Chapter 6 Distributed Parameter Systems

Extending the first 5
chapters (particularly
Chapter 4) to systems with
distributed mass and
stiffness properties:

Strings, rods and beams

Tacoma Narrows Bridge



The string/cable equation

» Start by considering a
fx,D) uniform string
BEEEEEEE sjtretched between two
fixed boundaries
- I e Assume constant, axial
) tension 7 in string
(N « Let a distributed force
f(x,t) act along the
string




Examine a small element of the string

O°W(X,1)
Z Fy = pAAX Of)tZ =

—7,8IN6, +7,5In 6, + f (X,1)AX

X =T +Ax
* Force balance on an infinitesimal element

* Now linearize the sine with the small angle approximate
sinx = tanx =slope of the string

N L _w
» Writing the slope as the derivative: &nx =—¢



Substitute into F=ma and use a Taylor expansion:

2
(T é’w(x,t)j _(T ﬁw(x,t)j b tax= pAZ WD) o
ox )|, 2908 ot
Recall the Taylor series of zow/Jx about x;:
(T@j :(T@j +AX£(T@j +O(AX) + ...
29/ 299 29N2 VN
2
d (r é’w(x,t)j AX+ f (X, 1)AX = ,oAé7 W(Z(’t) AX =
OX 2908 ot
2
o (T &W(x,t)jJr f(x.1) :pAﬁ W(Z(,'[)
OX X ot



Since 7 is constant, and for no external force, the equation

of motion becomes:

.2 2w(x,t)  J*w(x,t) oo [T
OX’ ot: oA

Second order in time and second order in space, therefore
4 constants of integration. Two from initial conditipiage speed

(6.8)

W(X,0) =w,(x), W, (X,0)=w,(x) att=0
And two from boundary conditions (e.g. a fixed-fixed string):
w(0,t) =w(/,1) =0, t>0



Each of these terms has a physical interpretation:
* Deflection is w(x,t) in the y-direction
* The slop of the string is wy(X,t)
* The restoring force is Twyy(X,t)
* The velocity is wy(Xx,t)

» The acceleration is wy(X,t)
at any point x along the string at time t

Note that the above applies to cables as well as strings



There are Two Solution Types for Two Situations

* This Is called the wave equation and if there are no
boundaries, or they are sufficiently far away it is solved as a
wave phenomena

— Disturbance results in propagating waves*

 If the boundaries are finite, relatively close together, then
we solve It as a vibration phenomena (focus of Vibrations)

— Disturbance results in vibration

*focus of courses in Acoustics and in Wave Propagation



Solution of the Wave Equation:

* Interpret w(x,t) as a stress, particle velocity, or displacement
to examine the propagation of waves in elastic media

— Called wave propagation

* Interpret w(x,t) as a pressure to examine the propagation of
sound in a fluid

— Called acoustics



Solution of the “string equation” as a Wav ¢

A solution is of the form:
w(x,t) =w,x —ct) +w,(x + ct)

This describes on wave traveling forward and one wave traveling
backwards (called traveling waves as the form of the wave moves
along the media)

crest The wave speed is ¢

Think of waves in a
J pool of water

trough



Example 6.1.1 what are the boundary conditions for this

system? s f
A force balance at ¢ yields
> F_, =rsin@+kw((,t)=0 - P
Wwix,r) —-———
y y ?
X, 1
:>T&W( ) =—kW(X,t)‘ y 7 S ES AN
X |, . k 7
Z Z

Atx=0,the BCis w(x,t) =0 ’ l—‘ﬁ

Fig 6.2



6.2 Modes and Natural Frequencies

w(x,t) = X(X)T(t) =

2 2
CEX"(X)T () = X (X)T (t) where ”—d— and ” -d—
dx? dt?

LX) T TO >TM)+a’T(t)=0 (1)

X(x) T T
o d[X”(x)j:O:c x"(x):_w2
dx\ X(x) X (X)

2

- X”(x)+%X(x):O: X"(X)+ X (x)=0 (2)

,Bzgza)zcﬁ



Solving the Time Equation (1)
T(t) +@’T (t) =0 =T (t) = Asin wt + B cos at

This implies that T is oscillating with frequency ®

Solving the Spatial Equation (2)
X"(X)+ X (X) =0= X (X) = a,sin Bx+a, cos BX

At this point we have 4 unknowns: A, B, a , and a,



Use the Boundary Conditions to determine a; and a,
w(0,1)=0= X(0)T(t)=0= X(0)=0
= a,5In(0)+a,cos(0) =0=a, =0
w(l,t)=0= X(OT(t)=0= X({)=0
= a,sin(pl) =0
= pl=nz, = p, :n%, n=12,3,---

(But n cannot be zero, why?)

X(X)=asin(Bx)= X, (X)=a,sin(fx), n=L23.--

The X (x) are called eigenfunctions



Constructing the total solution by recombining X(x) and
T(t)

0=Ch=a = % =T (t)= A sin(w t) + B cos(w,t)

= W, (X,t) =X (X)T (t) =c, sinw.tsin  x+d coswmtsin S X
. .Nn . .Nn n . .Nn
=C, sm(—ﬂ ct) sm(—ﬂ X)+d cos(—ﬂ ct) sm(—ﬂ X)
( ( ( (
So there are n solutions, since the system is linear we add them up:

w(x,t)=>c, sin(n% ct) sin(n% X)+d_ cos(n% ct) sin(n% X)
n=1

We still do not know the constants ¢_and d_
but we have yet to use the initial conditions



Orthogonality I1s used to -evaluate the remaining
constants from the initial conditions
A, nN=m (

sin(— x) sin(— x)dx = =—0 6.28
j( ) (6) 10, nem-zom ©29)

(provmg this looks a lot like homework!)
From the initial poistion:

W(X,0) =w,(X) = i d, sin(n—ﬂ X)cos(0) =

j W, (x)sm(— X)dx = Zd j sm(— x)sm(7 x)dx =



:_Iw (x)sm(—x)dx m=1,2,3..

