

Radical Polymerization

- step vs chain polym'n
 - □ step ~ growth by reaction of functional groups
 - chain ~ growth by addition of monomer to active center

 $\Box I \rightarrow R^* \rightarrow RM^* \rightarrow RMM^* \rightarrow \cdots \rightarrow RM_n^* \rightarrow RM_{n+1}^*$

- □ I ~ initiator [開始劑]
- □ * ~ active center [活性點]
 - * = (free-radical) ~ radical polym'n
 - * = + (cation) ~ cationic polym'n Chapter 5
 - * = (anion) ~ anionic polym'n Chapter 5
 - * = coordination site ~ coordination polym'n Chapter 6
- □ M ~ monomer [單量體, 單位體]

Monomers for chain polym'n

monomer ~ unsaturated compound with either

- double bond (C=C, C=O)
- ring ~ ring-opening polym'n Chapter 7
- polymerizability of monomer
 Table 5.1 p124
 - □ C=O by ionic only
 - □ CH(X)=CH(Y) ~ hardly polymerize ← steric hindrance
 - \Box CH₂=C(X)(Y) ~ can polymerize
 - □ vinyl monomers $CH_2 = CH(X)$
 - with e⁻ donating X ~ cationic or radical
 - with e⁻ withdrawing X ~ anionic or radical
 - ✓ Most C=C monomers can be radical-polymerized.

Radical polym'n

two types of radical polym'n

- (conventional) free-radical polym'n
- □ (newer) living radical polym'n Section 4.5

mechanism of free-radical polym'n

- $\Box \text{ initiation} \qquad I \rightarrow R \bullet \rightarrow RM \bullet$
- □ propagation $RM \cdot \rightarrow RMM \cdot \rightarrow \cdots \rightarrow RM_n \cdot$

□ termination $RM_n \bullet + RM_m \bullet \rightarrow RM_{n+m}R$ or $RM_n + RM_m$

□ chain transfer $RM_n \cdot + TA \rightarrow RM_nT + A \cdot$

Initiation

Ch 4 SI 5

 $\Box 2 \text{ steps} \qquad I \rightarrow R \bullet \rightarrow RM \bullet$

- 1st step ~ formation of radical
 - homolysis of initiator
 - thermal initiators ~ containing peroxide or azo linkage
 - thermolysis at (usually) 50 100 °C Table 4.2 p86

- photochemical initiators ~ UV sensitive
 - photolysis ~ time- and space-controllable

$$\bigcirc \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{h\nu}{\longrightarrow} \bigtriangledown \bigcirc \stackrel{O}{\longrightarrow} \stackrel{O}{\longleftarrow} + \cdot \bigcirc$$

redox initiation

• redox = reduction + oxidation \leftarrow oxidant + reductant

fast, at variety of Temp, in aqueous medium

useful for low Temp polym'n and/or emulsion polym'n Section 4.4.4

- □ 2nd step ~ addition of one monomer
 - much faster than 1st step
 - □ Not all R• initiate, since R• reacts with
 - other R• within the cage ~ 'cage effect'
 - other \mathbb{R} or polymer radical \rightarrow termination
 - solvent, polymer, initiator \rightarrow chain transfer
 - monomer → initiation
 - ♦ initiator efficiency, f ~ 0.3 < f < 0.8 < 1

mode

Propagation

addition of M to growing •

mode

□ head-to-tail configuration favored by > 98%

- proved by analysis
- may be < 98% for very small X with little mesomeric effect like F</p>
 - PVF ~ 90%; PVDF ~ 95%
 - PVA > 98%

Termination

Ch 4 SI 9

- \square disappearance of radical \rightarrow polym'n stops
- two modes
 - combination [coupling]
 - one dead polymer
 - (x+y)-mer

$$R = \begin{bmatrix} CH_2 - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH_2 - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH_2 - CH_2 \\ X \end{bmatrix}_{y-1} +$$

- disproportionation
 - two dead polymers
 - x-mer + y-mer

$$R \begin{bmatrix} CH_{2} - CH \end{bmatrix} \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH - CH \\ X \end{bmatrix}_{y-1} \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH_{2} - CH_{2} \\ X \end{bmatrix} + \begin{bmatrix} CH = CH \\ X \end{bmatrix}_{y-1} \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{x-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} + \begin{bmatrix} CH - CH_{2} \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \end{bmatrix}_{y-1} \\ R \begin{bmatrix} CH_{2} - CH \\ X \end{bmatrix}_{y-1} \\ R \end{bmatrix}_$$

- \Box Combination requires low E_a .
 - usually favored, esp at low Temp
- Mode highly dep on type of monomer.
 - vinyl monomers favor combination
 - eg PS
 - $\hfill\square$ $\alpha\mbox{-methylvinyl}$ monomers favor disproportionation
 - eg PMMA
 - additional C-H's

transfer of kinetic chain to other molecule

□ transfer of active center from active chain

$$R = \begin{bmatrix} CH_2 - CH \\ I \\ X \end{bmatrix}_{X-1} \stackrel{\bullet}{\xrightarrow{}}_{X} + T = A \xrightarrow{} R = \begin{bmatrix} CH_2 - CH \\ I \\ X \end{bmatrix}_{X-1} \stackrel{\bullet}{\xrightarrow{}}_{X} + A^{\bullet}$$

- □ abstraction of T (typically H) from other molecule
- □ A•, if reactive, may initiate a new kinetic chain.
- Other molecule can be initiator, monomer, solvent, chain transfer agent, or polymer.

CT Iowers MM.

