Chapter 4

Reactions of alkenes

Addition reactions Carbocations Selectivity of reactions Prob 47 p192. Give the reagents that would be required (including catalyst).

Electrophilic addition

addition of electrophile and then nucleophile to C=C

- electrophile from E⁺ Nu⁻ or $E^{\delta+}$ -Nu^{$\delta-$} or E-Nu
- □ (typically) 2-step reaction
 - Ist step ~ addition of E⁺ to = ~ slow ~ RDS
 - □ C=C is a weak Nu ~ need strong E⁺ like H⁺
 - base destroys E⁺ ~ run in acidic or neutral condition
 - 2nd step ~ addition of Nu:- to C+ ~ fast

Addition of HX

electrophilic addition of HF, HCI, HBr, or HI to =

• E⁺ is H⁺ from H^{δ +}-X^{δ -}

A symmetrical alkene gives one product.

unsymmetrical alkene?

Stability of carbocation

relative stabilities of carbocations

- due to charge dispersion by
 - □ inductive effect ~ e-donating R
 - $\hfill \hfill hyperconjugation betw e in <math display="inline">\sigma$ bond and empty p orbital

Regioselectivity

■ The 1st step is the RDS, and the more stable carbocation intermediate is formed more rapidly. → regioselectivity

□ regioselective

completely regioselective ~ regiospecific

© 2011 Pearson Education, Inc.

Markovnikov's rule

- Markovnikov in 1870
 - "In addition reactions of HX to alkenes, H bonds to C with more H."
- Restating
 - "In addition reactions to alkenes, E⁺ adds so as to form more stable carbocation."

$$\underset{\scriptstyle (2011 Pearson Education, Inc.}{\overset{2}{\underset{\scriptstyle (2011 Pearson Education, Inc.}{\overset{\scriptstyle (2011$$

strong acid ~

gives H⁺ as E⁺

 $CH_3CH = CH_2 + H_2O \longrightarrow$ no reaction

- H_2O is a too-weak acid to give electrophilic H^+ or H^{δ_+}
- need a catalyst -

 $CH_3CH = CH_2 + H_2O \leftarrow H_3CH - CH_3CH - CH_2$

$$H_2SO_4 + H_2O \longrightarrow H_3O^+ + HSO_4^-$$

hydronium ion

- a hydration [addition of water]
- an acid-catalyzed hydration
- Hydration of alkene gives alcohol.

- the first 2 steps the same to hydrohalogenation
 - obeying Markovnikov's rule
- 3rd step ~ removal of H⁺ ~ H⁺ recovered
 - **p**rotonated alcohol [ROH₂⁺] is a very strong acid ($pK_a < 0$)
- > HSO_4^- as the (competing) Nu:?
 - > weaker (base) and smaller amount

Addition of ROH

 $CH_{3}CH = CH_{2} + CH_{3}OH \xrightarrow{H_{2}SO_{4}} CH_{3}CH - CH_{2}$ $OCH_{3} H$ 2-methoxypropane an ether

acid-catalyzed addition of alcohol to alkene gives ether

mechanism the same to hydration

Carbocation rearrangement

Ch 4 #12

to form more stable carbocation

rearrangement with ring expansion

© 2011 Pearson Education, Inc.

to form more stable C⁺ and ring

$$CH_{3}CH = CH_{2} + Br_{2} \longrightarrow CH_{3}CH - CH_{2}$$

Br Br Br

\square addition of Cl₂ or Br₂ [chlorination, bromination]

- in inert solvent like CH₂Cl₂ or CHCl₃
- mechanism ~ through cyclic intermediate

:Br:

- How did they know that cyclic rather than C⁺?
 - retrieving intermediate?
 - observing product

© 2011 Pearson Education, Inc

 addition of Cl₂ or Br₂; not F₂ or l₂
F₂ is too reactive [explosive]
I₂ is not reactive enough CH₃CH=CHCH₃ + I₂ CH₂Cl₂ CH₃CHCHCH₃

Writing organic reactions

- reactants left, products right
- conditions above or below arrow
 - catalyst
 - **\square** solvent, temperature, heat [Δ]
- sometimes substrate (or organic comp'd) only on the left

$$CH_{3}CH = CHCH_{3} \xrightarrow[]{Cl_{2}} CH_{3}CH_{3}CHCHCH_{3}$$

reacting X₂ in H₂O

- H₂O is Nu: awa solvent
 - > Water is a nucleophilic solvent; CH_2CI_2 is an inert solvent.
- H₂O wins over Br:- as the Nu:
 - solvent ~ much larger # of molecules

\Box other Nu's ~ when a larger amount than X₂ is used

Oxymercuration-reduction

for alcohol synthesis

- (acid-catalyzed) hydration of alkene
 - Iow yield, C⁺ rearrangement
 - Still, industrial method
- oxymercuration-reduction
 - high yield, no rearrangement
 - lab-preferred