(6.31)
m—n=
=—jw (x)sm(—x)dx n=12,3..
Vi, (X) = chancsin(— x) cos(0) (6.32)

4

jw(x)sm(—x)dx n=123... (6.33)




The Eigenfunctions become the vibration mode shapes

W, (X) =sIn % X, which is the first eigenfunction (n=1)

W,(X)=0,=c, =0, V¥n

26 . Y/
d =—|sin(=x)sin(—x)dx=0, n=2,3...
=7 s XsinE0)
d,=1=

w(X,t) :sin(% X) cos(%tj

Causes vibration In the first
mode shape



A more systematic way to generate the characteristic
equation Is write the boundary conditions (6.20) In
matrix form

asinpl=0 and a,=0

=\ . =
singl 0] 0

0 1ila,| |0
= det( N=0=sinpl=0

singl 0
0 1

This seemingly longer approach works in general and will be used to
compute the characteristic equation in more complicated situations



The the solution of the boundary value problem results
In an eigenvalue problem

Forn=1,2_3..., [ X, (X) =4, sin[n—ﬂxj (6.22)
The spatial solutipn becomes: (

Here the index n results because of the indexed value of o

0 X)) =A%, X, (0%0, X,(0)=X,()=0| (623)

2
ritten as:

Which is also an eigenvalue, eigenfunction problem where
2 ; ; .
A =B Is the eigenvalue and X s the eigenfunction



This is Analogous to Matrix Eigenvalue Problem

2
plus boundary conditions, matrix — operator

A—-1—,
OX

u. — X, (x), eigenvector — eigenfunction
a X, (x) also an eigenfunction
orthoganality also results and the condition of normalizing

plays the same role
eigenvectors become mode shapes, eigenvalues frequencies

modal expansion will also happen



Plots of mode shapes (fig 6.3)
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X(3, x)

nodes



Example 6.2.2: Piano wire: | =1.4 m, T =11.1x10" N,
m=110 g. Compute the first natural frequency.

opA=110 g per 1.4 m=0.0786 kg/m

m_7Z'_C_7Z' r 7 [11.1x10° N
b ( 14\ pA 1.4)0.0786 kg/m

=2666.69 rad/s or 424 Hz




Example 6.2.3: Compute the mode shapes and natural
frequencies for the following system:

A cable hanging from
the top and attached
to a spring of tension T
and density p

w(X,t)

AN L |-
N N




In this case the characteristic equation must be solved
numerically

2.5
OW(X,1)
OX

T

X (x) =a,sin fx+a, cos X,
X(0)=0=a, =0and X (x)=a,sin Sx
= gffcos B =—ksin p{

. =0=7rsind+kw(/,t1)=0=

tan ol

— —kw({,t)

X=/

k=800 N/m

al

:tanﬂéz—% /

The characteristic equation must be
solved numerically for §_

flal) = —ralk

Fig 6.4

Note text uses ¢ not 3



The Mode Shapes and Natural Frequencies are

k =1000,7=10,(=2

£, =1.497,2.996,4.501
(2n-Drx * The values of §_must be

o1 found numerically

* The eigenfunctions are
again sinusoids
X =a_ sin(f x) * The value shown for

B_1s for large n

» See Window 6.3 for a
summary of method

6.013...




Example: Compute the response of the piano wire to :
initial conditions: w, (x) =sin %,wo(x) -0

: > . Nz . nxc . N nzc
Solution: w(x,t) = Z(Cn sin %xsm %t +d_ sin %xcos%t)
=1

W, (x) =0= Z (c, %sin n%x cos(0)) = c, =0,¥n
i=1
w(x,t)=> d, sin n% xcos%t, att=0, Eq.(6.31)=
i=1

14
d :g_[sin?’—”xsindex, m=123...
0 ( (

=0, for all m except m=3, d, =1

w(X,t) =sin 377szin %t



Some calculation details:

jwo(x)sin%xdx
( ( . . 3xC
o W(—,t) =sin6zsin—t
:Z J'sm—xsmm—xdx 2 {
0 =0
Iy
2
W(£ t) sin S%Sm %t (=14m,c=11.89=
1.4 .
0 707sm%t W(T,t) =0.707sin80.4t




Summary of Separation of Variables

* Substitute w(x,H)=X(x)T(t) into equation of motion and
boundary conditions

* Manipulate all x dependence onto one side and set equal to
a constant (-p°)

* Solve this spatial equation which results in eigenvalues [,
and eigenfunctions X,

* Next solve the temporal equation to get T,(t) in terms of B,
and two constants of integration



* Re form the product wy(X,t)=Xn(X)T,(t) In terms of the 2n
constants of integration

 Form the sum

w(x,t) =3 X, (X)(A, sin w,t +B, cos o)

* Use the Initial displacement, initial velocity and the
orthogonality of X,(x) to compute A, and B,.