- \square # of chains per # of initiations \uparrow
- except for CT to polymer

CT to initiator CT to solvent $\sim CH_2 - CH_2 + H - CH_2 - O \sim CH_2 - CH + CH_2 - CH_2 + CH_2 - CH_2 -$ CT to chain transfer agent Fig 4.1 p67 □ CTA ~ add to control MM $\sim CH_2 - CH + Br - CBr_3 \longrightarrow \sim CH_2 - CH - Br + CBr_3$ X

□ What if using CTA as solvent?

- telomerization [popcorn polym'n]
- telomer telogen

- MM not change (both), PDI increases (intermol)
- □ Radical polym'n of ethylene gives LDPE. Fig 4.2 p69
 - intramol CT [back-biting] \rightarrow short-chain branching
 - butyl, ethyl, ethylhexyl branches
 - intermol CT \rightarrow long-chain branching
 - Iower crystallinity [low density], lower mp, and lower shear-rate sensitivity than HDPE

□ CT to polymer (cont'd)

□ PMA vs PVAc Read p68 and see Fig 4.3 & 4.4 p70

 \Box polymer from 1,2-disubs vinyl monomers [CH₂=CXY]

- no 3° backbone H \rightarrow negligible CT to polymer
- □ polymer from 1,3-diene Section 4.6.2.2

Kinetics: rate of free-radical polym'n

steady-state condition [approximation]

•
$$R_i = R_t \rightarrow [M^{\bullet}] = \left(\frac{R_i}{2k_t}\right)^{1/2}$$

true in early stage, except for very early stage

□ rate of polym'n = rate of propagation

$$R_{\rm p} = k_{\rm p}[\mathbf{M}][\mathbf{M}^{\bullet}] = k_{\rm p} \left(\frac{R_{\rm i}}{2k_{\rm t}}\right)^{1/2} [\mathbf{M}]$$

□ thermolysis of initiator I $\xrightarrow{\kappa_{d}}$ 2 R[•] $R_{i} = 2fk_{d}$ [I]

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [\mathbf{M}][\mathbf{I}]^{1/2}$$

□ photoinitiation
$$I \xrightarrow{h\nu} 2R^{\bullet}$$

 $R_{i} = 2\phi \varepsilon I_{o}[I]$
 $R_{p} = k_{p} \left(\frac{\phi \varepsilon I_{o}}{k_{t}}\right)^{1/2} [M][I]^{1/2}$

 I_{o} is the intensity of the incident light ε is the molar absorptivity of the initiator ϕ is the quantum yield (i.e. the photochemical equivalent of initiator efficiency).

redox initiation

$$\begin{array}{ccccc} & CH_3 \\ & -C-O-OH \\ & -CH_3 \\ & CH_3 \end{array} + Fe^{2+} \longrightarrow \\ & OH \\ & CH_3 \end{array} + \overline{OH} + Fe^{3+}$$

 $R_{\rm i} = fk_{\rm r}[{\rm CumOOH}][{\rm Fe}^{2+}]$

$$R_{\rm p} = k_{\rm p} \left(\frac{fk_{\rm r}}{2k_{\rm t}}\right)^{1/2} [\rm M] [\rm CumOOH]^{1/2} [\rm Fe^{2+}]^{1/2}$$

Ch 4 SI 20

 $\overline{x}_n = \frac{\text{Moles of monomer consumed in unit time}}{\text{Moles of polymer formed in unit time}}$

assuming <u>no</u> chain transfer, $(x_n)_0$ $(\overline{x}_{n})_{0} = \frac{k_{p}[M][M^{\bullet}]}{k_{tc}[M^{\bullet}]^{2} + 2k_{td}[M^{\bullet}]^{2}}$ $k \ [M] \qquad \leftarrow q = k_{td}/k_{t} \text{ and } [M^{\bullet}] = \left(\frac{R_{i}}{2k_{t}}\right)^{1/2} \text{ (s-s approx)}$ $(\overline{x}_{n})_{0} = \frac{k_{p}[M]}{(1+q)(fk_{d}k_{t})^{1/2}[\Pi]^{1/2}}$ □ thermolysis of initiator $(\bar{x}_{n})_{0} = \frac{k_{p}[M]}{(1+a)(\phi \epsilon I k)^{1/2} [\Pi^{1/2}]}$ photoinitiation $(\overline{x}_{n})_{0} = \frac{2^{1/2} k_{p}[M]}{(1+a)(fk_{n}k_{n})^{1/2} [CumOOH]^{1/2} [Fe^{2+1}]^{1/2}}$ redox initiation

\Box kinetic chain length, v

$$\Box v = \#$$
 repeat units/radical = R_p/R_t

$$v = \frac{k_{\rm p}[{\rm M}^{\bullet}][{\rm M}]}{2k_{\rm t}[{\rm M}^{\bullet}]^2} = \frac{k_{\rm p}[{\rm M}]}{2k_{\rm t}^{1/2}(R_{\rm i}/2)^{1/2}}$$
$$(\bar{x}_{\rm n})_0 = \left(\frac{2}{1+q}\right)v$$

 \Box R_p and MM

$$R_{\rm p} \propto [{\rm M}][{\rm I}]^{1/2}$$
 and $(\bar{x}_{\rm n})_0 \propto [{\rm M}][{\rm I}]^{-1/2}$

[I] ↑ → R_p ↑ and MM ↓ ~ trade-off in R_p and MM
 instantaneous equations ~ change with conversion

