
Chapter 6 Distributed Parameter Systems 

 

 

 

 

 

 

 

 

 

Extending the first 5 

chapters (particularly 

Chapter 4) to systems with 

distributed mass and 

stiffness properties: 

Strings, rods and beams 

Tacoma Narrows Bridge 



The string/cable equation 

 

 

 

 

 

 

 

 

 

• Start by considering a 
uniform string 
stretched between two 
fixed boundaries 

• Assume constant, axial 
tension τ in string 

• Let a distributed force 
f(x,t) act along the 
string 

f(x,t) 

y  

x 

τ 



2

2

1 1 2 2

( , )

  sin sin ( , )

y

w x t
F A x

t

f x t x






   

  

   



Examine a small element of the string 

 

 

 

 

• Force balance on an infinitesimal element 

• Now linearize the sine with the small angle approximate  

sinx = tanx =slope of the string 

• Writing the slope as the derivative: x

w
x




tan  

 



 



 

τ


 

τ


 

x
1
         x

2
 = x

1
 +Δx       

w(x,t) 

f (x,t) 



Substitute into F=ma and use a Taylor expansion: 
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Since τ is constant, and for no external force, the equation 

 of motion becomes: 
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(6.8) 

 

 

 

, wave speed 

Second order in time and second order in space, therefore  

4 constants of integration. Two from initial conditions: 

And two from boundary conditions (e.g. a fixed-fixed string): 



Each of these terms has a physical interpretation: 

• Deflection is w(x,t) in the y-direction 

• The slop of the string is wx(x,t) 

• The restoring force is τwxx(x,t)  

• The velocity is wt(x,t) 

• The acceleration is wtt(x,t) 

 at any point x along the string at time t 

 

 

 

Note that the above applies to cables as well as strings 



There are Two Solution Types for Two Situations 

• This is called the wave equation and if there are no 

boundaries, or they are sufficiently far away it is solved as a 

wave phenomena 

– Disturbance results in propagating waves* 

• If the boundaries are finite, relatively close together, then 

we solve it as a vibration phenomena (focus of Vibrations) 

– Disturbance results in vibration 

 

 

 
*focus of courses in Acoustics and in Wave Propagation 



Solution of the Wave Equation: 

 

• Interpret w(x,t) as a stress, particle velocity, or displacement 

to examine the propagation of waves in elastic media 

– Called wave propagation 

• Interpret w(x,t) as a pressure to examine the propagation of 

sound in a fluid 

– Called acoustics 

 

 



Solution of the “string equation” as a Wav  e 
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A solution is of the form: 

This describes on wave traveling forward and one wave traveling 

backwards (called traveling waves as the form of the wave moves 

along the media) 

trough 

crest The wave speed is c 

Think of waves in a  

 pool of water 



Example 6.1.1 what are the boundary conditions for this 

system? 
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Fig 6.2 



6.2 Modes and Natural Frequencies 
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Solving the Time Equation (1) 

2( ) ( ) 0 ( ) sin cosT t T t T t A t B t        

 

 

Solving the Spatial Equation (2) 
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This implies that T is oscillating with frequency ω 

At this point we have 4 unknowns: A, B, a
1
, and a

2
 



Use the Boundary Conditions to determine a1 and a2 
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(But n cannot be zero, why?) 



Constructing the total solution by recombining X(x) and 

T(t) 
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We still do not know the constants c
n
 and d

n
  

but we have yet to use the initial conditions 



Orthogonality is used to evaluate the remaining 

constants from the initial conditions 
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(6.31) 

(6.32) 

(6.33) 



The Eigenfunctions become the vibration mode shapes 

0

0

0

1

( ) sin ,   which is the first eigenfunction ( =1)

( ) 0, 0,    

2
sin( )sin( ) 0,    2,3

1

( , ) sin( )cos

n

n

w x x n

w x c n

n
d x x dx n

d

c
w x t x t



 

 



   

  

 

 
  

 



 

 

 

 

 

Causes vibration in the first  

mode shape 



A more systematic way to generate the characteristic 

equation is write the boundary conditions (6.20) in 

matrix form 
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This seemingly longer approach works in general and will be used to 

compute the characteristic equation in more complicated situations 



The the solution of the boundary value problem results 

in an eigenvalue problem 
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The spatial solution becomes: 

(6.22) 

(6.23) 

 

 

 

The spatial problem also can be written as: 

 

 

 

Which is also an eigenvalue, eigenfunction problem where 

λ =β
2

 is the eigenvalue and X
n
 is the eigenfunction. 