6.3 Vibration of Rods and Bars

Equilibrium  Consider a small element
?r?;llrﬂ’(t)ensimaly{ X of the bar
element dx * Deflection is now along x
D (called longitudinal
Fe Ly Prar vibration)
// « F=ma on small element

yields the following:

O Figure6.5 ¢



Force balance:
F+dF —F = pA(X)dx

O *W(X,t)
2

— (6.53)

Constitutive relation:
F = EAG) 2D gp i(EA(x) é’W(X’t)]dx

o X o X O X

2 OW(X,1) O “W(x,t)
— | EA(X = pA(X 6.55
5)(( ()ﬁxjp() Py (6.55)

2 2
A(Xx) = constant = EZ W()z(’t) _Z W();’t) (6.56)

o OX ot
At the clamped end: w(0,t) =0, (6.57)
At the free end: EA 5\/;()(’0 =0 (6.58)
X X={




Example 6.3.1: compute the mode shapes and natural
frequencies of a cantilevered bar with uniform cross
section.

w(x,t) = X (X)T (t) = c’w, (X, t) = w, (X,t)
X0 _ T __ (6.59)
X(x) c°T(t)
N {X”(x) +o2X(x)=0, X(0)=0, AEX'())=0 (i)
T(t)+c’c°T(t)=0, initial conditions (i)
From equation (i) the form of the spatial solution is

X (X) =asin ox+bcosox

Next apply the boundary conditions in (i) to get the characteristic equation
and the form of the eigenfunction:



Apply the boundary conditions to the spatial solution to
get
asin(0)+bcos(0) =0
acos(ol)—bsin(c?) =0

0 1
—b=0and det _ -0
cos(ol) —sin(ol) |
cosO-E:O:m—n:zn_l;z, n=123,---
= o1
Xn(x):ansin(( n;ﬁ)ﬂx), N=123--.




Next consider the time response equation (ii):

2n -1
2/

72) T(t)=0
(2n-1)cx

T"n(t)+c2(

(2n—1)C7zt

=T (t) = A,sIn Y

t+B, cos

o - (2n-Yczr _(2n-Drz |E 123 (663
20 20 yo,



Example 6.3.2 Given vy(I)=3 cm/s, p =8x10° kg/m® and
E=20x10" N/m?, compute the response.

w(Xx,t) = Z (c,sino.ct+d_ coso ct)sin (2221) 7T X
n=1

(2n—1) zxdx =0 =

26
d. =z£W0(x)sm

W, (X,0) =0.036(x— /) = chanc cos(0)sin (22;1) TTX
n=1

Multiply by the mode shape indexed m and integrate:



(
= 0.03( (sin (2m—1) X)S(X — 0)dx
0
w L _
=> cncyncsin(2m D xsin 20D yx
. 21
_ __1\m+l
— 0.03sin MY - _Conl m—l\/; DD
2 2 E (2m-1)
3 _1\n+l n+1
Cn:\/ 8x10 | 0.12(-)™ _ cp 1qs (D
210x10° x(2n-1) (2n— )
( 1)n+1 -

W(X,t) = 7.455x10 Z D
2N —

sin ( 2261 nxjsin (512.348(2n-1)t) m



Various Examples Follow From Other Boundary
Conditions

* Table 6.1 page 524 gives a variety of different boundary
conditions. The resulting frequencies and mode shapes are
given in Table 6.2 page 525.

* Various problems consist of computing these values

* Once modes/frequencies are determined, use mode
summation to compute the response from IC

* See the Dbook by Blevins:Mode Shapes and Natural
Frequencies for more boundary conditions



6.4 Torsional Vibrations

ey
\

\(x,t) ‘

T \(x,)+d6
X | +dT1
x+dx

Summing moments on the element dx

2
7+ﬁdX—T:pJ d H()Z(’t) dx
OX

Where p is the shaft's mass density

7=0GJ ,

or
dz = —dx, from calculus

OX
A0(x,1)

from solid mechanics
OX

G=shear modulus
J=polar moment of area cross section

Combining these expressions yields;
2
E(GJ ﬁ@(x,t)j:pj i 9(>2<,t)’
OX OX t
2°0(x,1) G F°0(x.t)
ot? p  OX°

GJ constant =




The nitial and boundary conditions for torsional
vibration problems are:

» Two spatial conditions (boundary conditions)
« Two time conditions (initial conditions)

 See Table 6.4 for a list of conditions and Equation (6.67) and Table
6.3 for odd cross section

* Clamped-free rod:

6(0,t) =0 Clamped boundary (O deflection)
GO, (¢,t) =0 Free boundary (0 torque)

6(x,0=6,(x) and 6,(x,0)=6,(x)



Example 6.4.1: grinding shaft vibrations
* Top end of shaft is connected to pulley (x = 0)

* J; Includes collective inertia of drive belt, pulley and motor

J
1
g 3 l ‘ Drive pulley, collective inertia

X

Grinding head inertia
~ ? %Y Shaft of stiffness GJ, length |




Use torque balance at top and bottom to get the Boundary
Conditions:

2
G A(X.1)| J, O 9(>2<,t) at top
IX |0 ot |
2
GJ DY _ -J, 7 ‘9()2(’0 at bottom
OX |y ot |,

The minus sign follows from right hand rule.