Diffusion-controlled kinetics

Ch 4 SI 22

- s-s approx valid only at conversion < 15-20%</p>
 - at higher conversion,
 - [I] ψ and [M] $\psi \rightarrow R_p \psi$
 - actually, R_p ↑
 - become diffusion-controlled

%polymer

- R_p vs conv Odian pp282-287
- T_g of mixture [M-plasticized polymer] becomes higher than polym'n Temp
- R_p decreases to stop

MM with chain transfer

$$M_{i}^{\bullet} + T - A \longrightarrow M_{i} - T + A^{\bullet}$$

$$A^{\bullet} + M \longrightarrow AM_{1}^{\bullet}$$

■ When $k_r < k_i \rightarrow R_p \downarrow$ and $x_n \downarrow < cf>$ autoinhibition ■ When $k_r \approx k_i \rightarrow$ only $x_n \downarrow$

$$\overline{x}_{n} = \frac{k_{p}[M][M]}{k_{tc}[M^{\bullet}]^{2} + 2k_{td}[M^{\bullet}]^{2} + k_{trM}[M^{\bullet}][M] + k_{trI}[M^{\bullet}][I] + k_{trS}[M^{\bullet}][S]}$$

TX #1EX #+3

$$\frac{1}{\bar{x}_{n}} = \frac{(1+q)k_{t}^{1/2}(R_{i}/2)^{1/2}}{k_{p}[M]} + \frac{k_{trM}}{k_{p}} + \frac{k_{trI}[I]}{k_{p}[M]} + \frac{k_{trS}[S]}{k_{p}[M]}$$

$$\frac{1}{\overline{x}_{n}} = \frac{1}{(\overline{x}_{n})_{0}} + C_{M} + C_{I} \frac{[I]}{[M]} + C_{S} \frac{[S]}{[M]}$$

Mayo(-Walling) Eqn

□ C ~ chain transfer constant

Mayo(-Lewis) Eqn ~ copolym'n

			Transfer Constant,
	Compound	Bond Cleaved (T-A)	$C_{\text{TA}} (= k_{\text{trTA}} / k_{\text{p}})$
Table 4.1 p79	Styrene	$H - C(Ph) = CH_2$	7×10^{-5}
	Benzoyl peroxide	PhCOO-OOCPh	5×10^{-2}
C's for radical polym'n of ST	Benzene	HPh	2×10^{-6}
	Toluene	H — CH_2Ph	12×10^{-6}
	Chloroform	H—CCl ₃	5×10^{-5}
	Carbon tetrachloride	Cl—CCl ₃	1×10^{-2}
	Carbon tetrabromide	Br—CBr ₃	2
	Dodecyl mercaptan	$H - SC_{12}H_{25}$	15

 \Box C_M ~ small, little effect on x_n

 \Box C₁ ~ larger than C_M, but lower effect on x_n

 \Box C_S or C_{CTA} ~ dep on bond strength <cf> telomerization

Catalytic chain transfer

special type of chain transfer to monomer □ Co(II) abstracts H• from growing radical \Box Co(III) gives H• to monomer very effective [high C] $CH_2 - H$ ∽∽∽∽ CH₂—Ċ• \Box for monomer with α -methyl C=OÓR \Box resulting C=C end group macro(mono)mer CH_3 with controlled MM $CH_2 = \dot{C}$ C=OÓR $= 2 + - k_{p}[M][M^{\bullet}]$ $(\overline{\mathbf{x}})$

$$(x_n)_{CCT} = 2 + k_{CCT} [M^{\bullet}] [Co(II)]$$

$$(\overline{x}_n)_{CCT} = 2 + \frac{[M]}{C_{CCT}[Co(II)]}$$

ÓR

p80

OR

Inhibition and retardation

□ harmful in polym'n awa in use

- Inhibition and retardation differs only in degree.
 - □ eg, quinone ~ inhibitor for ST, retarder for MMA

Ch 4 Sl 27

- may be added deliberately
 - □ for transportation, storage
 - remove before or feed more initiator in polym'n
- quinone, hindered phenol, radical scavenger

<cf> autoinhibition

Molar mass distribution

- □ At low conversion, ([M], [I], k's constant)
 - [M] and [I] decrease a little, actually. Problem 4.1
 - $\square \beta$ ~ probability of growth of a radical
 - $\beta = R_p / (R_p + R_t + R_{CT})$
 - same to p in step polym'n
 - termination by disproportionation
 - probability of i-mer, $P(i) = (1 \beta)\beta^{(i-1)}$

•
$$x_n = 1/(1 - \beta)$$

•
$$X_w = (1 + \beta)/(1 - \beta)$$

• PDI or D,
$$\overline{M}_{\rm w}/\overline{M}_{\rm n} = 1 + \beta$$

■ PDI → 2 when
$$\beta$$
 → 1 [R_p >> R_t, R_{CT}]

 $\beta = \frac{N_0 - N}{N_0}$ $N = N_0(1 - \beta)$ for polymer
fraction only,
not for whole
mixture!!

