
 

 

 

 

 Chapter 1 Introduction: 

Vibration and the Free Response 



 

 



 



 

 



 

 



 



 



 







 

































































 



Section 1.4 Modeling and Energy Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Provides an alternative way to determine the equation of 

motion, and an alternative way to calculate the natural 

frequency of a system 

• Useful if the forces or torques acting on the object or 

mechanical part are difficult to determine 

• Very useful for more complicated systems later (MDOF and 

distributed mass systems) 

 

 

 

 

 



Potential and Kinetic Energy 

The potential energy of mechanical systems U is often stored in 

“springs” (remember that for a spring F = kx)    

 

 

 

 

 

The kinetic energy of mechanical systems T is due to the motion of 

the “mass” in the system 



Conservation of Energy 

For a simple, conservative (i.e. no damper), mass spring system the 

energy must be conserved:  
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or        ( ) 0
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At two different times t1 and t2 the increase in potential energy 

must be equal to a decrease in kinetic energy (or visa-versa).  
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Deriving the equation of motion from the energy 

approach 
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Determining the Natural frequency directly from the energy 

If the solution is given by x(t)= Asin(ωt+ϕ) then the maximum 

potential and kinetic energies can be used to calculate the natural 

frequency of the system 

2 2

max max

2 2

2

1 1
( )

2 2

Since these two values must be equal

1 1
( )

2 2

n

n

n n

U kA T m A

kA m A

k
k m

m





 

 



   
 

 



Example 1.4.1 

  

Compute the natural frequency of this roller fixed in place by a 

spring.  Assume it is a conservative system (i.e. no losses) and 

rolls without slipping. 
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Solution continued 

2

Rot 2

max

2
2 2 2

max 2 2

max

2

max max max

2 2 2

2

1

2

The max value of  happens at  

( )1 1 1
( )

2 2 2

The max value of  happens at 

1
  Thus 

2

1 1

2 2

n

n
n n

n

x
x r x r T J

r

T v A

A J
T J m A m A

r r

U x A

U kA T U

J
m A kA

r

 




 

 

    



 
     

 



   

 
   

 
2

n

k

J
m

r


 

 
 

Effective mass 



Example 1.4.2  Determine the equation of motion of the 

pendulum using energy 

 

 



Now write down the energy 
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Using the small angle approximation for sine:  
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Example 1.4.4  The effect of including the mass of the 

spring  on the value of the frequency. 
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• This provides some 

simple design and 

modeling guides  

 



What about gravity? 
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• Gravity does not effect the equation of motion or the natural 

frequency of the system for a linear system as shown previously 

with a force balance.  



Lagrange’s Method for deriving equations of motion. 

Again consider a conservative system and its energy. 

It can be shown that if the Lagrangian L is defined as 

 

Then the equations of motion can be calculated from 
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Here q is a generalized coordinate 

L = T -U



Example 1.4.7 Derive the equation of motion of a spring 

mass system via the Lagrangian 
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Here q  = x,  and and the Lagrangian becomes  
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Equation (1.64) becomes 
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Example
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The Kinetic energy term is : 
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Compute the terms in Lagrange’s equation: 
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Lagrange’s equation (1.64) yields: 

2
2 sin cos sin 0

2

d T T U k
m mg

dt q q q
   

   
      

     

 



Does it make sense: 
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Linearize to get small angle case: 
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What happens if you linearize first? 



1.5 More on springs and stiffness 

 

 

  

 

 

 

 

 

 

 k= 
  


 

• Longitudinal motion  

• A is the cross sectional area (m
2
) 

• E is the elastic modulus (Pa=N/m
2
) 

•   is the length (m) 

• k is the stiffness (N/m)  

 



Figure 1.21 Torsional Stiffness 

 

 

 

 

 

 

• Jp is the polar moment of 

inertia of the rod 

• J is the mass moment of 

inertia of the disk 

• G is the shear modulus,   

is the length  

 



Example 1.5.1  compute the frequency of a shaft/mass system  

{J = 0.5 kg  m
2
} 

From Equation (1.50)  
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Figure 1.22 



Fig. 1.22 Helical Spring 

                                                                             

  
   

     
 

 

d = diameter of wire 

2R= diameter of turns 

 n = number of turns 

 x(t)= end deflection 

G= shear modulus of 

 spring material  

 



Fig 1.23 Transverse beam stiffness 
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• Strength of materials and 

experiments yield: 

 



Example for a Heavy Beam 

Consider the beam of Figure 1.28 and what happens if the mass of the 

beam is considered. 
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From strength of materials the static deflection 

of a cantilever beam of length l is: 

 

Much like example 1.4.4 where 

the mass of a spring was 

considered, the procedure is to 

calculate the kinetic energy of 

the beam itself, by looking at a 

differential element of the beam 

and integrating over the beam 

length 

 



Next integrate along the beam to compute the beam’s 

kinetic energy contribution 
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Thus the equivalent mass of the beam is: eq
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With the equivalent mass known the frequency 

adjustment for including the mass of the beam becomes 
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Samples of Vibrating Systems 

• Deflection of continuum (beams, plates, bars, etc) such as 

airplane wings, truck chassis, disc drives, circuit boards… 

• Shaft rotation 

• Rolling ships 

• See text for more examples.  

