Chapter 1 Introduction:

Vibration and the Free Response



Modeling and Degrees of Freedom

The examples on the previous slide many degrees of freedom
and many parts, we will start with one degree of freedom and
work towards many.

* Recall from your study of statics and
physics that a degree of freedom is the
independent parameter needed to describe
the configuration of a physical system

* So single degree of freedom system, which
IS where we start, is a system whose
position in time and space can be defined
by one coordinate, here a displacement or
position.



Degrees of Freedom: The Minimum
Number of coordinates to specify a
configuration
« For a single particle confined to a line, one
coordinate suffices so i1t has one degree of
freedom

» For a single particle in a plane two
coordinates define its location so it has two
degrees of freedom

» A single particle in space requires three
coordinates so it has three degrees of
freedom




Example 1.1.1 The Pendulum

* Sketch the structure or

. -\-\"""-\-\.._ - FI
part of interest T W o F, —’Ifj
— AN
. H* , 0 £
+ Write down all the D\ l
¢ A
forces and make a N\

“free body diagram” ® ?
* Use Newton’'s Law \ / "
and/or Euler’s Law to

e

find the equations of
motion

YM,=Joo, Jy=ml



The problem is one dimensional,
hence a scalar equation results
J,o(t) = —mglsinB(t) = m(*6(t)+ mg(sin6(1)=0

restoring
force

Here the over dots denote differentiation with respect to time ¢

This is a second order, nonlinear ordinary differential equation

We can linearize the equation by using the approximation sin@ = 6
= m[zé(r)+ mgll(r)y=0= é{r)+ %Q(r) =0

Requires knowledge of 6(0) and 6(0)

the initial position and velocity.



Next consider a spring mass system
and perform a static experiment:

» From strength of % o % ______________ % ____________ é _
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Free-body diagram and equation

of motion
= X y
0 X
? o Friction-free
Ak surface _
/—"\/\W m ky ~— *” 18
7 ﬁV//l/
A /;’f TN
Rest
position

*Newton’s [Law:

mx(t)=—kx(t) = mx(t)+ kx(t)=0
X(0)=x,,X(0)=v, (1.2)

Again a 2nd order ordinary differential equation




Stiffness and Mass

Vibration is cause by the interaction of two different forces
one related to position (stiffness) and one related to

acceleration (mass).

Stiffness (k)

e

Je = —kx(1)

statics

Mass (m)

Jn = ma(t) = mx(t)

‘\dynamics

Proportional to displacement

Displacement
X
k

m

Mass Spring

Proportional to acceleration



Examples of Single-Degree-of-
Freedom Systems

Pendulum Shaft and Disk
NN \ NN\ NN NN
: Torsional
[ =length Stiffness
k
Moment
Gravity g of inertia
_/"F—" T J
| 0
'-______.-""

6(t)+26(1)=0
: JO) + k6(1) =0




Solution of 2nd order DEs

Lets assume a solution: _r{.f}

xX(1)=Asin(@ +0) (1.3) /’\ /\

Differentiating twice gives: \_/ \

X(t)=w, Acos(m, 1+ Q) (1.4)
X(1)=—-w’Asin(@ t+¢)=-w.x(t) (1.5)
Substituting back into the equations of motion gives:

—m’Asin(® [+ @)+ kAsin(w [ + @) =0

[k
-mw'+k=0 or @, =,[— « Natural
m frequency

rad/s




Summary of simple harmonic
motion

x(t) 4 : Period

. Amplitude
)
_=T \ A
, “

----------- w———_\
‘ Slope
0 hereis v
/]
" a
: - Maximum
¢ Velocity
@ A
w, "
@ rad/s ®_ cycles
o=y = T = T Hy

B 21 rad/cycle  2ms 2r




Initial Conditions

If a system is vibrating then we must assume that something
must have (in the past) transferred energy into to the system
and caused it to move. For example the mass could have
been:

‘moved a distance x, and then released at 7= 0 (i.e. given
Potential energy) or

-given an initial velocity v, (i.e. given some kinetic energy) or
Some combination of the two above cases

From our earlier solution we know that:

X, =x(0)=Asin(w,0+¢) = Asin(¢)
v, =X(0)=w,Acos(w,0+¢) =@, Acos(9)




Initial Conditions Determine the
Constants of Integration

Solving these two simultaneous equations for A and ¢ gives:

M wx
—\/wx +v) . =tan1( ”D}

Amplltude Ph:;me

Slope
x) ! here is

w/“( N,
£

(U




Thus the total solution for the
spring mass system becomes:

wﬂ

2 2 2
WX, +v, L WX
,r(.f)=\/ 0 0 sn{wnr+tan ILU] (1.10)
v,

Called the solution to a simple harmonic oscillator
and describes oscillatory motion, or simple harmonic motion.

Note (Example 1.1.2)
JolZ v wox,

x(0)= . — == X,
n \/mn Xy Vv

as it should



A note on arctangents

. I ) -
Note that calculating arctangent from a | ' - ;-ﬂ
calculator requires some attention. First, all |
machines work in radians. I

The argument atan(-/+) is in a different quadrant
then atan(+/-), and usual machine calculations A=+ | =)

will return an arctangent in between -11/2 and
+11/2, reading only the atan(-) for these two

different cases.

In MATLAB, use the atan2(x,y) function to get
the correct phase.