Iow conv (cont'd)

□ termination by combination

■ (j-mer)• + (i – j-mer)•
$$\rightarrow$$
 (i-mer)

$$P(j) = (1 - \beta)\beta^{(j-1)}$$

$$P(i - j) = (1 - \beta)\beta^{(i-j-1)}$$

$$(i - 1) \text{ ways}$$

$$P(i) = (i - 1)(1 - \beta)^{2}\beta^{(i-2)}$$

$$\bar{M}_{n} = \sum P(i)M_{i} = M_{0}(1 - \beta)^{2}\sum i(i - 1)\beta^{(i-2)}$$

$$M_{i} = i M_{0}$$

$$\bar{M}_{n} = \frac{2M_{0}}{(1 - \beta)}$$

$$\sum_{i=1}^{\infty} i(i - 1)\beta^{(i-2)} = 2(1 - \beta)^{-3}$$

2 propagating chains terminated by 1 combination

$$\beta = \frac{N_0 - 2N}{N_0}$$
 $N = \frac{N_0(1 - \beta)}{2}$

• weight fraction, w_i

$$w_i = i N_i / N_0 = i N P(i) / N_0$$

 $w_i = \left(\frac{1}{2}\right) i(i-1)(1-\beta)^3 \beta^{(i-2)}$
 $w_i = \frac{N_x(x\overline{M_0})}{N_0\overline{M_0}} = \frac{xN_x}{N_0} \text{ eqn } 3.11 \text{ p35}$
 $P(i) = (i-1)(1-\beta)^2 \beta^{(i-2)}$
 $N = \frac{N_0(1-\beta)}{2}$

$$\bar{M}_{w} = \sum w_{i}M_{i} = \left(\frac{1}{2}\right)M_{0}(1-\beta)^{3}\sum i^{2}(i-1)\beta^{(i-2)} \qquad M_{i} = i M_{0}$$
$$\bar{M}_{w} = \frac{M_{0}(2+\beta)}{(1-\beta)} \qquad \sum_{i=1}^{\infty} i^{2}(i-1)\beta^{(i-2)} = 2(2+\beta)(1-\beta)^{-4}$$

• PDI,
$$\bar{M}_{\rm w}/\bar{M}_{\rm n} = (2+\beta)/2$$

■ PDI → 1.5 when
$$\beta \rightarrow 1$$
 [R_p >> R_t, R_{CT}]

smaller PDI than disproportionation

□ At higher conversion, MMD gets much broader.

- □ [I] decrease faster than [M] does.
 - larger molecule at later stage
 - PDI ~ 3 5
 - may be controlled by multiple charge of I
- autoacceleration
 - PDI ~ 5 10
- □ CT to polymer
 - PDI ~ 20 50
- Hard to control AA and CT to polymer
 - avoid bulk polym'n or stop at low conversion

$$(\overline{x}_{n})_{0} = \frac{k_{p}[M]}{(1+q)(fk_{d}k_{t})^{1/2}[I]^{1/2}}$$

Determination of kinetic parameters

Ch 4 SI 33

🗆 R_p

- separation of reaction product
 - step polym'n ~ distillation of small molecules
 - chain polym'n ~ isolation of polymer (ppt in nonsolvent)
- chemical or spectroscopic analysis
 - step ~ disappearance of functional group
 - chain ~ disappearance of double bond
- dilatometry
 - monitoring volume change

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [{\rm M}][{\rm I}]^{1/2}$$

$$(\overline{x}_{n})_{0} = \frac{k_{p}[M]}{(1+q)(fk_{d}k_{t})^{1/2}[I]^{1/2}}$$

k_d
 [I] by spectroscopy
 Table 4.2 p86

 \Box f \leftarrow f k_d

- using radical scavenger
 - color change by UV/vis
- end-group analysis
 - Iow conc'n in polymer

 $\Box 0.3 < f < 0.8$

$$I \xrightarrow{k_{d}} 2 R^{t}$$
$$-\frac{d[I]}{dt} = k_{d}[I]$$

DPPH Purple Colourless

$$-\frac{d[DPPH]}{dt} = 2fk_d[I] = R_i$$

- \Box k_p and k_t
 - **I** from $k_p/k_t^{\frac{1}{2}}$ and k_p/k_t
 - $\Box k_{p}/k_{t}^{1/2}$
 - using $[M]_0$ and $[I]_0$ knowing R_p and f k_d
 - at s-s (low conv)
 - $\Box k_p/k_t$
 - τ, avg life-time of radical

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [{\rm M}][{\rm I}]^{1/2}$$

 $\tau = \frac{\text{concentration of active centres}}{\text{rate of loss of active centres}} = \frac{[M^{\bullet}]}{2k_t[M^{\bullet}]^2} = \frac{1}{2k_t[M^{\bullet}]} = \frac{k_p[M]}{2k_tR_p}$ $R_p = k_p[M][M^{\bullet}]$

- τ measured using
 'rotating sector method' ~ photopolym'n with on/off
- 0.1 < τ < 10 sec
 Odian pp263-267

 \Box k_p and k_t separately by using pulsed-laser polym'n p87-88

- initiation/termination by short pulse (10 ns) laser
- MM of the product measured

chain transfer constants

$$\frac{1}{\overline{x}_{n}} = \frac{(1+q)k_{t}^{1/2}(R_{i}/2)^{1/2}}{k_{p}[M]} + \frac{k_{trM}}{k_{p}} + \frac{k_{trI}[I]}{k_{p}[M]} + \frac{k_{trS}[S]}{k_{p}[M]} = \frac{1}{(\overline{x}_{n})_{0}} + C_{M} + C_{I}\frac{[I]}{[M]} + C_{S}\frac{[S]}{[M]}$$