Again use separation of variables to attempt a solution

0(x,t) = ()T (t) =

0"(x) _ (pjfm o
O(X) G )T(t)

-

O"(X)+c°0(X)=0, T(t)+w°T(t)=0

\F
w=0C=0 |—
yo,




The next step Is to use the boundary conditions:
Boundary Conditionat x=0=
GJO'(0)T(t) = J,0(0)T(t) =
GIO'O) _T® _ o o
J,©0) T(t)

2
0'(0) = -2 Y1 (0)
0J
Similarly the boundary condition at | yields:
2
o'(0) = T2 (1)

0J



The Boundary Conditions reveal the Characteristic
Equation

O(x) =a,sinoXx+a,cosox = 0(0)=a,
O'(X) =a0cosox—a,ocsinox = 0'(0) =a0c
X=0=

o’l, cJ,

®'(0) =- O0)=a =—""2a,
J 0J

X=(=

2 2
° jl O(() > aoccosol—-a,osincl = ° jl a sincl+a,cosc/!
o,

Q'(() =

PIL,+3,)(o0)
J,J,(c0)" = (pJ0)*

= tan(c () = «—  THE CHARACTERISTIC EQUATION

(6.82)




Solving the for the first mode shape

pdl(J, +J,)(al)

> ~ has 0 as Its first solution:
J,J,(c)* = (pd o)

tan(o () =

Numerically solve for o ¢, n=1,2,3,...,and o, =0, °

Yo,
Note forn=1,0,=0= 0, =0=>T(t)=0=

T(t) =a+Dbt the rigid body mode of the shaft turning

= 0/(X)=0,=0,X)=a,+bx=

X=0=Db =0= 0,(x) =a, the first mode shape




Solutions of the Characteristic Equation involve solving
a transcendental equation

(bx* —a) tan X = X

pIL 3,
J,+J, (J,+J,)pd!
J,=J,=10 kg-m?/rad, p=2700 kg/m°,
J=5kg-m?*/rad, (=0.25m
G =25x10°Pa
—

f,=0Hz, f,=38,013 Hz,

f,=76,026 Hz, f, =114,039 Hz,

X=0l, a=



to assist In find initial guess for numerical routines used to

Fig 6.9 Plots of each side of eq (6.82)
compute the roots.

L. -
e _+ ..........
S ——
L — e

'Z_/I
F __E |||||||||||| T

8 10 12 14

6




6.5 Bending vibrations of a beam

w (X,1)

p 4 L Y,

]

dx A(X)=h.h

bending stiffness = EI(x)

E = Youngs modulus

| (X) = cross-sect. area moment of
Inertia about z

o°W(X,1)

M (x,t) = EI(X) v

f(x’t)T T M(x,t)+M (x,t)dx
wit) \__‘ I V(X,)+V (x,t)dx
______ Y?f_’b__
X X +dX

Next sum forces in the y-direction (up, down)
Sum moments about the point Q
Use the moment given from
stenght of materials
Assume sides do not bend
(no shear deformation)



Summing forces and moments yields:

[I/(X,ZL) + oV (x,t) O’Xj ~Vix,t)+f(x,t)ax = pA(X)O’X é)ZW(g(’ZL)
oX ~
(M(X,f) n oM(x,t) dxj M.t + {l/( b+ oV(x,t) dx}dx
oX —~

- {é’M(X,f) + I/(X,Z‘)}d)( N {ﬁl/(x,z‘) . f(x, z‘)}( P =0
oX P



oM(x,t)
OX
Substitute into force balance equation yields:

O°M(x,t)

= V(x,t) = -

g + Fx. ) = pAx)ax S WD

ox° Ot
owix,t) | -, wx.t)|
%/Ié‘\gldl)ng byt and suﬁxﬁuﬁcr{g(] f())r Mgields = 1o

2 4
ow (Xz‘)H:gé’ w(x,t) 0 c- E/

Assdine constant stiff€ss to get: PA




The possible boundary conditions are (choose 4):

Free end Clamped (or fixed) end
2 -
bending moment:E/iV;/ =0 deflection =w=0
X
OW
2 = — =
shearforce = ﬁ[E/ﬁ Iq =0 slope = AX 0
174 oX
Pinned (or simply supported) end slidingend
: ow
deflection=w=20 slope = v 0

bending moment=El

—0 2
OX? shearforce = E{E/ﬁ V!} =0
7.4 17,4



Solution of the time equation yields the oscillatory nature:

2XT0 O,
X0 T

T{t)+o*Tt)=0=
T(t) = Asin ot + B cos wt
Two Initial conditions:

W(X,0) = w,(X), W, (X, 0) = W, (x)



Spatial equation results In a boundary value problem
(BVP)

),

X"(X)— (Ej X (x) =0.

2 2
Define f* = (Qj _F g‘)
C

Let X (X)= Ae’" to get:

X (X) =@, sin Bx+a, cos BXx+ a, sinh fx+a, cosh Sx

Apply boundary conditions to get 3
constants and the characteristic equation



Example 6.5.1. compute the mode shapes and natural
frequencies for a clamped-pinned beam.