Example 1.1.3 wheel, tire suspension
m = 30 kg, f,= 10 hz, what is k?

cylce 27 rad

k=mw; =(30 kg){l@ ]: 1.184 x 10> N/m

sec  cylce

There are of course more complex models of suspension systems
and these appear latter in the course as our tools develope



Section 1.2 Harmonic Motion

The period is the time elapsed to complete one complete cylce

2m rad 21

@, rad/s @

S (1.11)

mn

The natural frequency in the commonly used units of hertz:

[ = w, o, rad/s _0, cycles _ 0 4 (1.12)
" 2m 2mrad/cycle 21 s 2w

(
ﬂ'}n = \/E rad/ls, T = 2?1'\/: 5
{ g

For the disk and shaft:

k
w, = \/; rad/s, T =2m, —s

For the pendulum:

==



Relationship between Displacement,
Velocity and Acceleration

A=1, 0,=12

1
Displacement 4
X(f) = Asin(@,f + @) = "\ // \\ / -

_1 __./ e
0 01 02 03 04 05 06 07 08 09 1
Velocity 2 P pu
i[i’] — funA CDS[(A‘J”I + {,b) =0 // \\ // \
-2(
) 0 01 02 03 04 05 06 07 08 09 1
Acceleration 20 ]
X(t)=—-w.Asin(wt+0) s o v \\\ ,/ \\
-200
0 01 02 03 04 05 06 07 08 09 1
Time (sec)

MNote how the relative magnitude of each increases for w_>1




Example 1 2 . 1 Hardware store spring, bolt: m= 49.2x10-3

kg, k=857.8 N/m and x; =10 mm. Compute w, and the max amplitude
of vibration.

Note: common

. «~ Units are Hertz
W, = \]I :\] 578 N/m__ 132 rad/s
m

49.2x107 ke

') To avoid Costly errors use f|
f =_" =791 Hz « when working in Hertz and w,
n 2 when in rad/s
T
2 1 I
T 0.0476 s

- wﬂ - f.‘! - 2 l [?}"1"!3%60

0
x(t),  =A= WL\/ﬂ)ixS —I%’; X, =10 mm

Units depend on system



Compute the solution and max velocity and
acceleration:

V(1) . =0 A=1320 mm/s=1.32 m/s 292mpn
A1) e = ' A=174.24%x10° mm/s’
=174.24 m/s” = 17.8¢!

¢ =tan”’ Ot 17 1o 90°
x(1)=10sin(132r+m/2)=10cos(132¢f) mm

~0.4 in max

g = 9.8 m/s?




Does gravity matter in spring

problems? —]—ZZ %

Let A be the deflection caused 18
hanging a mass on a spring
(A = X4-X, in the figure)

Then from static equilibrium: 72 = KA

Next sum the forces in the vertical for some point x > x, measured
from A

mx = —k(.x + A) + mg =—kx+ mg— kA
=0
= mx(t)+ kx(t)=0

So no, gravity does not have an effect on the vibration

{note that this is not the case if the spring is nonlinear)




Example 1.2.2 Pendulums and
measuring g

* A 2 m pendulum ir (
- m penduium r=="=on|-
swings with a period o, g
of 2.893 s
« What i1s the Ar’ 4m’
_ g= (= 2 m
acceleration due to | T? 7 803%¢?

gravity at that
location?

= ¢ =9.796 m/s’

This is g in Denver, CO USA, at 1638m
and a latitude of 40°



Review of Complex Numbers and Complex
Exponential (See Appendix A)
A complex number can be written with a real and imaginary
part or as a complex exponential
c=a+ jb=Ae”
Where S

a=AcosO,b=Asinb 1 a

Multiplying two complex numbers:
(6, +6,
c,c, =AA e b
Dividing two complex numbers: SR

(<Y A

— _lef'f& —6;)

c, A,




Equivalent Solutions to 2nd order
Differential Equations (see window 1.4)

All of the following solutions are equivalent:
x(H)=A Si]’l(wﬂf + (P) Called the magnitude and phase form
X(r)= AI SIN fU”f + A2 COS@,I  sometimes called the Cartesian form

xX(t)= ﬂli?jm"f + .:‘“.Tf,(ﬁ‘_jm”F Called the polar form

The relationships between A and ¢, A, and A,, and a, and a,
can be found in Window 1.4 of the text, page 19..

*Each is useful in different situations
*Each represents the same information
*Each solves the equation of motion



Derivation of the solution

Substitute x(f)=ae™ into mi+kikxr=0=
mArae™ + kae™ =0 =
mA +k=0=

A= +1/—— \/7Jr tw j=

x(f)=a,e®" and x()=a,e " =

x(t)=a,e Ot 4 a,e OnJt (1.18)

This approach will be used again for more complicated problems




Is frequency always positive?

From the preceding analysis, A = + w, then

m, jt — @, jt

xX(t)=a,e™" +a,e

Using the Euler relations* for trigonometric functions, the
above solution can be written as (recall Window 1.4)

x(t)=Asin(w,r+0)  (1.19)

It is in this form that we identify as the natural frequency
w, and this is positive, because the * sign being used up
in the transformation from exponentials to the sine
function.