This is Analogous to Matrix Eigenvalue Problem 
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2
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orthoganality also results and the condition of normalizing

plays the same role
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vectors become mode shapes, eigenvalues frequencies

modal expansion will also happen
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Plots of mode shapes (fig 6.3)  
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Example 6.2.2: Piano wire: l =1.4 m, τ =11.1x104 N, 

m=110 g. Compute the first natural frequency. 
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110 g per 1.4 m = 0.0786 kg/m

11.1 10  N

1.4 1.4 0.0786 kg/m

                            2666.69 rad/s  or 424 Hz
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Example 6.2.3: Compute the mode shapes and natural 

frequencies for the following system: 

 

 

 

 

 

 

 

 

A cable hanging from 

the top and attached 

to a spring of tension τ 

and density ρ 

w(x,t) 
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 x  
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In this case the characteristic equation must be solved 

numerically 
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The characteristic equation must be 

solved numerically for β
n
  

Fig 6.4 

Note text uses σ not β 
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The Mode Shapes and Natural Frequencies are 

 

 

 

 

 

 

 

 

 

 

 

 

• The values of β
n
 must be 

found numerically 

• The eigenfunctions are 

again sinusoids 

• The value shown for  

 β
n
 is for large n 

• See Window 6.3 for a 

summary of method 



Example: Compute the response of the piano wire to : 
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Some calculation details: 

 

 

 

 

 

 

 

 

 



Summary of Separation of Variables 

• Substitute w(x,t)=X(x)T(t) into equation of motion and 

boundary conditions 

• Manipulate all x dependence onto one side and set equal to 

a constant (-β
2
) 

• Solve this spatial equation which results in eigenvalues βn 

and eigenfunctions Xn 

• Next solve the temporal equation to get Tn(t) in terms of βn 

and two constants of integration 

 

 



• Re form the product wn(x,t)=Xn(x)Tn(t) in terms of the 2n 

constants of integration 

 

• Form the sum 
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• Use the initial displacement, initial velocity and the 

orthogonality of Xn(x) to compute An and Bn. 

 

 



6.3 Vibration of Rods and Bars 

 

 

 

 

 

 

 

 

 

x       x +dx  

w(x,t)  

x  

dx  

F+dF  F  

Equilibrium 

position 

Infinitesimal 

 element 

0                    l  Figure 6.5 

• Consider a small element 

of the bar 

• Deflection is now along x 

(called longitudinal 

vibration) 

• F= ma on small element 

yields the following: 



2

2

2

2

2

 ( , )
( )                           (6.53)

 

( , ) ( , )
( )  ( )  

   

( , )  ( , )
( ) ( )                (6.55)

   

 
( ) constant      

w x t
F dF F A x dx

t

w x t w x t
F EA x dF EA x dx

x x x

w x t w x t
EA x A x

x x t

E w
A x






  

  

  


  





  

 
    

 

 
 

 

 
2

2 2

( , ) ( , )
    (6.56)

  

At the clamped end: (0, ) 0,                               (6.57)

( , )
At the free end:  0                        (6.58)
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Force balance: 

Constitutive relation: 



Example 6.3.1: compute the mode shapes and natural 

frequencies of a cantilevered bar with uniform cross 

section. 
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From equation (i) the form of the spatial solution is

                       ( ) sin cosX x a x b x 





 

 

 Next apply the boundary conditions in (i) to get the characteristic equation 

and the form of the eigenfunction: 



Apply the boundary conditions to the spatial solution to 

get 
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Next consider the time response equation (ii): 
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Example 6.3.2 Given v0(l)=3 cm/s, ρ =8x103 kg/m3 and 

E=20x1010 N/m2, compute the response. 
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 Multiply by the mode shape indexed m and integrate: 
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Various Examples Follow From Other Boundary 

Conditions 

• Table 6.1 page 524 gives a variety of different boundary 

conditions. The resulting frequencies and mode shapes are 

given in Table 6.2 page 525. 

• Various problems consist of computing these values 

• Once modes/frequencies are determined, use mode 

summation to compute the response from IC 

• See the book by Blevins:Mode Shapes and Natural 

Frequencies for more boundary conditions 
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Combining these expressions yields;
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6.4 Torsional Vibrations 
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Summing moments on the element 

( , )

Where  is the shaft's mass density
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The initial and boundary conditions for torsional 

vibration problems are: 

• Two spatial conditions (boundary conditions) 

• Two time conditions (initial conditions) 

• See Table 6.4 for a list of conditions and Equation (6.67) and Table 

6.3 for odd cross section 

• Clamped-free rod: 

0 0

(0, ) 0   Clamped boundary (0 deflection)

( , ) 0 Free boundary (0 torque)
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Example 6.4.1: grinding shaft vibrations 

• Top end of shaft is connected to pulley (x = 0) 

• J1 includes collective inertia of drive belt, pulley and motor 

 

 

 

 

 

 

 

Drive pulley, collective inertia 

Shaft of stiffness GJ, length l  

 J
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 θ(x,t)  

 x  

 J
2
  

Grinding head inertia 



Use torque balance at top and bottom to get the Boundary 

Conditions: 
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The minus sign follows from right hand rule. 