At fixedend x =0 and
X(0)=0=a,+a,=0
X'(0)=0= pla +a,;)=0
At the pinnedend, x =/ and
X(0)=0=
a,sinpl +a,cos pl +a,sinhpl +a,coshpl =0
EIX"(4) =0=
B°(—a sinpt —a, cos Bl + a,sinhpl + a, cosh ) =0



The 4 boundary conditions in the 4 constants can be written as
the matrix equation:

0 1 0 1 a, 0

Jo; 0 )i 0 a| |0

sin gl cos S/ sinh g/ coshpl | a, |0

C—,BZSin,BE — pZcos pr B°sinhpl ,Bzcoshﬂfjfij 0|
B a

Fa=0a=+0=det(B)=0=
tan p¢ = tanh p¢

The characteristic equation



Solve numerically (fsolve) to obtain solution to
transcendental (characteristic) equation

pL=3.926602 pB,0=7.068583 p,(=10.2101/6
B, =13.351768 p.(=16.493361

n>b—

8= (An+D)rx

A

Next solve Ba=0 for 3 of the constants:



With the eigenvalues known, now solve for the
eigenfunctions:

Ba =0 vyields 3 constants in terms of the 4th:

a, =—a, from the first equation

a, =—a, from the second equation

(sinh g —sin g ()a, + (cosh B (—cos p.()a, =0
from the third (or fourth) equation

Solving yields:
_cosh g.(—cos S, ( g
sinh B (—sinB(

= X, (X)=(a,), cc_>sh ’B”K_C_OS Pot (sinh g (x—sin B (x)—cosh S (x +cos S (X
sinh B (—sin g (




Plot the mode shapes to help understand the system
response

X(n.x) = cosh(n) — cos(n)

sinh(n) — sin(n)

-(sinh(n-x) — sin(n-x)) — cosh(n-x) + cos(n-x)

1571

1+ Mode 3 | ‘/ Mode 2

Note zero slope

I’ N
. R
Y 1 " ‘\
‘ AY
X(3.926602, x) i : , L , e
Y . . . / . .

N

Non zero slope

X(7.068583, x)

X(10.210176,x) ~O05T

_1--




Again, the modeshape orthogonality becomes important
and is computed as follows:

Write the eigenvalue problem twice, once for n and once for m.

X2"(0) = BX,(0) and X2 (X) = BEX, (%)

Multiply by X _(x) and X (x) respectively, integrate
and subtact to get:

[ X 700X, (X0~ X7 (X)X, (0 = (B — 52)] X, (30X, ()

Then integrate the left hand side twice by parts to get:



Use iIntegration by parts to evaluate the integrals In the
orthogonality condition.

apply j udv=uv- j vdu twice:

j X (x)X””(x)dx X X'”\ - j X "X ! dx

u du

_ /(( )X ”'(E) X _£0)X "(0) - j X' X "dx




—j X1 XX ==X () X ()|, + j X "(x)X " (x)dXx

:-xmm X}, (0) XH0) + [ XI0X ()

Thus 0 0

fx;"'(x)xm<x)dx—fx;;"(x>xn(x)dx=(ﬂ:—ﬂé)fxn<x)xm(x)dx

= j X (X)X " (x)dx — j X1 ()X (x)dx = (B, ﬂ)j X (X)X, (x)dx

;tO

0

{
:jxn(x)xm(x)dx=O,Vn,m,n £m
0




The solution can be computed via modal expansion based on
orthogonality of the modes.

[X,00X, 000 =,
w(x,t) = i (A, sino t+B cosmt) X (X)

W(x,0) =W, (X) = 3B, X, (x) = B, = fwo(x)xn(x)dx

W (,0) =V (%) = > 0,4 X, () => A, =

n

W, (X) X, (X)dx

O'—;é\




Summary of the Euler-Bournoulli Beam Assumptions
» Uniform along its span and slender

* Linear, homogenous, isotropic elastic material without axial
oads

* Plane sections remain plane

* Plane of symmetry is plane of vibration so that rotation &
translation decoupled

* Rotary inertia and shear deformation neglected

* Tables 6.4 and 6.5 give -eigensolutions for several
configurations (see Blevins for more)



Continuing with the Timoshenko beam

Including the effects of shear deformation and rotational
Inertia



Timoshenko beam equation
short fat beams

* Add in the effect of rotary inertia, and

e Shear deformation

(rotation of the cross section
due to pure bending)

tangent to centerline

of the beam \VA S .



Thick Beam FBD

Sjy M -

Slope due to beam bending dv

ﬂ_W:y +q ﬂtz

\/ ) Dynamics this time

Slope due to beam with rotary inertia
bending plus shear

4
Vs
w(x, 1)



The bending moment becomes:

£ 9Y Y v
dx

Shear force equation becomes (from deforms):
2 AG [y/(x,t) - dW(X’t)} —V (x.1)

A dynamic force balance gives
o°w(
ot

N (x,1)

pAX)d W) {V(x,t) ' dx}V(x,t) + £ (xt)dx

G is the shear modulus and «° is the shear coefficient (just k in
some treatments, 5/6 for rectangular cross section and 9/10 for
circular).