* http://en.wikipedia.org/wiki/Euler's formula

e’ =cosx+isinx




Calculating root mean square
(RMS) values

May need to be limited due
to physical constraints

Not very useful since for
a sine function the
/ average value is zero

I
X =lim ?jx(r)dr = average value
0

A = peak value

T—ow
I T
—=2 : 2
X° = llm—jx (1)dt = mean-square value  (1.21)
T —ee T 0 \ . . I
roportiona
Y - P
X, =+/X" =root mean square value to energy

N

Also useful when the vibration is random




The Decibel or dB scale

It is often useful to use a logarithmic scale to plot vibration
levels (or noise levels). One such scale is called the decibel or
dB scale. The dB scale is always relative to some reference

value Xx,. It is define as:
X ’ X
dB = 1010gm[f} = 2010gm(f} (1.22)

X, X,

For example: if an acceleration value was 19.6m/s2 then relative
to 1g (or 9.8m/s?) the level would be 6dB,

-2
10log,, (l;—;) =20log,,(2)=6dB

Or for Example 1.2.1: The Acceleration Magnitude
is 20log,y(17.8)=25dB relative to 1g.




1.3 Viscous Damping

All real systems dissipate energy when they vibrate. To
account for this we must consider damping. The most simple
form of damping (from a mathematical point of view) is called
viscous damping. A viscous damper (or dashpot) produces a
force that is proportional to velocity.

Mostly a mathematically motivated form, allowing
a solution to the resulting equations of motion that predicts
reasonable (observed) amounts of energy dissipation.

Damper (c)

f. = —cv(t) = —ci(1) |

Ml cumiing
pomt

:'l-{-\.lu.l'll:.lll.l.' I'. .
point Oirifice XL




Differential Equation Including
Damping

For this damped single degree of freedom system the force acting
on the mass is due to the spring and the dashpoti.e. f,=-f; - /-

Displacement
— X

Jiy —-——

k

fo -—

mx(t)=—kx(t)— cx(t)
N or
mx(t)+cx(t)+ kx(t)=0 (1.25)

M

_-"-_u%

To solve this for of the equation it is useful to assume a
solution of the form (again):

x(t) = ae™



Solution to DE with damping
included (dates to 1743 by Euler)

The velocity and acceleration can then be calculated as:
. At
X(t) = Aae
. 2 A
X(t)=Aae
If this is substituted into the equation of motion we get:

ae(mA* +cA+k)=0 (1.26)

Divide equation by m, substitute for natural frequency and
assume a non-trivial solution

' c
ac”* 20 = (A+—A+w0.)=0
m



Solution to our differential
equation with damping included:

For convenience we will define a term known as the
damping ratio as:

C

= ' 1.30 Lower case Greek zeta
g e {km ( ) NOT § as some like to use

The equation of motion then becomes:
2 2
(X +20w A+w)=0

Solving for A then gives,

dy==Co, tw -1 (131



Possibility 1. Critically damped motion

Critical damping occurs when { =1. The damping coefficient
c in this case is given by:
(=l=c=c,=2Vkm =2mw,

»
definition of critical
damping coefficient

Solving for A then gives,

2,=—1w,to N’ -1=-0,

i A repeated, real root
The solution then takes the form

- —w,
x(t)=a,e” ™" +a,te”™

}

Needs two independent solutions, hence the t
in the second term



Critically damped motion

a, and a, can be calculated from initial conditions (t=0),

x=(a, +a,t)e ™
—,f
V= (—w,a,— . da,t + a,)e
» No oscillation occurs

» Useful in door
mechanisms, analog
gauges

Displacement (mm)

06

05

04

0.2

0.1

k=225N/m m=100kg and { =1

—_— xﬂ={}_4mm vﬂ:1mma’5
_— xﬂ={}.4mm vﬂ=0mma’5
. xﬂ={}_4mm vﬂ:-1 mm/s | |

0.3}

"
. \
~
.
T ~d==
2 3
Time (sec)




Possibility 2: Overdamped motion

An overdamped case occurs when { >1. Both of the roots of the

equation are again real.

’:1’[.2 - _C{Un iﬂ)ﬂ \ CE —1

—a, 1y (-1 _|_”2€mﬁ:‘v,lig‘—](j

X(t) =e =™

a, and a, can again be calculated
from initial conditions (1=0),

1

y

q = Vol —{+~C - 1w, x,

260;1 é‘z -1

= 1JD+(g+ UCE _ Uwﬂ'}:ﬂ

260.!1 CE —1

0.6

05

0.3

0.2

Displacement (mm)

0.1

0

-0.1

k=225N/m m=100kg and { =2

— x0=0_4mm q:,=1 mm/s

\ -+ Xp=0.4mm w=0mm/s []
h_ | weee Xg=0.4mm y=-Tmm/s | |

0.4f

Time (sec)

Slower to respond than
critically damped case




Possibility 3: Underdamped motion

An underdamped case occurs when {<1. The roots of the
equation are complex conjugate pairs. This is the most
common case and the only one that yields oscillation.

A, =—C0,£0,j\1-{

1‘(?) —e —La,t (ﬂ (,jm”r\) _;m”r-dl—{.,")

+a,e

= Ae™*' sin( @, + ¢)

The frequency of oscillation w, is called the damped natural
frequency is given by.

w,=m J1- (1.37)



Constants of integration for the

underdamped motion case
As before A and ¢ can be calculated from initial conditions (£=0),

|
A= g‘j”’{} + gft)”.l'ﬂ )2 + ('}‘.ﬂwﬁ)z

d
¢ =tan 1{ Y04 ]
Vo +0M, X, ;
AS
» Gives an oscillating R b
response with exponential 0-5

decay

+ Most natural systems vibrate
with and underdamped

Displacement
]
———;’,
— ,
/
-~

&
response 0517
+ See Window 1.5 for details 1 ’
and other representations 0 1 2 3 4

Time (sec)



