Chapter 5

Stereochemistry

Chirality and isomers Stereoselectivity of reactions

Isomers

Chirality = handedness

chiral object or molecule has

- non-superimposable mirror image
- asymmetric center

right hand left hand

achiral object or molecule has plane of symmetry

Br

CH₂CH₃

H ****

Br

CH₃CH₂

"""H

□ chiral? achiral? Find

- asymmetric center [= C with 4 different groups] \rightarrow chiral
- plane of symmetry \rightarrow achiral ~ always true

Asymmetric center

atom bonded to 4 different groups

= asymmetric carbon = chiral(ity) center = chiral carbon

stereocenter and asymmetric center

Enantiomer(s)

■ Fischer projection

- Horizontal bonds project above the paper; vertical bonds projects behind the paper.
 - Usually, C-C vertical, subs horizontal

R,S designation of enantiomers

- 1. Find the asymmetric center.
- 2. Assign priority of the groups (1, 2, 3, 4).
 - Using Cahn-Ingold-Prelog rules
- 3. View from asymmetric center to group 4.
- 4. Determine the direction from group 1 to 2.
 - Clockwise ~ (R)
 - Counterclockwise ~ (S)

R ~ rectus ['right']
S ~ sinister ['left']
'R for right-turn'

□ Practice!

□ *R*, *S* in Fischer projection

Properties of enantiomers

■ For an enantiomeric pair:

- properties that are <u>not</u> chiral are the same
 - properties observed in achiral environment
 - **•** mp, bp, $\Delta H_{combustion}$,
 - solubility to achiral solvent, reactivity to achiral comp'd
- properties that are chiral are different
 - properties observed in chiral environment
 - solubility to chiral solvent
 - reactivity with an enantiomer of a chiral comp'd
 - odor, drug [medicine]
 - optical rotation

hand mitten glove

Optical activity

Chiral compounds are optically active, and rotate planepolarized light.

- clockwise rotation ~ dextrorotatory ~ (+) or (d)
- counterclockwise rotation ~ levorotatory ~ (-) or (/)
- <u>no</u> rotation ~ not optically active [achiral] or racemic
 <u>racemate</u> [racemic mixture] ~ 50/50 mixture of (+) and (-)
 (±) or (*d*,*l*)
- > relation between R/S and +/-? <u>NO</u> relation!
 - > Observed rotation indicates only chirality and existence or excess of one enantiomer.

• specific rotation
$$\begin{bmatrix} \alpha \end{bmatrix}_{\lambda}^{T} = \frac{\alpha}{l \times c}$$

- T ~ temperature (°C)
- λ ~ wavelength (usually, D ~ sodium D-line, 589 nm)
- α ~ observed raotation (degree)
- I ~ length of sample tube (dm = 10 cm)
- c ~ concentration (g/mL)
- specific rotation for one enantiomer
 - not for racemate

(S)-2-methyl-1-butanol

 $[\alpha]_{\rm D}^{20\,\,{\rm °C}} = -5.75$

- enantiomeric excess [ee]
 - ee = observed $[\alpha] / [\alpha]$ of pure enantiomer (%)

□ If $[\alpha] = 2.875$ observed, ee = 50%. (50+25)% R + 25% S.

More than 1 asymmetric center

- # of stereoisomers
 - for molecules with *n* asymmetric centers [C*]
 - maximum number of stereoisomers = 2ⁿ

4 stereoisomers

- 2 enantiomers + 2 diastereomers
- □ for 1 isomer, 1 enantiomer + 2 diastereomers
- with *n* C*'s
 - **a** for 1 isomer, 1 enantiomer and 2n 2 diastereomers

OН

Diastereomers are stereoisomers that are not enantiomers.

- enantiomers ~ same achiral properties (mp, bp, ---)
 different chiral properties (+/- optical rotation)
- diastereomers ~ different chiral and achiral properties
- > *Cis-trans* isomers are diastereomers.

- erythro ~ similar group on the same side
- three ~ on opposite sides in Fischer projection (eclipsed!)

cis-1-bromo-4-methylcyclohexane

trans-1-bromo-4-methylcyclohexane

© 2011 Pearson Education, Inc.

Meso compound

Ch 5 #17

- meso compound [meso-stereoisomer]
 - superimposable mirror image ~ achiral
 - The 2 C*'s are bonded to the same 4 groups.