Including rotational inertia, the moment balance becomes:

2 2

A2 2 M+ M =M 4|V + Do axr £ 2
2

ot OX OX 2

Combining these last few expressions yields:

)
d E a—l/j}+/c2AG(?—wj:pIaw
X

ox|  Ox ot? _ .
o p S > equations of motion
< KZAG(—W— j+f= A

ox| ox PR o

If all coefficients constant, and no external force =
Za O°W E ) d'w  p°l J'w
4 2 -pl| 1+ 2 > w2 T2 4
OX ot kG )ox ot kG ot

El

0




Four Boundary Conditions
(2 at each end)

ClampedBoundary (sayat x = 0)
w(0,2) =0, w(0,¢) =0 deflections
Simply Supported Boundary (sayat x = 0)

Bending

moment £/ W(O’Z‘) =0, w(0,t)=0 deflection
oX

Free Boundary (sayat x =0)

Bending

Shear force moment



4 initial conditions
w(x,0) = w,(x)
v, (x,0) = yry(x)
w(x,0) = w,(x)
w,(x,0) = w,(x)



Example: Compute the frequencies of a pinned-pinned
beam for both beam models*

w(x,t) = X(x)T'(f) does not work,so try the morerestricted form

w.(Xx,t)=s w{@j Cos w,t
14 N

T Pinned modes of EB

4 2
E/(Ej sin{ﬂlcos a)nz‘—p/(u ';C ](/m] wﬁsir{@]coswnz‘
4 4 kG N\ ! 4

2

= — '02 / w, sin(n—zxjcos w,t + pAw; sir{%}cos w,t

kG

Harmonic time response




This yields the characteristic equation directly in terms of the
natural frequencies of oscillation:

2 2 2.2 2 2.2 2 2 2
/ nemwer n-rxre kE n-arx
wj(p ]—(H + ]a),27+ =0

kG (? ¢ kG 0*
where o’ =i/, re _/
PA A

This 1s quadratic in omega squared and has roots as follows:



Analysis of frequencies

Euler Bernoulli freq: ) CZ2/727Z'4
@, = /A
Euler Bernoulli plus effect of rotary inertia:
0)2 _ ] 0[2/7272'4

A | Rl e

Euler Bernoulli plus effect of rotary inertia and shear deformation:

2 2 4
o o
),

" €4[1 + (/727Z2f2 /(2)%6]

Reduces frequency, more prominent effect for larger frequencies.




Comparison of freguencies versus length

n=10

N

& 10

6.1010 1

oEB(10,L)

oTd10, L 1010 +

oT(10,L)
2°10

7

1.5°10° T

oEB(1,L)- 107 +

oTd1,L)
6

oT(1,L) 5107 T

10 _

10 |

0.2

No difference

1 1.5



Comparison of frequencies versus mode number

2100 T
®EB(n, 1)
oTdn, 1) 17107 1 _
oT(n, 1) L=1m
0 2 1:_ :6 8 10
41010 ¢
(o_EB(n,.S) L:O.5 m

E’)Tr{na 5) 2 1010 T

coT(n,.S)

Rule of thumbisL >10h



6.6 Vibration of membranes and plates

* The domain () is now a
plane rather then a line:
Two dimensional

* Membrane is a two
dimensional string

Y  Plate Is a two dimensional

/ b W 1) beam

> x  Figure 6.13




The membrane equation:
NVwx, y.t)= pw,(x, y.t), X,V eQ
Tension per unit length ’\density(mass/area)

2 2
vee 2 9
Y The Laplace operator

ow(x, y,z‘)+ﬁ2W(X, v.t) 1 owx, v, t)

ox©
C = 7
\/ p

ov© c* Of°




Boundary and initial conditions

w(X, y,t) =0 for some part of the boundary &2
OW(X, y,t)

on
where this derivative donotes the derivative

normal to the plane of the membrane

=0 for some other part of the boundary &2

plus the usual initial conditions



Example 6.6.1 Compute the natural frequencies of a
square membrane of 1 m side.

, X,y eQ

o| oW O'w | Fw
¢ 2 T 2 PN
o°xX Oy Ot

w(x, y,t) = X(X)Y (y)T(t) =

Temporal equation

XNT + XYT =S xyp o XX _1TO
C XY c”T(t)
X IY + XY 4 x /4 Y” ) x /4 Y” ) )
XY X Y X Y
X",
1 X
Y'
Y7

where o’ =a’+y°



X"(X)+a*X (X) =0= Asinax+ Bcosax
Y"(y)+7°Y(y)=0=Csinyy+Dcosyy
X(X)Y(y)=Asinaxsinyy+ A, sinaxcosyy
+ A, cosaxsin yy+ A, COSaXCcosyy
Now apply the boundary conditions:
along x=0:
TO)X)Y(y) =T(O)(Asinyy+A,cosyy)=0=
A,;sinyy+ A, cosyy =0 which must hold for any y
= A=A =0




Now wehave :
X(x)Y(y)=Asinaxsiny + A sinax cos yy
Alongx =1, w1, y,t)=0":
Asinasiny + A sinacosyy =0 =
sina(A siny + A cosyy) =0 =
eithersina =0 orA =A4A =0
= siha=0=a, =nr,n=1234...




At this point:
X(X)Y(y)=Asinaxsinyy+ A, sinaXxcosyy
Aty=0, w(x,0,t)=0=
A sinaxsin0+ A, sinaxcos0=0= A, =0
So X(X)Y (y)=Asinaxsinyy
Aty=1L,w(x,1,t)=0=
A sinaxsinyl=0=siny =0
which gives y. =mz, m=12,3,4...