E)(am ple 1 31 . consider the spring of 1.2.1, if ¢ = 0.11

kg/s, determine the damping ratio of the spring-bolt system.

m=49.2x10" kg. k=857.8 N/m

¢. = 2~Jkm =2449.2x107° x857.8
=12.993 kg/s

. 0.11ke/
[ =—= 2 —0.0085 =

¢ 12.993 kg/s

or

the motion is underdamped

and the bolt will oscillate




Example 1.3.2

The human leg has a measured natural
frequency of around 20 Hz when in its rigid (knee
locked) position, in the longitudinal direction (i.e.,
along the length of the bone) with a damping
ratio of ( = 0.224. Calculate the response of the
tip if the leg bone to an initial velocity of v, = 0.6
m/s and zero initial displacement (this would
correspond to the vibration induced while landing
on your feet, with your knees locked form a
height of 18 mm) and plot the response. What is
the maximum acceleration experienced by the
leg assuming no damping?




Solution:

20 cveles 2mrs: o
o = 20 cycles 27 rad = 125.66 rad/s

" i
] s cycles

0, =125.6641 - (224)° =122.467 rad/s

| ‘/[(},6 +(0.224)(125.66)(0))” + (0)(122.467)’
a 122.467

=0.005 m

O = tan"[ {‘U)[‘md] ) = ()
| vy + ¢, (0)

= x(1)=0.005¢7*"*"sin(122.467r)




Use the undamped formula to get maximum
acceleration:

A= \/x;’; +["’—GJ L@, =125.66, v, =0.6, x, =0
()

fl

v 0.6
A=—Lm=—"m
(f)] )

n n

max( i) = ‘—m;‘:ﬂ

= —.:uj[%] = (0.6)(125.66 m/s*) = 75.396 m/s”
w

n

75.396 m/s’
9.81 m/s’

maxiunuin acceleration =

g="7.68¢g's



Here is a plot of the displacement
response versus time

=3 T T T T T T T Time (=)
0 0.02 0.04 .06 .08 0.1 0.12 0.14



Exam p I e 1 .3 s 3 Compute the form of the response of an

underdamped system using the Cartesian form of the solution given in
Window L.5.
sin(x+ y)=sinxsiny+cosxcosy =
x(t) = Ae” ™ sin(,t + @) = e (A, sinw,t + A, cos,t)
x(0)=x, =€"(A,sin(0)+ A, cos(0)) = A, = x,

x =L, (A sinw,t + A, cosw,t)
+ e (A cosm t — A, sinw,t)
v, =—Co (A, sin0+ x,cos0)+®,(A, cos0— x,sin0)
v, +{w, x,

= A=-12r0
0
d

—tou| Vo +60,X; .
x(t) = e~5! msmwdrhro cosm,t

o,



Section 1.4 Modeling and Energy Methods

* Provides an alternative way to determine the equation of
motion, and an alternative way to calculate the natural
frequency of a system

» Useful if the forces or torques acting on the object or
mechanical part are difficult to determine

* Very useful for more complicated systems later (MDOF and
distributed mass systems)



Potential and Kinetic Energy

The potential energy of mechanical systems U is often stored in
“springs” (remember that for a spring F = kx)

! | K §

: 1 / § X Xo 1

/o By [Fav= [kede= ke
Mass Sprlng spring 0 0 2 0

The Kinetic energy of mechanical systems T is due to the motion of
the “mass” in the system

| |
T =—mx", T

ramns rot — _ng
2 2



Conservation of Energy

For a simple, conservative (i.e. no damper), mass spring system the
energy must be conserved:

T +U = constant

d
or —(T +U)=0
dt( )

At two different times t; and t, the increase In potential energy
must be equal to a decrease in kinetic energy (or visa-versa).

U, -U,=T,—-T,
and



Deriving the equation of motion from the energy
approach

x=0 x

k

/

Mass  SPring

M

i(T +U)=i(£mxz+lkx2j=0

dt dt\ 2 2

— X(mMX+kx)=0

Since X cannot be zero for all time, then
mX + kx =0



Determining the Natural frequency directly from the energy

If the solution is given by X(t)= Asin(ot+¢) then the maximum
potential and Kinetic energies can be used to calculate the natural

frequency of the system

Umax :lkAz Tmax :lr‘n(a)ﬂ'A\)2
2 2
Since these two values must be equal
1 KA* = 1 M(w, A)°
2 2

K
S>k=mo’ => w0, =, |—
m



Example 1.4.1

VAUV

NN

Compute the natural frequency of this roller fixed in place by a
spring. Assume it is a conservative system (i.e. no losses) and
rolls without slipping.

T 1362 and T :%mx2

ot — A trans



Solution continued

1. x°

x:r9:>X:r9:>TRot——J—
2 r’

The max value of T happens at v..=w A

1 (o, A)
2 r’
The max value of U happens atx .. =A

=T .

+— m(a)A) ;(m+i2ja)ﬁA2
I

=U__ :%kAZ ThusT__ =U__ =

Effective mass
%(erizja)ﬁAz:%kAZ:a)n: K /
r




Example 1.4.2 Determine the equation of motion of the
pendulum using energy
LLL S

4

i
J =ml* m

mg



Now write down the energy

T = 1 J,0% = 1 m(262
2 2

U =mg/{(1-cos@d), the change in elevation
IS {(1—cos &)
d(1

%(T +U) = E(E me20? + mg/(1— cos 9)) =0



m(2660 + mgl(sin 8)@ =0
— é(m€2é+ mg ¢ (sin 6’)) =0
— m(?60 + mgl(sin@) =0

— d(t) +%sin o(t) = 0

Using the small angle approximation for sine:

=M+ 0M=0 ==

\

~ @



Example 1.4.4 The effect of including the mass of the
spring on the value of the frequency




m
mass of element dy : 75 dy
> assumptions

velocity of element dy: v, = %)‘((t),

1em[y. ’
Tepring = E!?[? x} dy (adds up the KE of each element)

1[msj.z
==| —= |X
2\ 3

 This provides some
simple design and
modeling guides




What about gravity’?