R,*S* for diastereomers

Ch 5 #19

	Menning point, C	Specific rotation	11 ₂ 0 at 15 °C
(2R,3R)-(+)-Tartaric acid	171	+11.98	139
(2S,3S)- $(-)$ -Tartaric acid	171	-11.98	139
(2R,3S)-Tartaric acid (meso)	146	0	125
(±)-Tartaric acid	206	0	139

Absolute and relative configurations Ch 5 #20

- absolute config ~ R or S
- relative config ~ changed or not [the same or different]
- \blacksquare the same relative config \leftarrow not breaking bond to C*

Separation of enantiomers

□ difficult, tedious, and costly

(1) converting to diastereomers

- (2) selectively reacting one enantiomer with chiral reagent and/or chiral catalyst
- (3) chromatography with chiral stationary phase

Other chiral compounds

Ch 5 #22

substituted allenes

© 2006 Brooks/Cole - Thomson

Ch 5 #24

right-handed and left-handed

Stereochemistry of reactions

regioselectivity

more B is formed than C

- eg, Markovnikov addition
- if completely regioselective ~ regiospecific
- stereoselectivity

 $A \longrightarrow B + C$

more B is formed than C

moderately, highly, completely

stereospecificity

■ All stereospecific reactions are stereoselective. <u>Not</u> vice versa.

Addition rxn creating 1 C*

not stereoselective

not stereospecific ~ both cis- and trans- gives racemate

Ch 5 #26

reactant with C*

- gives racemate?
 - $\square R \rightarrow RS + RR$
- stereoselective
 - □ diastereomers ~ *RS* > *RR* or *RS* < *RR*
- stereospecific
 - $\square S \rightarrow SR + SS$

Addition creating 2 C*'s

■ through C⁺ intermediate

3-chloro-3,4-dimethylhexane

gives 4 stereoisomers

perspective formulas of the stereoisomers of the product

© 2011 Pearson Education, Inc.

RR, RS, SS, SR

not stereoselective and not specific

• trans-isomer \rightarrow three enantiomers

• cycloalkenes \rightarrow cis or meso

- Hydroboration-oxidation
 - syn addition ← 'concerted'
 - stereoselective
 - stereospecific

© 2011 Pearson Education, Inc.

- 'anti' addition

 through cyclic intermediate
- cis \rightarrow three
- trans \rightarrow erythro or meso

Table 5.3 Stereochemistry of Alkene Addition Reactions			
Reaction	Type of addition	Stereoisomers formed	
Addition reactions that create one asymmetric center in the product		1. If the reactant does not have an asymmetric center, a racemic mixture will be obtained.	
		2. If the reactant has an asymmetric center, unequal amounts of a pair of diastereomers will be obtained.	
Addition reactions that create two asymmetric centers in the product			
Addition of reagents that form a carbocation intermediate	syn and anti	Four stereoisomers will be obtained (the cis and trans isomers form the same products).	
Addition of H ₂	syn	cis \longrightarrow erythro or cis enantiomers*	
Addition of borane		trans \longrightarrow three or trans enantiomers	
Addition of a peroxyacid			
Addition of Br_2 , $Br_2 + H_2O$, $Br_2 + ROH$ (any reaction that forms a cyclic bromonium ion intermediate)	anti	cis \longrightarrow three or trans enantiomers trans \longrightarrow erythro or cis enantiomers*	

* If the two asymmetric centers have the same substituents, a meso compound will be obtained instead of the pair of erythro enantiomers.

© 2011 Pearson Education, Inc.

Summary of addition reactions

- through C⁺ interm
 - hydrohalogenation, hydration
 - regioselective to specific
 - <u>not</u> stereoselective or specific
- through 3-membered cyclic interm
 - halogenation, halohydrin, oxymercuration-reduction
 - regiospecific
 - stereoselective and specific (anti addition)
- concerted addition
 - epoxydation, hydroboration-reduction
 - regiospecific
 - stereoselective and specific (syn addition)
- catalytic hydrogenation
 - stereoselective and specific (syn addition)

Chiral catalyst

- enzyme ~ protein catalyst for bio-reaction
 - (completely) stereoselective

- $\begin{array}{c} -OOC \\ C = C \\ H \\ H \\ H \end{array} + H_2O \xrightarrow{\text{fumarase}} \text{ no reaction} \\ \\ \hline \\ maleate \\ \hline \\ \hline \end{array}$
- other chiral catalyst

enzyme

H₃C

(R)-(-)-carvone

spearmint oil

 $[\alpha]_{\rm D}^{20\,^{\circ}{\rm C}} = -62.5$

CH₂

H₃C

(S)-(+)-carvone

caraway seed oil

 $[\alpha]_{D}^{20 \,^{\circ}C} = +62.5$

CH₂

- smells
- drugs