Freguencies and Mode Shapes

o =Nr,y. =Mr=a,_ =\/7/ri+af —

frequencies are

o =x\n? +m?

mode shapes are

o0

{sinnzxsinmry|

n,m=1




Solution

w(x,y,t) =Y > (sinnzxsinmzy){A,, sin @,,ct+ B, sin w,,ct}

n=1 m=1
The sinnzxsinmzy are orthogonal:

11
Hw(x, y,t)(sinnzxsin mzy)dxdy = %(Aqm sinw_ ct+B_ sina Ct)
Apply the initial conditions at t=0 to get:

11
A = 4”W(x, y,0)(sin nzxsin mzy)dxdy

_4
@, C

nm

O'—-’H

1
jwt (X, y,0)(sinnzxsinmzy)dxdy
0



Suppose that w,(x,¥,0)=0=8_ =0,
Suppose that wix, y,0) =sinzxsinzy = A =0,

exceptfor A. and w,, = 72 =
w(x,y,t) = A, sinzxsinzy sinw,,ct first mode vibration
What does the second mode look like? There are two:
w.,(Xx, V,t) = A, sinzx sin2zy sinw,,ct
w,.(x,y,t) = A, sin2zx sinzy sinw,ct
0, = @, = 75, but w,,(x, v,t) # W, (x, 1)

w,, has node line at y = 0.5 while
w, has a node line at x = 0.5.



Plate vibration:

 Think of it as adding bending
DNw(x, y.t) stiffness to the membrane
» Assume small deflections

= pw, (X, y,t), X,y eQ with respect to the thickness

ER h o
D = > * Plane through middle is
12(1-v°) called neutral plane and does
., O o A not deform in bending
V' = y +2 PRV T % * No thickness stretch



Boundary Conditions:

* This is a 2D analog of the EB beam theory and is called thin plate
theory

* Must be enough boundary conditions for the 4th order derivatives:

OW(X,Yy,t)
on
For a simply supported (pinned) rectangular plate

w(x,y,t)=0, alongx=0,y=0,x=0,y=1,

O°W(X, y,1)
OX’

O°W(X, y,1)
oy*

w(x,y,t)=0 and

=0 forx,ye X

=0, alongx=0,x=1/,

=0, alongy=0,y=1¢,



6.7 Models of Damping
Equations of motion for damped systems have the form:

W, (X, t) + Lw, (x,t) + Lw(x,t) =0, xeQ
Bw(x,t)=0, xeX)

Separation of variables will only work for
certain forms of the operators L and L,



There are many models of damping and many ways to
approach the inclusion of damping.

* Two ways to introduce damping

 Use the concept of modal damping

* Examine some physical possibilities
T(t)+e’T({t)=0, n=123... —_
Add modal damping via 2 @, T, (t) The string equation
T (t)+2¢ 0T (t)+o°T(t) =0, {23 ..

=T (1) = A]e_gna’” sin(w,t+4¢.), o, =, 1—4“2



Example: compute the response of a cantilevered bar with
modal damping ratio 0.01 and IC’s w(X,0)=(x/L) and w(x,0)=0.

Undamped modal solution

— X_(x) =sin (2n—-1) X = (2n-z |E
2L 2L \p
Add modal damping _
0y, = 01— 7 =0.9999 4N D7 [E
2L \p
T, (1) = Ae """ sin(wgt +4,)
(2n-Dzx

w(x,t) => Ae """ sin(wy,t + 4, )sin
n=1

2L




0.0l% =» A sing,sino,L
n=1

Multiplying the mth mode and integrating yields
0.01 0.01  na

Lo?

j'xsm o XdX =

m

” L
= A sin ¢njsin o_Xxsin o xdx
n=1 0

A, sin ¢ ()
O Ol

~D)"=A, sing, (= )




W, (x,0)=0=

0= i A [-0.01w, sin(g,) + ,, cos(¢4,)]sin o, X

= 0= A [-0.01lw,sIn(d. )+ o, cos(¢m)]%

=99.9949,m=12,3...= ¢ ~— Vm

= fan
P = 2

~ 1-(0.01)2
0.01

002 ~-1)™,'m=1,2,3

= Ay =

m

0.02 :
= W(x,t) = Z( "% cos w, tsin o X

n

o, =@2n-)x/2L,0,=0,.E! p,w,, =0.9999,



Physical models of damping
 Air damping
» Material damping
* Boundary damping
* Strain rate damping

Linear viscous approximation: yw,(X,t)
POW. (X, t) + W, (X, t) —zw,, (X,1) =0
Clamped-clamped boundary conditions
w(0,t) =w(0,() =0



Example: solve the damped fixed string using modal
analysis
w(x,t) = X(X)T(t) =

pPTO+/TO) _ X" __
7T (1) X (X)

X"+0°X =0 plushc = X, =sin%,an :n%

2
ST )+ L Tn(t)+l(n—ﬂj T (£)=0
P p\ 1L
28,0,

S A—
20, p ZHE\E




U
\l
=
|l

Ae " sinlw, t +¢,)

11

= wlx,t) =Y Ae " sinlw,, + ¢n)sin%
=1

Where the remaining constants are determined by the initial
conditions

Note that as w, Increases with n, the series dies out faster and
fewer modes need to be kept to fully represent the response



Viscous damping can be used to model a plate with
energy dissipation.