1-pot 2-step reaction

oxidation ~ adding C-O (C-N, C-X) bond and/or removing C-H bond reduction ~ adding H and/or removing O (N, X)

□ gives the same product as hydration

Markovnikov alcohol

```
oxymercuration-reduction
```


if C⁺ rearrangement possible in hydration ~ different product
acid-catalyzed addition of water

$$\begin{array}{c} CH_{3} \\ H_{2}CH_{3}C-CH=CH_{2} + H_{2}O \xrightarrow{H_{2}SO_{4}} CH_{3}C-CHCH_{3} \\ CH_{3}C-CHCHCH_{3}C-CHCH_{3}C-CHCH_{3}C-CHCH_{3}C-CHCH_{3}C-CHCH$$

□ alkoxymercuration-reduction

gives ether

Addition of peroxyacid

□ to prepare epoxide ring

epoxide ~ 3-membered cyclic ether ~ reactive

■ mechanism ~ 'concerted'

'concerted' mechanism we have seen

□ nomenclature of epoxide ring

common name ~ 'oxide'

$$H_2C$$
— CH_2

 $H_2C = CHCH_3$ propylene H₂C-CHCH₃ propylene oxide

- -ide for anion?
 - -OCH₃ methoxy; CH₃CH₂O⁻ ~ ethoxide
- IUPAC name ~ 'oxirane' or 'epoxy-'

2-ethyloxirane

1,2-epoxybutane

© 2011 Pearson Education, Inc.

CH₃CH-CHCH₃

2,3-dimethyloxirane 2,3-epoxybutane

2,2-dimethyloxirane 1,2-epoxy-2-methylpropane

Hydroboration-oxidation

- gives 'anti-Markovnikov alcohol'
 - 'terminal' or primary alcohol
 - Hydration or oxymercuration-reduction gives <u>not</u>.

■ borane, BH₃

Lewis acid ~ with empty orbital ~ E⁺

ΟH

■ mechanism: 1st step (actually, 1-1)

- through 4-center TS⁺ not thru C⁺ ~ to explain the result
- actually, obeys (re-stated) Markovnikov's rule

■ mechanism: step 1-2 (and 1-3)

addition of alkyl borane RBH₂ (and dialkyl borane R₂BH)

- 2nd reason for 'anti-Markovnikov addition' ~ steric hindrance
- Why B on less-substituted C?
 - > (1) more stable C⁺-like TS[‡] (2) steric hindrance
 - > (0) BH₃ is a Lewis acid (accepting e on B)

mechanism: 2nd step ~ trialky borane to (three) alcohols

general:

 $3 \operatorname{CH}_3 \operatorname{CH}_2 + \operatorname{BH}_3 \xrightarrow{\mathsf{THF}} (\operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2)_3 \operatorname{B} \xrightarrow{\mathsf{HO}^-, \mathsf{H}_2 \mathsf{O}_2} 3 \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{CH}_2 \mathsf{OH} + {}^- \operatorname{B}(\operatorname{OH})_4$

© 2011 Pearson Education, Inc.

Addition of H₂ [hydrogenation]

\Box catalytic addition of H₂ to = \rightarrow saturation

the alkene approaches the surface of the catalyst

the π bond between the two carbons is replaced by two C-H σ bonds

(Relative) stability of alkenes

trans-disubstituted alkenes is more stable than cis-

steric hindrance

More substituted alkene is more stable.

relative stabilities of alkyl-substituted alkenes

- difference not huge
 - □ hyperconjugation ~ effect not as large as in C⁺
 - steric hindrance

D stability and reactivity

relative reactivity to Br₂ addition

Alkene	Relative Rate	Alkene	Relative Rate
H = H	1	$\begin{array}{c} H_{3}C \\ \\ H_{3}C \\ H_{3}C \\ H \end{array} \begin{array}{c} CH_{3} \\ H \\ CH_{3} \\ H \\ CH_{3} \\ H \\ H \\ CH_{3} \\ H \\ H \\ CH_{3} \\ CH_{3} \\ H \\ CH_{3} \\$	$1 imes 10^5$
$H C = C H_2 C H_3$	$1 imes 10^2$	$\begin{array}{c} H_{3}C \\ C = C \\ H_{3}C \\ C H_{3} \end{array}$	$2 imes10^6$
$\begin{array}{c} H \\ C = C \\ H_{3}C \\ H \end{array}$	$2 imes 10^3$		

- high nucleophilicity
- higher hyperconjugation effect for C⁺

학봉 김성일이 스승 퇴계 이황에게 공부하는 방법을 묻자, 이렇게 답했다.

"학문은 그저 익숙하도록 읽는 것뿐이다. 글의 뜻을 알았다 한들, 익숙하지 못하면 금방 잊어버리게 되어 마음에 간직할 수 없을 것이다. 반드시 배우고 난 뒤에 익숙해질 때까지 공부를 해야 마음에 간직할 수 있으며, 또 흠씬 젖어드는 맛도 느낄 수 있을 것이다."