A ka mMg- kA =0, from FBD,
and static equilibrium

m1y
v A0
mg  Usping = —k(A +x)°
Ugray = —Mgx
I = ! mx’

2



Now use %(T +U)=0

d| 1 1
mx°® —max +— K (A + X
dt[z gx+5 Kl )}

= MXX —mgX + K(A + X)X
= X(MmX+kx) + X(KA—-mg) =0

0 from static
equilibiurm

—mX+kx=0

» Gravity does not effect the equation of motion or the natural
frequency of the system for a linear system as shown previously
with a force balance.



Lagrange’s Method for deriving equations of motion.

Again consider a conservative system and Iits energy.

It can be shown that if the Lagrangian L is defined as

L=T-U
Then the equations of motion can be calculated from
d [@F]_% —0  (1.62)
dt \ oq oq

Which becomes

d aT _@T+5U _0 (1.63)
dt{ og oq Oq

Here g Is a generalized coordinate



Example 1.4.7 Derive the equation of motion of a spring
mass system via the Lagrangian

T :mez and U :Ekx2
2 2

Hereq =X, andand the Lagrangian becomes

L=T-U=im -1k
2 2

Equation (1.64) becomes
i(gj_fﬂ +8U . d
dt\ox ) ox ox dt

= mX+kx=0

(mx)—0+kx=0



Example

h=/06(1—cosB)

¥
1, .. 1, 5
k(?

1 sin® @ +mg/((1—cosd)



_ 1 12 _ 1 2 A2
The Kinetic energy term is : | _EJOQ —Emﬁ o

Compute the terms in Lagrange’s equation:

%(%j = %(mfzé) — me26
aT _ g

o6

U o (ke
o0 06\ 4

2
sin@dcos@d+mg/lsing

sin® & + mg¢(1—cos 9)) = kﬁ

Lagrange’s equation (1.64) yields:

2
d ﬂ _or, %Y =m£2é+kisin6?cose+mgfsin9=0
aq) oq g

dt



Does It make sense:

2
m€2é+k%sin gcosd+mg/lsingd =0

. ~/
Vo

0 ifk=0

Linearize to get small angle case:

2

m€2é+%8+mg€9=0

What happens if you linearize first?



1.5 More on springs and stiffness

* Longitudinal motion
« A is the cross sectional area (m?)
/ - « E is the elastic modulus (Pa=N/m?)

* Isthe length (m)

v * k is the stiffness (N/m)



Figure 1.21 Torsional Stiffness

_— * J, Is the polar moment of
J, I — GJ p Inertia of the rod

14 « J is the mass moment of
- 0 Inertia of the disk

IS the length

(1) * G Is the shear modulus,



Example 1.5.1 compute the frequency of a shaft/mass system
{J=05kg m?} o4 s
From Equation (1.50) ’

>M =J0=30(t)+ko(t) =0 ! °0)

= O(t) + 5 o(t)=0 o)

Figure 1.22
/ 7zd4
=0, =
EJ

For a 2 m steel shaft, dlameter of 0.5cm=

GJ, (8x10" N/m?)[7(0.5x10°m)"* / 32]
a) j— pr—
" 0J (2 m)(0.5kg - m?)

= 2.2 rad/s



Fig. 1.22 Helical Spring

d = diameter of wire

- 2R= diameter of turns

n = number of turns

. 2R _
y X(t)= end deflection
G= shear modulus of
g |
» x(1) . .
| spring material
d = diameter of spring material
2R = diameter of turns k = Gd43 G d4
n — number of turns 64nR —
x(f) = deflection

" 64nR3

Allows the design of springs
to have specific stiffness



Fig 1.23 Transverse beam stiffness

*

« Strength of materials and
experiments yield:

3El
k:€—3

With a mass at the tip:

3EI

0 =, —
" m¢?



Example for a Heavy Beam

Consider the beam of Figure 1.28 and what happens if the mass of the
beam is considered.

P = applied static load Much like example 1.4.4 where
M = mass of beam ¥ the mass of a spring _was
[ m | considered, the procedure is to
calculate the Kinetic energy of
- the beam itself, by looking at a
y x(D differential element of the beam
and integrating over the beam
length
From strength of materials the static deflection
of a cantilever beam of length | is:
Py2 ng

X(Y) — 6EI (35 R y)Which has maximum value of (aty =« ): Xinax :a



Next integrate along the beam to compute the beam’s
Kinetic energy contribution

ma

T = %_fj (mass of differential element)e(velocity of differential)?

1 : M 1M x2 .
b X0 ey =5 T L (3 vy

Mass of
element dy

— E[E M jxiax
21140
33 M

Thus the equivalent mass of the beam is: Mg, = 140

**

And the equivalent mass of the beam- mass system Is:



With the equivalent mass known the frequency
adjustment for including the mass of the beam becomes

ko
n Vmeq Vm+33I\/I




Samples of Vibrating Systems

* Deflection of continuum (beams, plates, bars, etc) such as
airplane wings, truck chassis, disc drives, circuit boards...

