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 polym’n of (ARB + AR’B) or (RA2 + R’B2 + R”B2)
 gives copolymers

 with composition similar to monomer composition
 polym’n to p ≈ 1

 sequence distribution?
 with functional groups of the same reactivity
 eg, HOOC-R-NH2 + HOOC-R’-NH2

 random copolymer formed

 with functional groups of different reactivity
 eg, A = -COOH, B = -NH2, C = -OH

 eg, B = -CH2OH vs B = -CHROH 

 ‘blocky’ structure
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 4 types of copolym’n reaction

 assumption: Reactivity of active center depends only on 
terminal monomer unit (--A* and --B*).

 rate of copolym’n

cross-propagation

homopropagation
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 copolymer composition = d[A]/d[B]

 steady-state approx

 Rates of cross-propagation are the same.

copolymer composition eqn
[Mayo(-Lewis) eqn]

monomer reactivity ratio (homo/cross)
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 Copolymer composition depends on r and 
conc’n of monomers ([A] & [B]) at an instant.
 r depends
 on type of active center (, –, or +)
 on temperature (a little in radical, much in ionic)
 not on initiator, solvent in radical
 on initiator [counter-ion], solvent in ionic

 mole fractions
 fA, fB in the feed: fA = [A]/([A]+[B])

 FA, FB in the copolymer: FA = d[A]/(d[A]+d[B])

 (another form of) copolymer composition eqn
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 r determines composition

and sequence distribution
 r > 1 ~ prefer to homopolymerize

r < 1 ~ prefer to copolymerize

 rA = rB = 1
 FA = fA (diagonal line)

 random copolymer

 rare; A & B of very similar structure

 rA >>1, rB >> 1
 block(y) copolymer

 blockiness up as rA, rB up

 for coordination, not for radical
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 rA >1, rB < 1
 special case: rArB = 1

 ‘ideal copolym’n’
 monomer reactivity depends

not on * but on monomer
 as ∆r up, one far more selective
 Most ionic copolym’n is ideal

copolym’n ~ not popular

 rArB ≠ 1 (usually rArB < 1)
 skewed to more reactive M
 as ∆r up, blockiness up 
 conversion dependent ~ A to B
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 rA & rB < 1  or  rA & rB > 1
 curve intersects diagonal line
 FA = fA at that point
 azeotropic copolym’n

 not easy to get when ∆r is large

 extreme case: rA ≈ rB ≈ 0
 alternating copolymer
 FA = 0.5

 rA & rB > 1 is rare
 many rA & rB < 1 systems
 alternating tendency up as r down
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 Copolymer compos’n changes [drifts] with conversion.
 copolymer composition eqn is for instantaneous f

 FA ≠ fA
 one monomer preferentially 

consumed

 to minimize drift [for constant F]
 stop at low conversion
 monomer recycled

 continuous feeding monomer 
of larger r

 ‘starve-feeding’
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 Fineman-Ross method

 x from feed; y from analysis of copolymer at low conversion

 one set of data gives a point

 least square fitting to a line

 Kelen-Tudos method
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 many commercial copolymers
 SBR, SAN, (ABS (graft)), EVA, ---

 Most belong to either
 rA > 1, rB < 1

 rA & rB < 1

Table 9.1 p212
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 Reactivity of monomer and radical depends on substituent.
 resonance, polar, (and steric) effects

 resonance effect

 A with stabilizing subs, B with less stabilizing subs
 eg, A = ST and B = VAc

 kBA > kBB > kAA > kAB

 kBB > kAA ~ resonance effect larger for radical than for monomer
 kp of VAc larger than kp of ST (in homopolym’ns)!

 rA >1, rB <1 if resonance only

reactive monomer
reactive radical
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 resonance effect (cont’d)
 Copolym’n is facile for pairs with small ∆r.
 both with stabilizing subs or both with less stabilizing subs

 As ∆r increases
 more blocky structure

 hard to get copolymer with both components

 If too large, no copolym’n
 ST is an inhibitor for homopolym’n of VAc!
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 steric effect

Odian p496

A

B

kAB

VAc more reactive 

- do not homopolymerize, but do copolymerize
- low reactivity due to steric effect
- trans radical more stable (transition state)

competition betw resonance and steric effect

VDC more reactive M
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 polar effect
 --CH2CH(W) + CH2=CH(W)  kAA

--CH2CH(W) + CH2=CH(D)  kAB

 rA = kAA/kAB < 1 and rB < 1   rArB << 1

 determines alternating tendency

 alternating tendency up, as rArB down to 0

 stilbene and MA
 do not homopolymerize; 

large steric hindrance in copolym’n
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 rate constant for p and m monomer

 P, Q ~ reactivity ~ resonance effect

 e ~ electrostatic charge ~ polar effect

 setting Q = 1.0 and e= –.8 for ST
 with experiments with ST and others

 large Q ~ large resonance ~ reactive M
 large ∆Q  blocky

 large e ~ large e withdrawer
 large ∆e  small rArB  alternating

Table 9.2 p214
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 living  All the chains have the same composition and 

sequence distribution.

