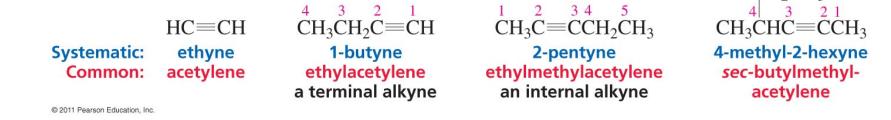
Chapter 6

Reactions of Alkynes

Alkynes Multistep synthesis

Alkynes

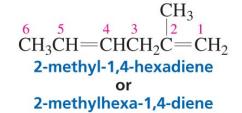

D HC with \equiv

- C_nH_{2n-2} (acyclic) or C_nH_{2n-4} (cyclic)
- DU = 2 or 3
- nomenclature

-yne

smallest cycloalkyne

CH₂CH₃


alkynes ~ (substituted) acetylenes <cf> paraffins, olefins
 terminal vs internal alkyne

nomenclature (cont'd)

systematic nomenclature ~ the same to alkene

$$CH_2 = C = CH_2$$

systematic: common: © 2011 Pearson Education, Inc. propadiene allene

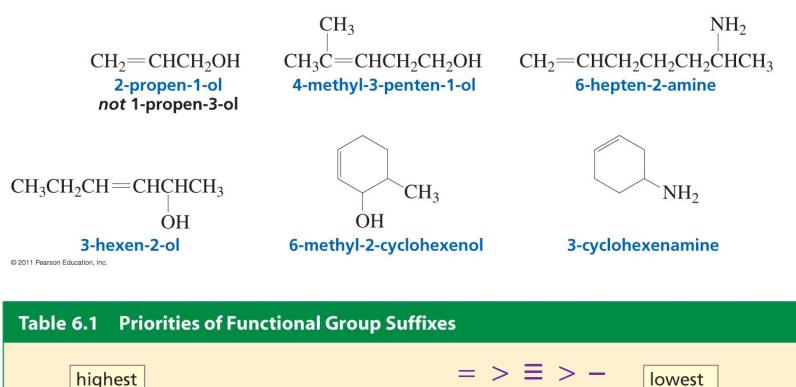
 CH_3 $CH_3CHC \equiv CCH_2C \equiv CH$ 6-methyl-1,4-heptadiyne
or
6-methylhepta-1,4-diyne

• for = and \equiv

- same priority
- □ list {-ene \rightarrow -en} first
- □ if the same, give = lower number

 $\begin{array}{c} 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ CH_3CH = CHCH_2CH_2C = CH \\ \hline \textbf{5-hepten-1-yne} \\ \textbf{not 2-hepten-6-yne} \\ \textbf{because 1 < 2} \end{array}$

 $\overset{1}{\text{CH}_{3}}\overset{2}{\text{CH}} = \overset{3}{\overset{4}{\text{CHC}}} \overset{4}{=} \overset{5}{\overset{6}{\text{CCH}_{3}}}$