Again use separation of variables to attempt a solution 
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The next step is to use the boundary conditions: 
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Similarly the boundary condition at l yields: 



The Boundary Conditions reveal the Characteristic 

Equation 
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THE CHARACTERISTIC EQUATION 

(6.82) 



Solving the for the first mode shape 
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Solutions of the Characteristic Equation involve solving 

a transcendental equation 
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Fig 6.9 Plots of each side of eq (6.82)  

to assist in find initial guess for numerical routines used to 

compute the roots. 

 



Next sum forces in the -direction (up, down)
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6.5 Bending vibrations of a beam 
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Summing forces and moments yields: 
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Substitute into force balance equation yields: 

 

 

 

Dividing by dx and substituting for M yields 

 

 

 

Assume constant stiffness to get: 
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The possible boundary conditions are (choose 4): 
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0 moment bending
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Solution of the time equation yields the oscillatory nature: 
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Spatial equation results in a boundary value problem 

(BVP) 
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Apply boundary conditions to get 3 

 constants and the characteristic equation 



Example 6.5.1: compute the mode shapes and natural 

frequencies for a clamped-pinned beam. 
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The 4 boundary conditions in the 4 constants can be written as 

the matrix equation:  
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The characteristic equation 



Solve numerically (fsolve) to obtain solution to 

transcendental (characteristic) equation 
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Next solve Ba=0 for 3 of the constants: 



With the eigenvalues known, now solve for the 

eigenfunctions: 
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Plot the mode shapes to help understand the system 

response 

 

 

 

 

 

 

 

 

Note zero slope 

Mode 3 
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Mode 1 

Non zero slope 



Again, the modeshape orthogonality becomes important 

and is computed as follows: 

Write the eigenvalue problem twice, once for n and once for m. 
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the left hand side twice by parts to get:

 

 



Use integration by parts to evaluate the integrals in the 

orthogonality condition.  
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The solution can be computed via modal expansion based on 

orthogonality of the modes. 
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Summary of the Euler-Bournoulli Beam Assumptions 

• Uniform along its span and slender 

• Linear, homogenous, isotropic elastic material without axial 

loads 

• Plane sections remain plane 

• Plane of symmetry is plane of vibration so that rotation & 

translation decoupled 

• Rotary inertia and shear deformation neglected 

• Tables 6.4 and 6.5 give eigensolutions for several 

configurations (see Blevins for more) 



Continuing with the Timoshenko beam 

 

 

Including the effects of shear deformation and rotational 

inertia 

 

 

 

 

 



Timoshenko beam equation 

short fat beams 

• Add in the effect of rotary inertia, and 

• Shear deformation 
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Thick Beam FBD 
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Slope due to beam bending 
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Dynamics this time  

 with rotary inertia 
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The bending moment becomes: 
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Shear force equation becomes (from deforms):
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G is the shear modulus and κ
2
 is the shear coefficient (just κ in 

some treatments, 5/6 for rectangular cross section and 9/10 for 

circular). 



Including rotational inertia, the moment balance becomes: 
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Combining these last few expressions yields:
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Four Boundary Conditions  

(2 at each end) 

0
),0(

  ,0

0)= at (say Boundary Free

0),0(   ,0
),0(

0)= at (say Boundary Supported Simply

0),0(  0,=)(0,

0)= at (say Boundary Clamped

2 













x

t
EI

x

w
AG

x

tw
x

t
EI

x

twt

x

















 

 

deflections 

deflection 

Bending 

 moment 
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 moment Shear force 



4 initial conditions 
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Rotation from 

 neutral axis 



Example: Compute the frequencies of a pinned-pinned 

beam for both beam models* 
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Pinned modes of EB 

Harmonic time response 



This yields the characteristic equation directly in terms of the 

natural frequencies of oscillation: 
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This is quadratic in omega squared and has roots as follows: 
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Analysis of frequencies 

 

 

 

 

 

 

 

 

 

Euler Bernoulli freq: 

Euler Bernoulli plus effect of rotary inertia: 