□ one by one. pp78-79

- C₁ (AIBN) ≈ 0
 - plot $1/x_n$ vs $[I]_0^{\frac{1}{2}}/[M] \rightarrow C_M$
- with other $I \rightarrow C_I$
- with $S \rightarrow C_S$

$$(\overline{x}_{n})_{0} = \frac{k_{p}[M]}{(1+q)(fk_{d}k_{t})^{1/2}[I]^{1/2}}$$
Quantity	Units	General Range of Values	Methacrylamide Photopolymerization ^a
R_i	moles/liter-sec	$10^{-8} - 10^{-10}$	8.75×10^{-9}
k _d	sec ⁻¹	$10^{-4} - 10^{-6}$	_
[I]	moles/liter	$10^{-2} - 10^{-4}$	3.97×10^{-2}
[M·],	moles/liter	$10^{-7} - 10^{-9}$	2.30×10^{-8}
$(R_p)_s$	moles/liter-sec	$10^{-4} - 10^{-6}$	3.65×10^{-6}
[M]	moles/liter	$10 - 10^{-1}$	0.20
k,	liters/mole-sec	$10^{2}-10^{4}$	7.96×10^{2}
R,	moles/liter-sec	$10^{-8} - 10^{-10}$	8.73×10^{-9}
<i>k</i> ,	liters/mole-sec	$10^{6} - 10^{8}$	8.25×10^{6}
τ,	sec	$10^{-1} - 10$	2.62
k_{p}/k_{t}	none	$10^{-4} - 10^{-6}$	9.64×10^{-5}
$k_p / k_t^{1/2}$	(liters/mole-sec) ^{1/2}	$1 - 10^{-2}$	2.77×10^{-1}

TABLE 3-10 Reaction Parameters in Radical Chain Polymerization

^aValues are taken directly or recalculated from Dainton and Sisley [1963].

Odian p269

Effect of Rxn Temp ~ Activation energy $_{4 SI 38}$

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [{\rm M}][{\rm I}]^{1/2} \qquad (\overline{x}_{\rm n})_0 = \frac{k_{\rm p}[{\rm M}]}{(1+q)(fk_{\rm d}k_{\rm t})^{1/2}[{\rm I}]^{1/2}}$$

$k_{\rm d} = A_{\rm d} \exp(-E_{\rm d}/\mathbf{R}T)$	Table 4.4 p89	Activation
$k = A \exp(-F /\mathbf{R}T)$	Process	Energy / kJ mol-1
$\kappa_p - A_p \exp(-L_p/\mathbf{M}T)$	Initiator	$110 < E_{\rm d} < 160$
$k_{\rm t} = A_{\rm t} \exp(-E_{\rm t}/\mathbf{R}T)$	dissociation	
	Propagation	$15 < E_{\rm p} < 40$
$k_{\rm tr} = A_{\rm tr} \exp(-E_{\rm tr}/\mathbf{R}T)$	Termination	$2 < E_{\rm t} < 20$
	Chain transfer	30 < E < 80

 $\frac{d\{\ln R_{\rm p}\}}{dT} = \frac{(2E_{\rm p} + E_{\rm d}) - E_{\rm t}}{2\mathbf{R}T^2} > 0 \quad \sim \text{ As T up, } R_{\rm p} \text{ up.}$ $\frac{d\{\ln(\bar{x}_{\rm n})_0\}}{dT} = \frac{2E_{\rm p} - (E_{\rm d} + E_{\rm t})}{2\mathbf{R}T^2} < 0 \quad \sim \text{ As T up, } x_{\rm n} \text{ down.}$

As T up, [M•] up, and [M•]² up more rapidly. (p89) ?

$$R_{\rm p} = k_p \left(\frac{fk_{\rm d}}{k_{\rm t}}\right)^{1/2} [{\rm M}][{\rm I}]^{1/2} \qquad (\overline{x}_{\rm n})_0 = \frac{k_{\rm p}[{\rm M}]}{(1+q)(fk_{\rm d}k_{\rm t})^{1/2}[{\rm I}]^{1/2}}$$

photopolym'n

$$\Box E_{d} = 0$$

$$\frac{d\{\ln R_{p}\}}{dT} = \frac{(2E_{p} + E_{d}) - E_{t}}{2\mathbf{R}T^{2}} > 0, \text{ but small } \sim \text{ lower effect}$$

$$\frac{d\{\ln(\overline{x}_{n})_{0}\}}{dT} = \frac{2E_{p} - (E_{d} + E_{t})}{2\mathbf{R}T^{2}} > 0 \sim \text{As T up, } x_{n} \text{ up! (p89)}$$

□ Actually, may not. ← Photoinitiators are thermally decomposed.
 □ chain transfer

$$\frac{d\{\ln C_{tr}\}}{dT} = \frac{E_{tr} - E_{p}}{\mathbf{R}T^{2}} > 0 \sim \text{As T up, C up, and } \mathbf{x}_{n} \text{ down.}$$

Equilibrium thermodynamics

Polym'n – depolym'n is an equili rxn

$$\mathbf{M}_{i}^{\bullet} + \mathbf{M} \implies \mathbf{M}_{i+1}^{\bullet} \qquad \Delta G_{\mathbf{p}}^{\mathbf{o}} = -\mathbf{R}T \ln\{K_{\mathbf{p}}\}$$

$\Box \Delta G = \Delta H - T \Delta S$

 $\Box \Delta H_p < 0$ (-50 ~ -100 kJ/mol)

• H(formation of σ bond) > H(breaking π bond)

$$\Box \Delta S_p < 0$$
 (-100 ~ -120 J/mol K)

Ioss in DOF by decreased number of molecules

- disfavors polym'n
- \Box $|\Delta H_p|$ must be > $|T\Delta S_p|$ for polymerization.
 - T must be lower than T_c.