2-hexen-4-yne not 4-hexen-2-yne

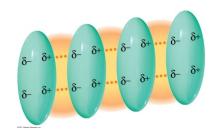
priority

the double bond is given priority over a triple bond only when there is a tie

for higher priority functional groups

give lower # to higher-priority functional group

 $C=0 > OH > NH_2 > C=C = C=C^2$


priority

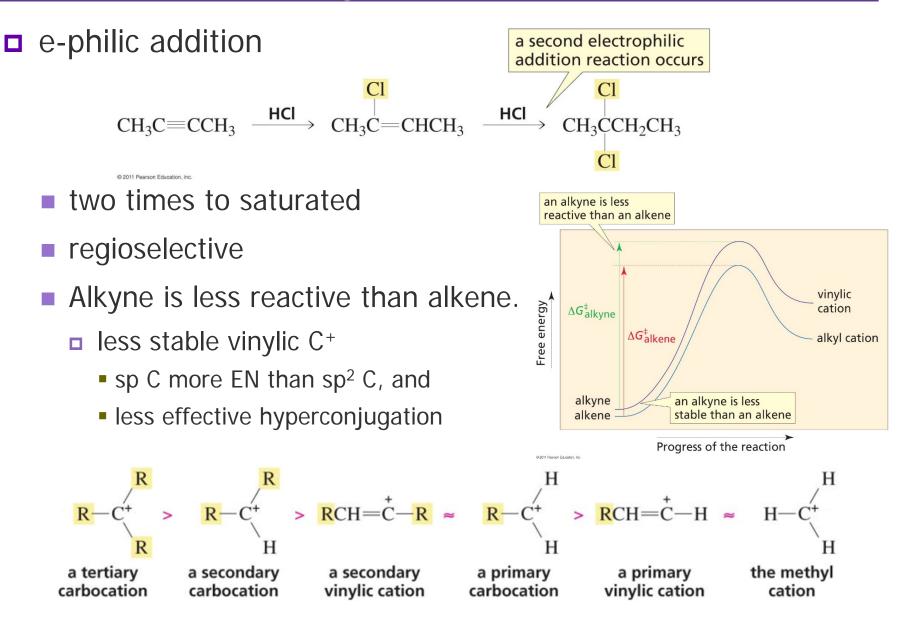
Properties of alkane

non-polar, hydrophobic, light

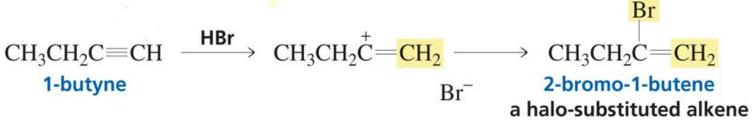
- organic-soluble, water-insoluble, float on water
- higher bp than alkene

linear

- more polarizable ~ loose π electrons
 - □ Alkane is more polarizable than alkene ~ sp³ vs sp²

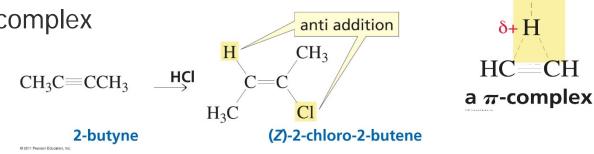

	bp (°C)		bp (°C)		bp (°C)
CH ₃ CH ₃ ethane	-88.6	H ₂ C=CH ₂ ethene	-104	HC≡CH ethyne	-84
CH ₃ CH ₂ CH ₃ propane	-42.1	CH ₃ CH=CH ₂ propene	-47	CH ₃ C≡CH propyne	-23
CH ₃ CH ₂ CH ₂ CH ₃ butane	-0.5	CH ₃ CH ₂ CH=CH ₂ 1-butene	-6.5	CH ₃ CH ₂ C≡CH 1-butyne	8
CH ₃ (CH ₂) ₃ CH ₃ pentane	36.1	CH ₃ CH ₂ CH ₂ CH=CH ₂ 1-pentene	30	CH ₃ CH ₂ CH ₂ C≡CH 1-pentyne	39
CH ₃ (CH ₂) ₄ CH ₃ hexane	68.7	CH ₃ CH ₂ CH ₂ CH ₂ CH=CH ₂ 1-hexene	63.5	CH ₃ CH ₂ CH ₂ CH ₂ C≡CH 1-hexyne	71
		CH ₃ CH=CHCH ₃ <i>cis</i> -2-butene	3.7	CH ₃ C≡CCH ₃ 2-butyne	27
		CH ₃ CH=CHCH ₃ <i>trans</i> -2-butene	0.9	CH ₃ CH ₂ C≡CCH ₃ 2-pentyne	55

Structure of alkynes


 σ bond formed by 180° sp-s overlap 180° $H - C \equiv C - H$ H σ bond formed by sp-sp overlap © 2011 Pearson Education, Inc. b. a. R R @ 2011 Pearson Education, Inc.