« Shaft rotation
 Rolling ships

* See text for more examples.



Example 1.5.2 Effect of fuel on frequency of an airplane

wing _

* Model wing as
transverse beam

* Model fuel as tip mass

 Ignore the mass of the
wing and see how the
frequency of the system
changes as the fuel is
used up

IE,I

N




Mass of pod 10 kg empty 1000 kg full
| =5.2x10° m*, E =6.9x10° N/m, | =2 m

* Hence the natural frequency changes by an order of magnitude
while it empties out fuel.

o /BE B \/3(6.9><109)(5.2><105)
M\ e 1000- 2°

=11.6 rad/s=1.8 Hz

3El 3(6.9x10°)(5.2x107)
Dempty =] 3 = 3
m/ 10-2

=115 rad/s=18.5 Hz

This ignores the mass of the wing



Example 1.5.3 Rolling motion of a ship

JO(t) =-WGZ = -Whsin 4(t)
For small angles this becomes
JO(t) +Who(t) =0

/hW
=0 =,[—
J




Combining Springs: Springs are usually only available
In limited stiffness values. Combing them allows other
values to be obtained

A k, B k ¢ * Equivalent Spring
—\\"—o-—"\AN\"—o _ 1
series: K,. = l+i
a k1 b kl k2
.___JV'V\V':I_. parallel: k, =k, +k,
k2

This is identical to the combination of capacitors in electrical
circuits



Use these to design from available parts

Discrete springs available in standard values

Dynamic requirements require specific frequencies

Mass Is often fixed or + small amount

* Use spring combinations to adjust ®,

* Check static deflection



Example 1.5.5 Design of a spring mass system using
available springs: series vs parallel

* Letm=10kg
ki I Compare a series and parallel
' ' combination
i * a) k; =1000 N/m, k; = 3000 N/m, k3 =
k, k4 =0

+ b) ks =1000 N/m, k, = 3000 N/m, k; =
k4 k2 =0



Case a) parallel connection:
k, =k, =0,k,, =k, +k, =1000+3000 = 4000 N/m

/k /
— a)parallel — — = M = 20 rad/s
m 10

Case b) series connection:
1 3000

T (k) + (Uk,)  3+1

/k /
=0, = — = 7—50 = 8.66 rad/s
m 10

Same physical components, very different frequency

eq

k, =k, =0,k =750 N/m

Allows some design flexibility in using off the shelf components



Example: Find the equivalent stiffness k of the following
system (Fig 1.26, page 47)

; % ki, +k,
k, k;

m

Y = KK, + KK, + Kk, + kK, + KK, + Kk, +k;K,
! m(k, +k,)



Example 1.5.5 Compare the natural frequency of two
springs connected to a mass in parallel with two in series

A series connect of k; =1000 N/m and k,=3000 N/m with m =
10 kg yields:

1 _750 Nim = o = | 120 N/m
10 kg

=8.66 rad/s

K., = :
*1 1/1000+1/3000 e

A parallel connect of k; =1000 N/m and k,=3000 N/m with m =
10 kg yields:

k,, =1000 N/m +3000 N/m = 4000 N'm=> ., = \/ 4000NM _ 5 radys

10 kg

Same components, very different frequency



Static Deflection

Another important consideration in designing with springs is the
static deflection

Ak =mg :A:%

This determines how much a spring compresses or sags due
to the static mass (you can see this when you jack your car up
The other concern is “rattle space” which is the maximum

deflection A



Section 1.6 Measurement

* Mass: usually pretty easy to measure using a balance- a static
experiment

» Stiffness: again can be measured statically by using a simple
displacement measurement and knowing the applied force

« Damping: can only be measured dynamically



Measuring moments of iInertia wusing a Trifilar
suspension system

AV A Ll

gT °r; (m, +m)
= Py 0 |, |Spemdonvie

J

Disk of known moment J,
mass M. and radius ry

Figure 1.33

T 1s the measured period

g Is the acceleration due to gravity



Stiffness Measurements

A

From Static Deflection: B | _
9 Linear Nonlinear
»
s F=kxor [=E¢
3
) = k=—
= X
Deflection or strain
From Dynamic Frequency: _
Figure 1.34

a)n:\/E:k:ma)ﬁ
m



Example 1.6.1 Use the beam stiffness equation

to compute the modulus of a material

7

3ET

_____ il —'|— x(0) k= —_I,g

x(1)

RN

E = elastic modulus
[ = length of beam
I = moment of inertia of cross-sectional area about the neutral axis

Figure1.24 I=1m,m= 6Kkg, |1=10"m", and measured T=0.62s

3
T =22 /™ _062s
\3E]

47°me® 4z?(6kg)(1m)’
= E = 2 = 2 -9 4
3T*1  3(0.625)°(10° m*)

= 2.05%x10" N/m?




Damping Measurement (Dynamic only)

Define the Logarithmic Decrement:

5 = n—> (1.79)
x(t+1T)

Ae " sin(w ,t + @)

o0 =1In
Ae =" Dsin(w t + o T)+ §) (1.80)
o=Cw,T
C o o
{=— (1.83)

C. :a)nT N N4+ &8



Section 1.7: Design Considerations

Using the analysis so far to guide the selection of components.