 statistical only when rA ≈ rB ≈ 1

 If not, composition drift in a chain
 no statistical new chain 

 gradient [tapered] copolymer

 r the same to normal radical copolym’n?
 should be, but not really

 affected by type of end-capping

 more tapered for ST copolym’n
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 r the same to radical copolym’n?  Table 9.3 p215

 hard to get copolymers with both components
 large ∆r  larger effect of substituent

 r depends greatly on solvent and counter-ion

 Cationic copolym’n of isobutylene and isoprene is the only 
commercial practice.
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 heterogeneous ‘multi-site’ catalyst
 r observed is the average
 each site has different activity and stereoselectivity

 used in EPDM rubber and LLDPE
 EPDM ~ ethylene propylene (non-conjugated) diene monomer

 large ∆r ~ rethylene > 50 and r1-butene < .1
 higher rα-olefin for smaller subs

 r depends on catalyst
 higher rethylene for Ti catalysts
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 homogeneous ‘single-site’ catalyst
 one r and CCE applicable

 more comonomer pairs are possible

 in copolym’n of ethylene or propylene with α-olefin
 higher content (large r), uniform (inter and intra) distribution of 
α-olefin
 better mechanical property with less content

 narrower MMD
 beneficial to rheology? ~ wrong
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 poly(ester-ether) ~ polyester TPE
 step polym’n of                  +        + +

 a thermoplastic elastomer (TPE)
 a segmented (block) copolymer

 polyether block ~ flexible ~ ‘soft segment’

 polyester block ~ crystallizable ~ ‘hard segment’ 

 behaves as rubber but thermoplastic

 physical crosslinking

Fig 18.13 p462
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 segmented PU ~ thermoplastic PU [TPU]

 stiff to flexible ~ dep on soft segment ~ diverse applications

 step polym’n of functionalized diblock copolymer

 from living anionic ~ controllable and uniform block lengths 
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 using one-end living chain
 Bu-AA---AA(-) Li(+) + n B  Bu-AA---AA-BB---BB(-) Li(+)

 AB (di)block copolymer, ABC triblock copolymer

 using two-end living chain 
 Na(+) (-)AA---CH2CH2---AA(-) Na(+) + n B 

Na(+) (-)BB---BB-AA-----AA-BB---BB(-) Na(+)

 Li(+) (-)AA---R---AA(-) Li(+) + n B 
Li(+) (-)BB---BB-AA-----AA-BB---BB(-) Li(+)

 ABA triblock copolymer
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 B must be of higher reactivity (better e–-withdrawing)
 A=MMA and B=ST  PMMA only
 pKa(toluene) ~ 43; pKa(ethyl acetate) ~ 30

 A=ST and B=MMA  poly(ST-b-MMA)
 Usually, small amount of CH2=CPh2 added
 before MMA addition

 to prevent side reaction

p141

MMA

OCH3



Ch 9  Sl 25

 SIS (or SBS)
 linking two SI (or SB) living chains in nonpolar solvent

 using two-end living IP (or BD) chain in polar solvent

Table 9.3 p215 
rA, rB
when A = ST
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 SIS (or SBS) (cont’d)
 sequential addition of ST, IP (or BD), and ST
 ST and IP (BD) are of similar reactivity (pKa ≈ 43).

 anionic copolym’n of IP (BD) and ST 
in the presence of living ST chain ~ commercial (Kraton®)

 in nonpolar solvent (with Li)
 1,4 > 1,2

 a TPE (or HIPS*)
* HIPS, actually, is a graft copolymer.

See p151
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 Compared to anionic;
 for more diverse monomers

 with less stringent rxn condition

 no control of stereochemistry

 NMP
 for ST and some acrylates

 not for methacrylates

 order of addition dep on the catalyst
 more reactive monomer later

 if using TIPNO, Bu-acrylate first then ST
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 ATRP
 for more monomers than NMP and anionic
 especially methacrylates

 acidic H should be ionized or protected

p141
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 ATRP (cont’d)
 order of addition
 reactivity of M-X ~ AN > methacrylates > ST ≈ acrylates
 order of K, not of monomer reactivity (p222 wrong)

 copolym’n in a family preferable; eg, -COOMe and -COOBu
 sequential addition gives AB, ABA, ABC, ---

 monomer with higher K first
 ---MMA-Br + ST  PMMA-b-PS
 ---ST-Br + MMA  PS + PS-b-PMMA

 Initiation of MMA is slower than propagation of MMA.

 if ST-MMA sequence necessary, use ‘halogen exchange’
 ---ST-Br + MMA with CuCl

 C–Br > C–Cl
 Initiation of MMA is faster than propagation of MMA.

Fig 9.2 p223
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 RAFT
 for more versatile monomers
 order of addition
 1st monomer must be of better-leaving radical

 same order as in ATRP?  not sure

 seems to be not that critical
 switchable RAFT agent
 more reactive RAFT agent for more reactive monomer

 Other living polym’ns can also be used.
 living cationic, GT, ZN, metallocene, RO

p223
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 convert end-group of a (commercial) polymer to 
initiating functional group

Block copolymer by tandem approach
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 transform living end to initiating functional group

 using dual-function initiator
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 general methods
 step polym’n of functionalized (co)polymers

 linking living chain ends (with X-R-X)

 hard to be complete and give contamination
 due to low conc’n of functional groups

 contamination like homopolymers has to be removed
 often not possible
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 using ‘click chemistry’
 fast, high selectivity, high yield, no side rxn, ---

 Huisgen cycloaddition

 converting end-group of polymer, or 

 using initiator or terminator of living polym’n
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 using multi-functional initiator

 linking block copolymer with multi-functional reagent 
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 ‘grafting from’ backbone
 direct formation of radical on the backbone

 enhanced by copolym’n with small portion of reactive group
(like –CH3 or = (diene))

 simple and versatile, but not controlled and contamination

∆ or hν
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 ‘grafting from’ backbone (cont’d)
 using LRP
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 using macro(mono)mer
 by converting chain-end to =

 by catalytic chain transfer  p80

 random, tapered, or block sequence
 depending on A and B
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 ‘grafting onto’ backbone
 copolymerization of backbone with

 and ‘grafting onto’



Ch 9  Sl 40Why block (and graft) copolymer?
 TPE
 SBS, polyester TPE, TPU

 template for
 functional materials

 nanocomposites

 lithography

 drug delivery
 stimuli-sensitive block
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