 

 

 

 

 



Example 1.5.2 Effect of fuel on frequency of an airplane 

wing 

 

 

 

 

 

 

 

 

 

 x(t)   l  

E, I      m 

• Model wing as 

transverse beam 

• Model fuel as tip mass 

• Ignore the mass of the 

wing and see how the 

frequency of the system 

changes as the fuel is 

used up 

 

 



Mass of pod 10 kg empty 1000 kg full 

 l = 5.2x10-5 m4, E =6.9x109 N/m, l = 2 m 

• Hence the natural frequency changes by an order of magnitude 

while it empties out fuel. 

9 5
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This ignores the mass of the wing 



Example 1.5.3 Rolling motion of a ship 
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Combining Springs: Springs are usually only available 

in limited stiffness values. Combing them allows other 

values to be obtained 

 

This is identical to the combination of capacitors in electrical 

circuits 

• Equivalent Spring 

1 2

1 2

1
series: 

1 1
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k k

k k k




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Use these to design from available parts 

• Discrete springs available in standard values 

• Dynamic requirements require specific frequencies 

• Mass is often fixed or + small amount 

• Use spring combinations to adjust ωn 

• Check static deflection 

 

 

 

 



Example 1.5.5 Design of a spring mass system using 

available springs: series vs parallel 

 

 

• Let m = 10 kg 

• Compare a series and parallel 

combination 

• a) k1 =1000 N/m, k2 = 3000 N/m, k3 = 

k4 =0 

• b) k3 =1000 N/m, k4 = 3000 N/m, k1 = 

k2 =0  

 



3 4 1 2
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3 4
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                      20 rad/s
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m
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Same physical components, very different frequency 

Allows some design flexibility in using off the shelf components 

 



Example: Find the equivalent stiffness k of the following 

system (Fig 1.26, page 47) 
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3 4( )
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Example 1.5.5  Compare the natural frequency of two 

springs connected to a mass in parallel with two in series 

A series connect of k1 =1000 N/m  and k2 =3000 N/m  with m = 

10 kg yields:  

1 750 N/m
750 N/m 8.66 rad/s  

1/1000 1/ 3000 10 kg
eq seriesk     

  

A parallel connect of k1 =1000 N/m  and k2 =3000 N/m  with m = 

10 kg yields:  

4000 N/m
1000 N/m + 3000  N/m = 4000 N/m 20 rad/s

10 kg
eg park      

Same components, very different frequency 

 



Static Deflection 

Another important consideration in designing with springs is the 

 static deflection 

mg
k mg

k
   

 

This determines how much a spring compresses or sags due 

 to the static mass (you can see this when you jack your car up 

The other concern is “rattle space” which is the maximum  

 deflection A 

 

 



Section 1.6 Measurement 

• Mass: usually pretty easy to measure using a balance- a static 

experiment 

• Stiffness: again can be measured statically by using a simple 

displacement measurement and knowing the applied force 

• Damping: can only be measured dynamically 

 

 

 

 

 



Measuring moments of inertia using a Trifilar 

suspension system 
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0 0
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J J
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
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T is the measured period 

g is the acceleration due to gravity 

 

Figure 1.33 

 



Stiffness Measurements 

 

 

 



Example 1.6.1 Use the beam stiffness equation 

to compute the  modulus of a material 

 

Figure 1.24   l = 1 m, m =  6 kg,  I = 10
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m
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Damping Measurement (Dynamic only) 

Define the Logarithmic Decrement: 

 

 



Section 1.7: Design Considerations 

 

 

 

Using the analysis so far to guide the selection of components. 

 

 

 

 

 



Example 1.7.1 

 

• Mass 2 kg < m < 3 kg and k > 200 N/m  

• For a possible frequency range of  

 8.16 rad/s < ωn <  10 rad/s 

• For  initial conditions: x0 = 0, v0 < 300 mm/s 

• Choose a c so response is always < 25 mm 

 

 

 



Solution 

• Write down x(t) for 0 

 initial displacement 

• Look for max amplitude 

• Occurs at time of first peak (Tmax) 

• Compute the amplitude at Tmax 

• Compute ζ for A(Tmax)=0.025 
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max

0
max

To keep the max  value less then 0.025 m solve

( ) 0.025 0.281

Using the upper limit on the mass ( = 3 kg)

yields

        2 2 3 8.16 0.281 14.15 kg/s

FYI, =0   yields 37 mm
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Example 1.7.3 What happens to a good design when 

some one changes the parameters?  (Car suspension 

system).  How does ζ change with mass, ie when the car 

more passengers and luggage? 
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4
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Now add 290 kg of passengers and luggage.  What 

happens? 
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A lower frequency and damping ratio results meaning the car 

takes longer to damp out     
nt

e
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Section 1.8 Stability 

Stability is defined for the solution of free response case: 

Stable: ( ) ,    0x t M t    

 

Asymptotically Stable: 
lim ( ) 0
t

x t

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Unstable:  

if it is not stable or asymptotically stable 

 

 



Examples of the types of stability 

                                   

 

( )x t  

 

 

 

Stable    

 

Asymptotically 

Stable  

 

t 
t 

x(t) 

Divergent instability                Flutter instability  

 Figure 1.38 Figure 1.39 



Example: 1.8.1:  For what values of the spring 

constant will the response be stable? 