Example 1.7.1

Mass 2 kg <m < 3 kg and k > 200 N/m

For a possible frequency range of
8.16 rad/s<m,< 10 rad/s

For initial conditions: Xy, = 0, vo < 300 mm/s

Choose a ¢ so response is always < 25 mm



Solution
* Write down x(t) for O

o
on

Initial displacement o

« Look for max amplitude 5;1 o
<

* Occurs at time of first peak (Tmax) 05|

« Compute the amplitude at Ty

0 0.5 1 1.5

* Compute ¢ for A(Tmax)=0.025 Time(sec)



vV, _ .
X(t) = -2 e " sin(w,t)
Wy
%/_/
Amplitude

— worst case happens at smallest o, = ®, =8.16 rad/s

—> worst case happens at max v, =300 mm/s

With @, and v, fixed at these values, investigate how varies with &
First peak is highest and occurs at

%(x(t)) =0 = w,e " cos(w,t) — Cw.e ™ sin(w,t) =0

_ #2
Solve fOI’tZTmaX :>Tm :itan_l( @y )—1tan1£ 1 é’ }

a)d gwn wd g
v —tan 1242)
SubT__ intox(t): A (&)=x(T)= 0 e Ve sin(tan™*
@ \1-¢7?
Ltan—l(i‘ll_‘:z)
3

A =2 B
a

n




To keep the max value less then 0.025 m solve
A .. (£)=0.025= ¢ =0.281
Using the upper limit on the mass (m= 3 kQ)
yields

C=2mw,{ =2-3-8.16-0.281=14.15 Kkg/s

vV

FYI, £=0 yields A, =—=37 mm

_0
W,



Example 1.7.3 What happens to a good design when
some one changes the parameters? (Car suspension
system). How does { change with mass, ie when the car
more passengers and luggage?

Given = 0.3, m=1361 kg, A=0.05 m, compute c, k .

a)—\rjk 1361a)n, mg = kA:k—Tg

= ‘/ ,/98 =14 rad/s =
mA

k =1361(14)% = 2.668x10° N/m
£=0.3=c=2(0.3)mew, =0.6(1361)(14) =1.143x10" kg/s




Now add 290 kg of passengers and luggage. What
happens?

m =1361+ 290 = 1651 kg

B mg 165198 ..

- 2.668x10°

= o, —\f ,/98 =12.7 rad/s
=0.2

c _1.143x10"
¢ = 0.2/

C 2M®

cr n

A lower frequency and damping ratio results meaning the car

— I’]t
takes longer to damp out e ™"



Section 1.8 Stability

Stability is defined for the solution of free response case:

Stable: |X(®)|<M, ¥t>0

limx(t) =0

t—oo

Asymptotically Stable:

Unstable:

If It Is not stable or asymptotically stable



Examples of the types of stability
Stable Asymptotically

RN ’“(’)ﬂ A

BVIRVR\VIRVAS

Figure 1.37

X - o)
/ A Atk
| Ny

Divergent instability Flutter instability
Figure 1.38 Figure 1.39




Example: 1.8.1: For what values of the spring
constant will the response be stable?

Figure 1.37 ()

[ kO _ o K7
mi<o + Tsm@ cosd—-mg/lsind=0=m( 0+79—mg€0:0

= 2mld+(k(-2mg)@=0  (for small 6)



1.9 Numerical Simulation

- Solving differential equations by dx(t.) _lim X(t,,)—x(t)
numerical integration dt At—0 At

* Euler, Runge-Kutta, etc. At=t,, -t

 Available In Mathcad, Matlab,

0.5
Mathematica and Maple (or in

FORTRAN) x
L o 0.3

« Or use Engineering Vibration 3
Toolbox g 02

<C
- Will use these to examine nonlinear  °

o

vibration problems that do not have
analytical expressions for solutions Time (sec)

1.5

o
o :
(6}
N



First order differential equation

solve x(7) = ax(¢), x(0) = x,

Xiyp =X

At
X, =x(t), At =1, —1,

=ax;, X,

X, =X, [1 + aAt]
\

The new value of x
is calculated from

the old value of x.
N

x; will be used to
calculate the
/ next term Xx,

4

sl

amplitude

o A\ |/

%

0 0.5 1 1.5
Time (sec)



Example 1.9.1 solve dx/dt = -3x, x(0)=1

a=-3, take At=0.5 )
X, =1
X, = X, +(0.5)(-3)(x,) =-0.5 > Numerical solution
X, =% +(0.5)(-3)(x,) = 0.25 Sotdion s iferent for
: . - Each choice of At
- J

X(t) = Ae™ )
X(t) = -3x(t) = -1 Ae™ = -3Ae™

=4=3, > Analytical solution
X(0) = x, =1= Ae’ = A=1s0 that

x(t)=e™




Time step

« With time step at 0.5 sec 1 Higure 141
the numerical solution — Numerical solution At=0.5sec
oscillates about the exact . |~ numerical solufion  A0.05sec
solution % -

- Large errors can be E

caused by choosing the
time step to be too small

* Small time steps require Time {sec)
more computation



Numerical solution of the 2nd order equation of
vibration:

It IS necessary to convert the second order equation into two
first order equations. To achieve this two new variables X,
and X, are defined as follows.

mX+cX+kx=0

Let X, =X, X, =X
From this two first order differential equations can be
written.

X =X,

X, = _c X, — h X, Called state space
m m



The matrix form is

Combining these first order DEs in matrix form gives.

.| = State
% O 1 X vector
X | _ Kk c %]
m m -
— N v fﬁ\ State
X A X matrix

The Euler numerical method can then be applied to the
matrix form to give.