Internal alkyne is more stable than terminal alkyne.
 stabilized by hyperconjugation

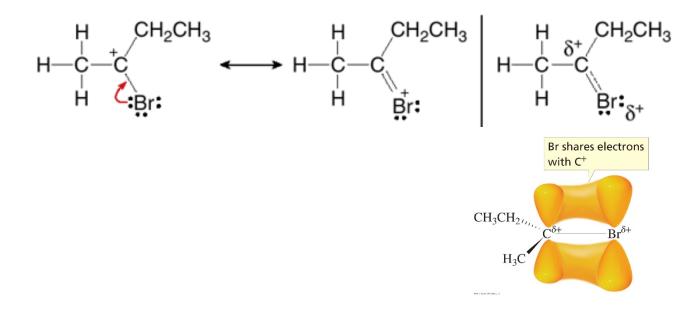
Reactions of alkynes



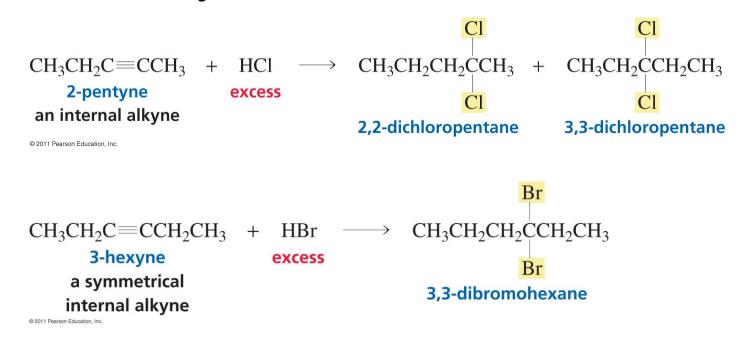
t to terminal alkyne with 1 mol of HX

stops here

- \square alkyne more reactive than haloalkene \leftarrow induction effect of X
- regioselective ← 2° vinylic C⁺ more stable than 1°
- through vinylic C+? maybe not.
 - stability similar to 1° alkyl C⁺
 - maybe thru π-complex

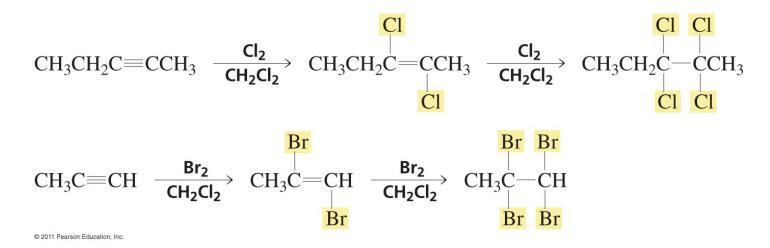

intermediate not clear

 $\delta - C1$


• with > 1 mol

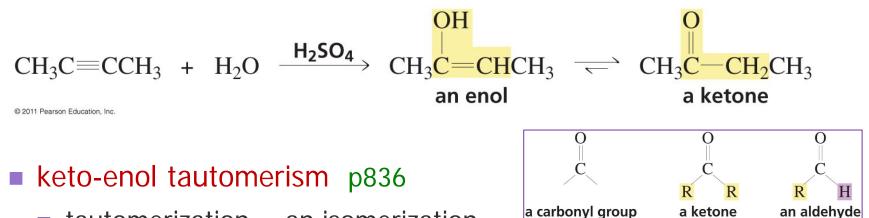
• to geminal dihalide

regioselective ~ Markovnikov-type



to internal alkyne

Addition of X₂


through vicinal dihaloalkene to tetrahaloalkane

■ anti addition ← cyclic halonium ion intermediate

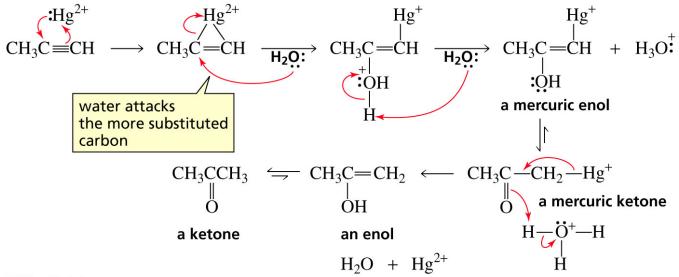
Addition of H₂O

to form ketone

- tautomerization ~ an isomerization
- equilibrium (heavily) favored to keto form [tautomer]

$$\begin{array}{rcl} CH_3C \equiv CCH_2CH_3 &+& H_2O & \xrightarrow{H_2SO_4} & CH_3CCH_2CH_2CH_3 &+& CH_3CH_2CCH_2CH_3\\ \mbox{an unsymmetrical}\\ \mbox{internal alkyne} \end{array}$$