□ ceiling Temp T_c

$$M_{i}^{\bullet} + M \implies M_{i+1}^{\bullet}$$

$$\Delta G = \Delta G^{\circ} + RT \ln K = 0$$

$$\Delta G_{p}^{\circ} = -RT \ln\{K_{p}\}$$

$$\ln\{[M]_{eq}\} = \frac{\Delta H_{p}^{\circ}}{RT} - \frac{\Delta S_{p}^{\circ}}{R}$$

$$\Delta G_{p}^{\circ} = \Delta H_{p}^{\circ} - T\Delta S_{p}^{\circ}$$

$$\Delta G_{p}^{\circ} = \Delta H_{p}^{\circ} - T\Delta S_{p}^{\circ}$$

$$\Delta G_{p}^{\circ} = \Delta H_{p}^{\circ} - T\Delta S_{p}^{\circ}$$

- \Box T_c largely depends on Δ H \leftarrow Δ S similar
 - $\Box \Delta H$ depends on structure Table 4.5 p90
 - Iow T_c for 1,1-disubstituted monomers \leftarrow small Δ H due to steric
 - critical in carbonyl polym'n (ionic polym'n)

□ Floor Temp

• $\Delta S_p > 0$ and $\Delta H_p > 0$ (both very small)

s´ `s s s-s´

elemental sulfur $\Delta H_p = 13.5 \text{ kJ/mole}$ $\Delta S_p = 31 \text{ J/mole}^{\circ} \text{K}$

depolym'n vs thermal stability vs heat resistance
 T_g vs HDT (or VSP)

Radical polym'n processes

- 4 types of process
 - □ bulk, solution, suspension polym'n ~ same kinetics
 - emulsion polym'n ~ somewhat different
- bulk polym'n
 - □ simple and pure
 - [M] fixed at max

$$R_{\rm p} \propto [{\rm M}][{\rm I}]^{1/2}$$
 and $(\bar{x}_{\rm n})_0 \propto [{\rm M}][{\rm I}]^{-1/2}$

- [I] and Temp controlled to compromise R_p and MM
- problems at high conversion
 - heat, shrinkage, and autoacceleration
 - stop at low conversion \rightarrow recovery of monomer needed
- polymer may not be soluble in monomer ~ ppt polym'n
 - eg, PVC; vs suspension

bulk polym'n (cont'd)

- □ 2-stage polym'n for PMMA (large) sheet
 - 1st to a low conversion \rightarrow viscous solution
 - 2nd in a sheet mold
 - taking care of heat and shrinkage problems
 - taking care (actually taking advantage) of autoacceleration
 - Alternatively, polymer + monomer in the cast [mold]
 - 'cast polym'n'
 - Plexiglas[®] (cell casting)

solution polym'n

□ use of solvent that dissolve M, I, and polymer

- no heat and autoacceleration problem
- low rate of polym'n ← low [M]
- CT to solvent
- isolation of polymer needed
 - evaporation of solvent or precipitation in non-solvent
- useful only for polymer used as solution (paint, adhesive)

suspension polym'n

□ M+I suspended in (heated) water to form droplets

- with vigorous stirring \rightarrow determine size (.05 2 mm)
- with dispersion stabilizer (water-soluble polymer like PVA) and surfactant
- bulk polym'n in droplet
 - problems of bulk polym'n resolved
 - droplet → bead ~ 'bead polym'n'
- commonly used industrially
 - for many polymers esp for PVC
 - not for low-T_g polymers
- □ What if monomer and/or polymer water soluble?
 - inverse suspension polym'n, eg acrylamide [PAM]

Emulsion polymerization

emulsion = colloidal dispersion

- particle size < few μm (suspension < few mm)</p>
- monomer micelles in water
- polym'n to form latex (= polymer particles in water)

recipe

- water-insoluble M
- water-soluble I ~ usually redox (like persulfate)
- surfactant [emulsifier] (like SLS)
- water

3 phases

monomer-swollen micelle (10 nm) (when conc'n > CMC)

Ch 4 *SI* 47

mechanism

- Interval I: particle nucleation
 - I → R• → oligomer radical [O•]
 - micellar nucleation (z-mer)
 - O• into micelle and polym'n
 - M from droplet thru aq phase
 - surfactant from inactive micelle
 - homogeneous nucleation (j-mer)
 - less water-insoluble M
 - to form primary particle

mechanism (cont'd)

- Interval II: particle growth
 - polym'n in the particles
 - M from droplet through aq phase
 - radical from aq phase: repeat initiation/termination
- □ Interval III: completion
 - no more monomer droplet
 - polym'n of residual M
 - autoacceleration may occur

Emulsion Kinetics ~ Smith-Ewart theory SI 50

rate of emulsion polym'n

$$R_{\rm p} = k_{\rm p}[\mathbf{M}]_{\rm p}(\overline{n}/\mathbf{N}_{\rm A})N_{\rm p} = \frac{k_{\rm p}[\mathbf{M}]_{\rm p}N_{\rm p}}{2\mathbf{N}_{\rm A}}$$

- N_p ~ # of particles [active micelles at the end of interval I]
- $n \sim avg \# of radicals/particle \rightarrow 0.5$

[M]_p ~ monomer conc'n in a particle

- at Interval I, N_p ↑ → R_p ↑
- at Interval II, R_p constant
 - [M] constant
- at Interval III, $[M]_p \downarrow \rightarrow R_p \downarrow$

🗅 MM

 $\overline{x}_{\rm n} = k_{\rm p}[\mathbf{M}]_{\rm p}(N_{\rm p}/\rho_{\rm i}\mathbf{N}_{\rm A})$

$$R_{\rm p} = \frac{k_{\rm p}[\mathbf{M}]_{\rm p} N_{\rm p}}{2\mathbf{N}_{\rm A}}$$