X(t.1) = X(t;) + AtAX(t;)
;.1 =1 +AtA]x,



Matlab Solutions ‘ode23’ and ‘ode45’

* Use Runge-Kutta. More sophisticated than the Euler
method but more accurate

» Often picks Dt (i.e. if solution Xx(t) is rapidly changing At Is
chosen to be small and visa-versa

* Works for nonlinear equations too

Create Matlab function In the command window
function xdot=sdof (t, x) » 10=0:tf=20:
k=2;c=1;m=3; » X0=[0 ; 0.25];

A=[0 1;-k/m -c/m]; » [t,X]=0de45('sdof",[t0 tf],x0);
xdot=A*x; » plot(t,x)




Resulting solution

Figure 1.42
\ —— Displacement
0.2 - —- Velocity

Amplitude

0 5 10 15
Time (sec)

20



Why use numerical simulation when we can compute the
analytical solution and plot it?

* To have a tool that we are confident with that will allow us
to solve for the response when an analytical solution
cannot be found

* Nonlinear systems to not have analytical solutions, but can
be simulated numerically



Section 1.10 Coulomb Friction and the Pendulum

Nonlinear phenomenon in vibration analysis



Vibration of Nonlinear Systems

Xo
I
|

x(1)

Sliding or Coulomb Friction

k

(—uN  x(t)>0
f.(X)=4 0 x(t)=0
| uN - x(t) <0

N=mg

The force due to Coulomb friction opposes motion, hence the
‘sgn’ function is used. The force is proportional to the normal
force and independent of the velocity of the mass.



The free body diagram split depending on the direction
of motion:

[e—— %) [ *®
kx ~—-————— v =lmg —— 1+ hx —-———— v =lmg —= +
= f.=uN - fe=—wnN
T = pmg T - owmE
N N
(a) . (b)
Figure 1.44
mass moving right mass moving left
x(t) >0 %(t) < 0

= mX+ umgsgn(X)+kx=0 (1.100)



The ‘sgn’ function is nonlinear

0.3
Causes equation of motion to be pis "\‘\\
nonlinear pla 0-2 RN
Can solve as piecewise linear (see me 0.1 Sy
o) A L\
X 0 { . \
Can solve numerically \ / / - ]«
'01 f \4 ’," -
Has more than one equilibrium \ / T /
position 0.2 APDe /
Decay is linear rather then /
: 0 5 10 15 20
exponential / Time (sec)
Comes to rest when spring _ Does not
Linear settle at x=0

cannot overcome friction at the
decay



Figure 1.45 shows the details of the free response of a
system with Coulomb damping




A General second order system can be written as a single
first order equation

k1T % 1
X{xz}‘{—f(xl,xz)}m)

The equilibrium position is defined:

F(x,)=0
For Coulomb friction this is defined as:
HsMg <X < ﬂslzng

I.e. the positions where the force due to the spring can no
longer overcome the sliding friction force

X,=0and -




Example 1.10.2: Calculating the equilibrium position for
nonlinear DES

Equation of motion: Equilibrium positions:
X+Xx—B°x° =0 X, =0
X (% -1)=0=
-
O —_
State space form: X, =M, g ,

X =X,
X, :X1(,32X12 -1) /

Multiple equilibrium positions
possible

© =L




The pendulum

Stable 35
Equilibrium
0=0, 2xn, 4n ...

O

O
Unstable
Equilibrium

:)O

=01 31 ..

mg



Example 1.10.2 Equilibrium of a Pendulum

Unstable
equilibrium

: Stable

| equilibrium
|
o - I
iéz 8,217,417, :
i g : 1['1', 3w, Sw
(a) (b) (c)
Figure 1.44
() + Lsino(t) = 0 = F(x)=] 1=0
{ X,
=0, %=0 —gsinx1
= L _
- _
X =% X, =0
>'<2=—%sinx1 sinx, =0 =X, =0and x, =nz, n=0,1,2---



Solution to the pendulum

e Can use numerical simulation to examine both linear and
nonlinear response

e Let (g/L)=(0.1)* so that ®, = 0.1
 a) use 0(0)=0.3 rad & initial vel: 0.3 rad/s

* b) change the initial position to: 0(0)= p rad which is near the
unstable equilibrium

. —— Non-linear —— Non-linear /
N\ N = = Linear u - = Li
A\ 7 Linear
/N Y //
\ / \ Vi
Angle ¢, \ / \ \ / k 10 //
\

\) 1/ / \
\ [/ \ / \ /
-0.5 -

-1.5 -10
0 10 20 30 40 50 0 10 20 30 40 50

Time (sec)




Pendulum with friction added

After making a single
loop the pendulum
cannot make a second
rotation and settles to
the stable equilibrium
position of 0=4n

9+c9+%sin0:0

15

An gjrg

'/\=41T \_//-\/
/
(6) ~ /
/ Friction
/ loss
causes
slow decay

20

40
Time (sec)

60

80



Summary of Nonlinear Vibrations

Additional phenomena over linear case

Multiple equilibrium

Instabilities possible with positive coefficients

Form of response dependent on initial conditions

Closed form solutions usually not available

Can simulate numerically

Linear model has tremendous advantages

Linear combination of inputs yields linear combination of outputs

Linear ode techniques very powerful

But don’t make a design error by ignoring important nonlinear situations

All systems have nonlinear ranges of operation

Need to sort out when nonlinearity is important to consider and when to ignore it



