

 current standard

Fig 4.13 p102
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 kinetics of NMP

 plot linear only in early stage; positive curvature later
 ‘persistent radical effect (PRE)’
 termination  [M] , (relative) [NO]   termination 
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 modified kinetics

 AA possible, but not critical (kt
-1/3)

 MM in NMP

 c ~ (fractional monomer) conversion

 PDI? should be ≈1; actually 1.1 - 1.3

~ linear
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 side reactions in NMP

 serious in MMA ~ NMP not for MMA yet

 purely thermal (self) initiation of ST (at 80 ºC)

 Practically, compensate ‘persistent radical effect’
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 atom-transfer radical polymerization
 by Krzysztof Matyjaszewski

CuBr(L) CuBr2(L)

CuBr(L)

CuBr2(L)

initiator

‘activator’
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 initiators

 resembles monomer structure ~ slightly larger activity

 activators

 Cu dominant
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 features similar as NMP
 chain growth through 

repeated ‘activation-propagation-deactivation’

 fast activation-deactivation reactions

 small K, most chains dormant, low [M]

 low Rt, low Rp

 low PDI, radicals live for 2nd monomer
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 Kinetics of ATRP

 Like NMP, 1st order 
 also be modified by ‘persistent radical effect’

 Unlike NMP, [activator]/[deactivator] controls kinetics.

 PDI? should be ≈1; actually 1.1 - 1.2
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 Compared to NMP, ATRP
 is for more monomers
 styrenics, (meth)acrylates, --- even E, VAc ~ still developing

 Acidic H (like in AA) should be ionized or protected.

 has more choice of initiators, activators, and deactivators

 is better controllable
 reverse ATRP, SR&NI, ICAR, AGET, ARGET

 to control K, Rp, MM, MMD

 use metal ~ should be removed
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 reversible addition-fragmentation chain transfer 

radical polym’n
 in (otherwise normal) radical polym’n

 use of very effective CT agent [RAFT agent]

 CCTA ~ as high as 1000

 A and R of similar reactivity

fragmentation addition
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 RAFT mechanism

 use [RAFT]0 >> [I]0 (like 10-fold)

 all chains with RAFT end-group  no termination
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 mechanism (cont’d)

 fast and effective A-F  living-like

 MM

 all chains with RAFT end-group and living-like

 narrow MMD by that all chains grows equal rate
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 kinetics
 Rp should be the same to conventional radical polym’n.

 Actually, slower. Probably due to
 radical formation by thermal initiator only

 [RAFT]0 >> [I]0

 stable adduct radical  slow fragmentation  [M] 

 termination by rxn of adduct radical and other radical  [M] 

 Compared to NMP and ATRP, RAFT 
 is much faster

 is for much more versatile monomers

 color
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 RAFT agents  Fig 4.18 p112

 adduct stability (Z)

 stabilizing radical ~ reactive

 thiobenzoate > thiocarbonate > thiocarbamate > xanthate

 leaving radical stability (A)
 stable radical ~ better leaving ~ reactive
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 RAFT agents (cont’d)

 more reactive RAFT agent for more reactive monomer
 monomer reactivity ↔ its radical stability
 important in copolymerization   Chapt 9

 reactive monomer ~ stable radical ~ need reactive RAFT agent

 for PS

p212
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 with crosslinking monomers
 Degree of Xlinking depends on 

content of Z.
 monomers  Fig 4.20

(i) DVB
 for PS
 gel for GPC
 ion-exchange resin -SO3

(-)

 bead for protein synthesis

(ii) (EG)DMA
 for acrylates
 ‘hydrogels’
 hydrophilic network
 soft lenses
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(iv) graft-linking monomer
 with different reactivity 

 to graft copolymer 

 for core-shell particles

(v) bis-GMA
 for dental material

(vi,vii)
 for higher Xlinking density
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 with unsaturated polymers
 unsaturated polyester
 diol + diacid + unsat’d diacid  unsat’d prepolymer

 prepolymer + styrene + initiator  crosslinking

 useful for composite
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 in (1,3-)diene polym’n   Chapt 6

 copolymerization of double bonds
 along the chain ~ from 1,4-polym’n

 at side group ~ from 1,2- (or 3,4-)polym’n
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 in diene polym’n (cont’d)
 CT to polymer
 abstraction of allylic H (4 H’s/ru)

 uncontrollable?
 by conversion or CT agent
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