- ρ = molar rate of radical formation from initiator
- \square possible to enhance R_p and MM at the same time.
 - \Box by increasing N_p \leftarrow increasing conc'n of surfactant
 - reason ~ compartmentalization
- applications of emulsion polym'n
 - water-borne paints, adhesives, coatings
 - core-shell particles
- water soluble monomers? inverse emulsion polym'n

Mini-emulsion polym'n

- start with small (~100 nm) monomer droplet
 → polymer part'l
- compared to macroemulsion;
 - □ high shear
 - costabilizer ~ highly water-insoluble
 - like C₁₆H₃₄ or oligomer
 - osmotic P against Ostwald ripening
- applications
 - water-insoluble additives
 - in-situ polym'n in droplet
 - eg, epoxy latex

Ch 4 SI 52

Microgel

micron-size crosslinked polymer

- temperature-sensitive microgel
 - water-insoluble at polym'n Temp > LCST ~ deswell
 - water-soluble at lower Temp < LCST ~ swell</p>
 - eg, pNIPAAm ~ useful in drug delivery

LIVING RADICAL POLYMERIZATIONS Ch 4 SI 54

living polym'n

- polym'n with <u>no</u> termination
- originally in anionic polym'n
 - for limited monomers
- gives low PDI
- enables (block) copolymer structure control

living radical polym'n

- became available very recently
- not truly living, though
 - termination reduced, <u>not</u> absent
 - quasi- or pseudo-living
- living radical polym'n = controlled radical polym'n = reversible-deactivation radical polym'n (IUPAC)

Two types of strategies

Ch 4 SI 55

Fig 4.11 p100

(b) Strategy 2: rapid exchange of an end-capped radical with a free chain radical

S1. reversible end-capping
□ very low [M•]
□ very low R_t (∞ [M•]²)
□ low R_p also

quasi-living radicals

- very effective and fast activation-deactivation
- \Box very short (transient) life-time t_{rad} ~ .01 .1 ms
 - conventional $\tau \sim .1 10 \text{ s}$
- gives short chain/period
 - $x = k_p$ [M] $t_{rad} \sim .02 35$ repeat unit/period p100
- termination suppressed
 - □ MM increase linearly with conversion
 - narrow MMD
 - block copolymer can be prepared

NMP

nitroxide-mediated radical polym'n

□ living-like polym'n possible due to

- stable nitroxide ~ no self rxn ~ 'persistent radical'
- weak C-O bond
- small K → most chains dormant → very low [M•]
 → negligible termination
- equal chance to growth, no AA \rightarrow low PDI

developments

- □ ST polym'n with TEMPO at 125 °C
 - with conventional initiator
 - 'stable-free-radical(-mediated) polym'n (SFRP)'
- □ ST, acrylates, dienes at lower Temp
 - with TIPNO, SGI
- □ use of monomer-alkoxyamine as initiator
 - better control of [M•]
 - current standard

Fig 4.13 p102

Styryl-TEMPO

$$\begin{aligned} \square \text{ kinetics of NMP} \\ K_{\text{NMP}} &= \frac{[M^*][R_1R_2\text{NO}^*]}{[P - \text{ONR}_1R_2]} \\ [M^*] &= \frac{K_{\text{NMP}}[R_3 - \text{ONR}_1R_2]_0}{[R_1R_2\text{NO}^*]_0} \\ [M^*] &= \frac{K_{\text{NMP}}[R_3 - \text{ONR}_1R_2]_0}{[R_1R_2\text{NO}^*]_0} \\ R_p &= -\frac{d[M]}{dt} = K_{\text{NMP}}k_p[M] \left(\frac{[R_3 - \text{ONR}_1R_2]_0}{[R_1R_2\text{NO}^*]_0} \right) \leftarrow R_p = k_p[M][M^*] \\ \ln \left(\frac{[M]_0}{[M]_t} \right) &= K_{\text{NMP}}k_p \left(\frac{[R_3 - \text{ONR}_1R_2]_0}{[R_1R_2\text{NO}^*]_0} \right) t \leftarrow \int_{M_0}^{M_t} \frac{d[M]}{[M]} = -K_{\text{NMP}}k_p \left(\frac{[R_3 - \text{ONR}_1R_2]_0}{[R_1R_2\text{NO}^*]_0} \right) t \end{aligned}$$

- plot linear only in early stage; positive curvature later
 - 'persistent radical effect (PRE)'
 - termination \rightarrow [M•] \downarrow , (relative) [NO•] $\uparrow \rightarrow$ termination \downarrow

Ch 4 SI 60

$$\square \text{ modified kinetics} \qquad [M^*] = \left(\frac{K_{\text{NMP}}[R_3 - \text{ONR}_1R_2]_0}{3k_t}\right)^{1/3} t^{-1/3}$$
$$R_p = -\frac{d[M]}{dt} = k_p[M] \left(\frac{K_{\text{NMP}}[R_3 - \text{ONR}_1R_2]_0}{3k_t}\right)^{1/3} t^{-1/3}$$
$$\ln\left(\frac{[M]_0}{[M]_t}\right) = \frac{3k_p}{2} \left(\frac{K_{\text{NMP}}[R_3 - \text{ONR}_1R_2]_0}{3k_t}\right)^{1/3} t^{2/3} \sim \text{linear}$$

AA possible, but not critical (k_t-1/3)