Euler Bernoulli plus effect of rotary inertia and shear deformation: 

Reduces frequency, more prominent effect for larger frequencies. 
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 Rule of thumb is L > 10 h 

L=1 m 

L=0.5 m 



6.6 Vibration of membranes and plates 

 

 

 

 

 

 

 

 

 

• The domain (Ω) is now a 

plane rather then a line: 

Two dimensional 

• Membrane is a two 

dimensional string 

• Plate is a two dimensional 

beam 
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w(x, y, t) 

Figure 6.13 



The membrane equation: 
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Tension per unit length      density(mass/area) 

The Laplace operator 



Boundary and initial conditions 
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Example 6.6.1 Compute the natural frequencies of a 

square membrane of 1 m side. 
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Temporal equation
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Frequencies and Mode Shapes 
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What does the second mode look like? There are two: 

w
12 

has node line at y = 0.5 while 

 w
21

 has a node line at x = 0.5. 



Plate vibration: 
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• Think of it as adding bending 

stiffness to the membrane 

• Assume small deflections 

with respect to the thickness 

h 

• Plane through middle is 

called neutral plane and does 

not deform in bending 

• No thickness stretch 



Boundary Conditions: 

• This is a 2D analog of the EB beam theory and is called thin plate 

theory 

• Must be enough boundary conditions for the 4th order derivatives: 
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6.7 Models of Damping 

Equations of motion for damped systems have the form: 
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There are many models of damping and many ways to 

approach the inclusion of damping. 

• Two ways to introduce damping 

• Use the concept of modal damping 

• Examine some physical possibilities  
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The string equation 
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Example: compute the response of a cantilevered bar with 

modal damping ratio 0.01 and IC’s w(x,0)=(x/L) and wt(x,0)=0. 

 

 

 

 

 

 

 

 

Undamped modal solution 

Add modal damping 
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Physical models of damping 

• Air damping 

• Material damping 

• Boundary damping 

• Strain rate damping 

Linear viscous approximation:  ( , )

( , ) ( , ) ( , ) 0

Clamped-clamped boundary conditions
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Example: solve the damped fixed string using modal 

analysis 

2

2

2

2

( , ) ( ) ( )

( ) ( ) ( )

( ) ( )

0  plus bc sin ,

( ) ( ) ( ) 0

1
                        

2 2

n n

n n

n n n

n

n

w x t X x T t

T t T t X x

T t X x

n x n
X X X

n
T t T t T t

n

 

 




 
 

  

 

 


   

 


  

     

 
    

 

  

 
















1

sin)sin(),(

)sin()(

n
ndn

t
n

ndn
t

nn

xn
teAtxw

teAtT

nn

nn












 

 

Where the remaining constants are determined by the initial 

conditions 

Note that as ωn increases with n, the series dies out faster and 

fewer modes need to be kept to fully represent the response 

 

 



Viscous damping can be used to model a plate with 

energy dissipation. 
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Damping for the longitudinal vibration of a bar 
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A general model for damped layered systems would be of the 

form 
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Modal Analysis and the response 

 

Also called “eigenfunction expansion” or “modal analysis” 

Remove the constant multiplier of the eigenfunctions by 

normalizing such that: 
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Substitute the expansion into the equation of motion, 

multiply by an eigenfuctution and integrate. 
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Finding the time equation by mode eigenfunction 

expansion 
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Modal Analysis in Damped Systems 
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Multiply by ϕ
m
(x) and integrate to get: 



Example A membrane in air 
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6.8 Modal analysis and the forced response 

Consider a string with unit impulse applied and viscous damping present 
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Using the impulse response function of equations (3.7) and (3.8) 

yields: 
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General forced response (Sec. 3.2) 
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Then combine with the spatial mode shapes to form the series 

solution (a summation of modes).   

The idea of using modes is to take us back to sdof methods. 

 

 



Example 6.8.2 

 

 

 

 

 

 

 

 

 

A rotating machine 

 mounted on the floor  

 of a building 

• The machine exerts a 

harmonic load on the 

floor of 100 N 

amplitude at 3 rad/s 

• Model the floor as a 

simply supported EB 

beam and compute the 

forced response 



The mathematical model becomes 
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       =(100/ρA)sin3tδ(x-

l/2) 

• w(0,t)=w(l,t)=0, 

  w
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(l,t)=0 

• c
2

 =EI/ρA 

• From the spatial eigenvalue 

problem: 

• X
n
(x)=A

n
sin(nπx/l) 



Recall from before that: 
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 An orthonormal set 
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The total response is given by: 
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•  
A hint on approximation 