Figure 1.37 
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1.9 Numerical Simulation 

 

 

 

 

 

 

 

 

 

• Solving differential equations by 

numerical integration 

• Euler, Runge-Kutta, etc. 

• Available in Mathcad, Matlab, 

Mathematica and Maple (or in 

FORTRAN) 

• Or use Engineering Vibration 

Toolbox 

• Will use these to examine nonlinear 

vibration problems that do not have 

analytical expressions for solutions  

 



First order differential equation 

 



Example 1.9.1 solve dx/dt = -3x, x(0)=1 
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Time step 

 

 

 

 

 

 

 

 

 

• With time step at 0.5 sec 

the numerical solution 

oscillates about the exact 

solution 

• Large errors can be 

caused by choosing the 

time step to be too small 

• Small time steps require 

more computation  

 



Numerical solution of the 2nd order equation of 

vibration: 

It is necessary to convert the second order equation into two 

first order equations. To achieve this two new variables x1 

and x2 are defined as follows. 

1 2

0

Let  ,    

mx cx kx

x x x x

  

   

From this two first order differential equations can be 

written. 

1 2

2 2 1

x x

c k
x x x

m m



   Called state space 



The matrix form is 

Combining these first order DEs in matrix form gives. 
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2 2
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The Euler numerical method can then be applied to the 

matrix form to give. 
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Matlab Solutions ‘ode23’ and ‘ode45’ 

• Use Runge-Kutta. More sophisticated than the Euler 

method but more accurate 

• Often picks Dt (i.e. if solution x(t) is rapidly changing Δt is 

chosen to be small and visa-versa  

• Works for nonlinear equations too 

 

 

 

 

function xdot=sdof(t,x) 

k=2;c=1;m=3; 

A=[0 1;-k/m -c/m]; 

xdot=A*x; 

Create Matlab function 

» t0=0;tf=20; 

» x0=[0 ; 0.25]; 

» [t,x]=ode45('sdof',[t0 tf],x0); 

» plot(t,x) 

In the command window 



Resulting solution 

 



Why use numerical simulation when we can compute the 

analytical solution and plot it? 

• To have a tool that we are confident with that will allow us 

to solve for the response when an analytical solution 

cannot be found 

• Nonlinear systems to not have analytical solutions, but can 

be simulated numerically 

 

 

 

 



Section 1.10 Coulomb Friction and the Pendulum 

 

 

Nonlinear phenomenon in vibration analysis 

 

 

 

 

 

 

 



Vibration of Nonlinear Systems 

 

Sliding or Coulomb Friction
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The force due to Coulomb friction opposes motion, hence the 

‘sgn’ function is used. The force is proportional to the normal 

force and independent of the velocity of the mass. 

 



The free body diagram split depending on the direction 

of motion: 

 

mass moving right

( ) 0x t          

mass moving left

( ) 0x t   

sgn( ) 0    (1.100)mx mg x kx     

 

Figure 1.44 
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• Causes equation of motion to be 

nonlinear 

• Can solve as piecewise linear (see 

text) 

• Can solve numerically 

• Has more than one equilibrium 

position 

• Decay is linear rather then 

exponential  

• Comes to rest when spring 

cannot overcome friction at the 



Figure 1.45 shows the details of  the free response of a 

system with Coulomb damping 

 

 

 

 

 

 

 

 



A General second order system can be written as a single 

first order equation 
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The equilibrium position is defined: 

For Coulomb friction this is defined as: 

i.e. the positions where the force due to the spring can no 

longer overcome the sliding friction force 



 

Example 1.10.2: Calculating the equilibrium position for 

nonlinear DEs 

 

 

 

State space form: 
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Equation of motion: 
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Multiple equilibrium positions 

possible 

 



The pendulum 
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Example 1.10.2 Equilibrium of a Pendulum 

 

Figure 1.44 
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Solution to the pendulum 

• Can use numerical simulation to examine both linear and 

nonlinear response 

• Let (g/L)=(0.1)
2
 so that ωn = 0.1 

• a) use θ(0)=0.3 rad & initial vel: 0.3 rad/s 

• b) change the initial position to: θ(0)= p rad which is near the 

unstable equilibrium 
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After making a single 
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cannot make a second 

rotation and settles to 

the stable equilibrium 

position of θ=4π 

 

 



Summary of Nonlinear Vibrations 

• Additional phenomena over linear case 

• Multiple equilibrium 

• Instabilities possible with positive coefficients 

• Form of response dependent on initial conditions 

• Closed form solutions usually not available 

• Can simulate numerically 

• Linear model has tremendous advantages  

• Linear combination of inputs yields linear combination of outputs 

• Linear ode techniques very powerful 

• But don’t make a design error by ignoring important nonlinear situations 

• All systems have nonlinear ranges of operation 

• Need to sort out when nonlinearity is important to consider and when to ignore it 