PW, (X, Y, 1) + 7w (X, ¥, 1) + D VWX, y,1) =0, X, y,eQ

Damping for the longitudinal vibration of a bar

2

7 EA
IOVVtt (X’ y,t) +2[7/_ﬂ ﬁxz VVt(X,t)]—?WXX(X,t) — O’ XY € Q

A general model for damped layered systems would be of the
form

Lw, (X,t)+Lw (X 1)+ Lw(xt)=0, xeQ
Bw(x,t) =0, Xe&2



Modal Analysis and the response

Also called “eigenfunction expansion” or “modal analysis”

Remove the constant multiplier of the eigenfunctions by
normalizing such that:

| #.00¢,00dQ =5,

Then

w(x, ) = Y2, (0, ()



Substitute the expansion Into the equation of motion,
multiply by an eigenfuctution and integrate.

| #.00Lg,()dQ =7, | 4,(0¢,()dQ =2,
Then the equation of motion becomes the modal equation:
a (t)+Aa,(t)=0, n=1223---00

An initial value problem for the temporal functions



Finding the time equation by mode -eigenfunction
expansion

u, (x,t)+ Lu(x,t) =0, subject to boundary conditions.

Solve Lg, = 4,4, where [ 4.¢,dx=3,,

u(xt)=> a,(t)¢,(x), and substitute into eom

n=1

D &, ()4, )+ a,(t)Lg, (x) =0. Next multiply by ¢ and integrate
n=1 n=1

0 i s (
> &0 Ad.dx+ 2, ()4 | 4¢ndx=0, where we used Lg, = 4.,
n=1 n=1

= 4a (t)+4.a (t) =0, n=12,3--o



Modal Analysis in Damped Systems
w. (X, 1)+ Lw (X, £) + Lw(x, 1) =0, XeQ

Let the operators L; and L, have the same eigenfunctions with
eigenvalues 2, and £ respectively, then

2 [8, 04, () + 2,78, ()¢, (x) + 4,72, (1), (x)] = 0
n=1

Multiply by ¢ (x) and integrate to get:
am(t)_I_//Lrg\l)a.‘m(.l-')_I_/?“n(wz)a'm (t) :O1 m :11213"'00



Example A membrane in air

If /'”>g then:

[ =2

7
yo,

LZZ_

a,(0) =& (A sin(,

1(2) _(

/4
yo,

j )t+ B, cos(

\

A —(Zj 1]
Yo,



6.8 Modal analysis and the forced response

Consider a string with unit impulse applied and viscous damping present
PW, (X, 1)+ yW, (X, t) —zw (X, 1) = T (X,1)

f(x,1) = 5(x—§)5(t)
Boundary conditions are w(0,t) =w((,t) =0
=X (x)=a sin%. Letw (x,t) =a_sin %Tn (t)

substitute into (1) =

{pT"n 5T, —{—(”7”) }Tn}sin% _ 5(x—§)5(t)



Multiply by X _(x) and integrate to get

Pl +yT —1

N

_(n_ﬂ
14

TM)+LT (t)+(

yo,

cnz

:

T

n

J

i 2
) m:@p

{
&gzé(t)gé(x—g)sin%dx
. Nz
= 5(t)sin —
(t)sin 1
Nt
= sin— |4(t
sin 4) (t)

n=1,2.3,...



Using the impulse response function of equations (3.7) and (3.8)
yields:

- B 2 B 2 —
\/(2,ocn7z)2 —(yl)? I 2! _
—
00 - B > B > -
n=1 \/(2an72')2 —(y0)? I 2ol | ;




General forced response (Sec. 3.2)
T,(0)+2¢,0,T, () +a;T, (1) = f,(t) =

T, (t) = Ae = sin(w,t +4,)

e_gna)nt L

+ | f.(2)e" " sin @y, (t—7)d7
0

a)dn

Then combine with the spatial mode shapes to form the series
solution (a summation of modes).

The i1dea of using modes is to take us back to sdof methods.



Example 6.8.2

A rota . * The machine exerts a

rotating machine )
mounted on the floor harmonic load on the
of a building floor of 100 N
amplitude at 3 rad/s

* Model the floor as a
simply supported EB
beam and compute the
forced response




The mathematical model becomes

2
w(x,t) "W tC W

100 sin 3¢ =(100/pA)sin3td(x-
112)
Y « w(0,t)=w(l,t)=0,
w_(0,)=w_(1,H)=0

. 02 =El/pA

* From the spatial eigenvalue
problem:

* X (X)=A sin(nmx/l)



Recall from before that:

2
o, = ﬂ(”—”j n=123..
pA\ L

Normalize X (X) =sin n% X =

jx (X)X, (x)dx = Anjsm—xsm7xdx 1

5/2
= A = \f and X (x)= \fsm—xn 1,2,3...

and jx (X)X, (X)dx =0,n = m

An orthonormal set



T (1)X_(X)+cT, () X" (x) = (100sin 3t) 5(x — g)
But X" () = (0 / ¢*) X _(X) =
[T (t)+’T (1)]X_(X) = (100sin 3t)5(x - g)

S 2 ¢ ( Nz X
T (t)+@’T (t) = (100sin 3t)\/;I O (X —E)sin de
0

T,(0+o,T, (1) = \/g(l()OSin 3t)sin %T n=12,3..



7 (1) =

7 (1) =

n

1002/ ¢

(E1] pA)(nz ] 0)* -9

— 1002/ ¢

(E1] pA)(nr ] 0)* -9

4
E/ [ﬂ;j 7 (t) = _100\/§sin31‘, n=3711,...

sindt, n=159,...

sindt, n=3,711,...



The total response Is given by:

o0

wx.t) =Y T ()X, (x) =

n=1
200 sinzx /¢ sin3zx /¢
wix,t) = [ 4 4 - 4 4
t (zEl/ 0" pA) -9 (BIz El] 1" pA) -9
sindzx/¢ |sin3¢

_I_
(625 7°E1/ % pA) -9

\

A hint on approximation