□ MM in NMP

$$\overline{x}_{n} = \frac{c[M]_{0}}{[R_{3} - ONR_{1}R_{2}]_{0}}$$

c ~ (fractional monomer) conversion

□ PDI? should be \approx 1; actually 1.1 - 1.3

□ side reactions in NMP

- purely thermal (self) initiation of ST (at 80 °C)
- Practically, compensate 'persistent radical effect'

ATRP

atom-transfer radical polymerization

```
by Krzysztof Matyjaszewski
```


initiators

resembles monomer structure ~ slightly larger activity

activators

- features similar as NMP
 - chain growth through repeated 'activation-propagation-deactivation'
 - fast activation-deactivation reactions
 - □ small K, most chains dormant, low [M•]
 - \Box low R_t, low R_p
 - Iow PDI, radicals live for 2nd monomer

MtX_{z+1}L

 $(Mt^{(z+1)+})$

Bimolecular termination

R + MtX_{z+1}L_m

CH2=CHR1R2

CH2=CHR1R

k_{deact}

 $(Mt^{(z+1)+})$

Like NMP, 1st order

also be modified by 'persistent radical effect'

□ Unlike NMP, [activator]/[deactivator] controls kinetics.

$$\overline{x}_{n} = \frac{c[M]_{0}}{[RX]_{0}}$$

□ PDI? should be \approx 1; actually 1.1 - 1.2

Compared to NMP, ATRP

- □ is for more monomers
 - styrenics, (meth)acrylates, --- even E, VAc ~ still developing
 - Acidic H (like in AA) should be ionized or protected.
- □ has more choice of initiators, activators, and deactivators
- □ is better controllable
 - reverse ATRP, SR&NI, ICAR, AGET, ARGET

 $^{1}_{2}$ R₁-N=N-R₁ + MtX_{z+1}L_m $\xrightarrow{\Delta}$ R₁ + MtX_{z+1}L_m $\xrightarrow{}$ R₁-X + MtX_zL_m ATRP mechanism as shown in Figure 4.14

• to control K, R_p, MM, MMD

use metal ~ should be removed

- reversible addition-fragmentation chain transfer radical polym'n
 - □ in (otherwise normal) radical polym'n
 - □ use of very effective CT agent [RAFT agent]

- C_{CTA} ~ as high as 1000
- A• and R• of similar reactivity

RAFT mechanism

Initiation

 $R^{\bullet} \xrightarrow{M} RM_{1}^{\bullet}$

Chain transfer to the RAFT agent and propagation

□ use [RAFT]₀ >> [I]₀ (like 10-fold)
□ all chains with RAFT end-group → no termination

mechanism (cont'd)

Chain transfer to polymeric RAFT species and propagation

 \Box fast and effective A-F \rightarrow living-like

🗆 MM

$$\overline{x}_n = \frac{c[M]_0}{[RAFT]_0}$$

all chains with RAFT end-group and living-like
 narrow MMD by that all chains grows equal rate

kinetics

- \square R_p should be the same to conventional radical polym'n.
- □ Actually, slower. Probably due to
 - radical formation by thermal initiator only
 - $\blacksquare \quad [RAFT]_{\theta} \implies [H]_{\theta}$
 - stable adduct radical \rightarrow slow fragmentation \rightarrow [M•] \downarrow
 - termination by rxn of adduct radical and other radical \rightarrow [M•] \downarrow

Compared to NMP and ATRP, RAFT

- is much faster
- □ is for much more versatile monomers
- color

Ch 4 SI 71

RAFT agents Fig 4.18 p112
 adduct stability (Z)

- stabilizing radical ~ reactive
- thiobenzoate > thiocarbonate > thiocarbamate > xanthate
- leaving radical stability (A)
 - stable radical ~ better leaving ~ reactive

more reactive RAFT agent for more reactive monomer

- monomer reactivity \leftrightarrow its radical stability
 - important in copolymerization Chapt 9
- reactive monomer ~ stable radical ~ need reactive RAFT agent

$$- \left\langle \sum_{p=2}^{n} \right\rangle - CH = CH_2 > - C = R \approx - C = N \approx - C = R > -R > -R > -CI \approx -O - C - R \approx -O - R$$

Non-linear radical polym'n

with crosslinking monomers

- Degree of Xlinking depends on content of Z.
- □ monomers Fig 4.20
- (i) DVB
 - for PS
 - gel for GPC
 - ion-exchange resin -SO₃⁽⁻⁾
 - bead for protein synthesis
- (ii) (EG)DMA
 - for acrylates
 - 'hydrogels'
 - hydrophilic network
 - soft lenses

 $CH_2 = CH$

CH₂=CH

Ch 4 SI 73

(iv) graft-linking monomer

- with different reactivity
- to graft copolymer
- for core-shell particles
- (v) bis-GMA
 - for dental material
- (vi,vii)
 - for higher Xlinking density

$$CH_2 = C$$

 $CH_2 = C$
 $C=O$
 O
 CH_2
 CH_2
 CH_2
 $CH_2 = CH$

with unsaturated polymers

- unsaturated polyester
 - diol + diacid + unsat'd diacid \rightarrow unsat'd prepolymer
 - prepolymer + styrene + initiator \rightarrow crosslinking
 - useful for composite

□ in (1,3-)diene polym'n Chapt 6

copolymerization of double bonds

- along the chain ~ from 1,4-polym'n
- at side group ~ from 1,2- (or 3,4-)polym'n

□ in diene polym'n (cont'd)

- □ CT to polymer
 - abstraction of allylic H (4 H's/ru)

uncontrollable?

by conversion or CT agent