mechanism ~ C⁺ ~ Markovnikov

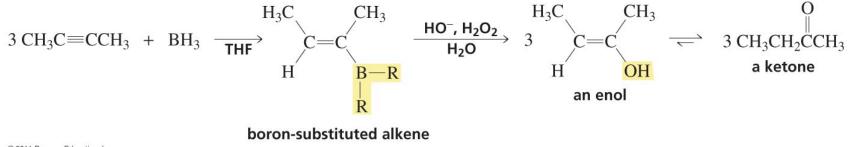

0

terminal alkyne

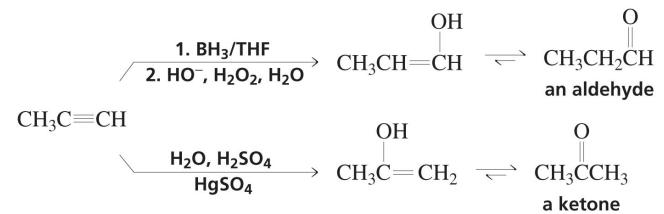
need additional catalyst, Hg²⁺

$$CH_{3}CH_{2}C \equiv CH + H_{2}O \xrightarrow{H_{2}SO_{4}} CH_{3}CH_{2}C = CH_{2} \xrightarrow{C} CH_{3}CH_{2}C - CH_{3}$$

an enol a ketone

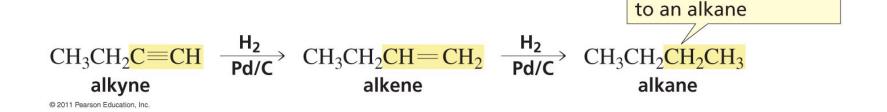

- mechanism ~ cyclic mercurinium interm
 - regiospecific ~ Markovnikov

Hydroboration-oxidation

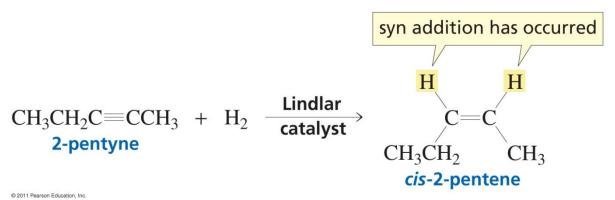

Ch 6 #14

□ internal alkyne to form ketone

© 2011 Pearson Education, Inc.


u terminal alkyne to form alhehyde

© 2011 Pearson Education, Inc.

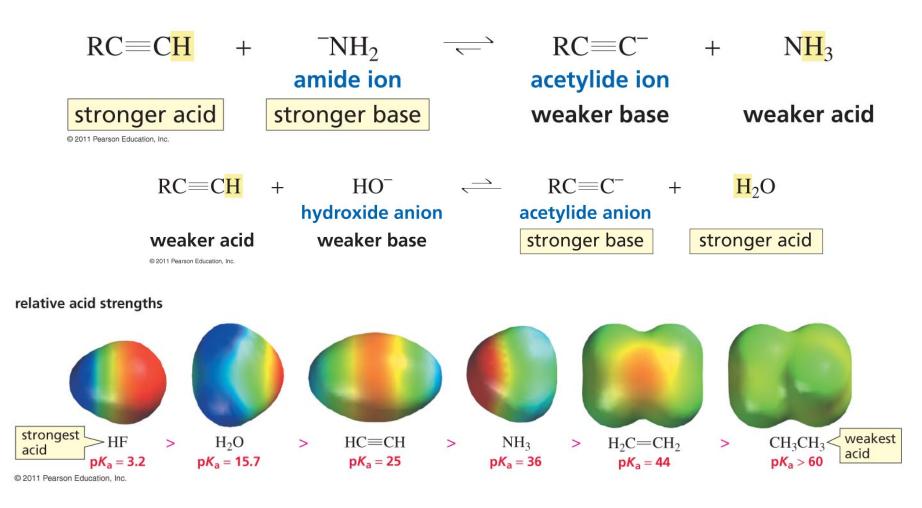

Addition of H₂

all the way to alkane

to stop at alkene

- use partially deactivated ['poisoned'] catalyst
- eg, Lindlar catalyst

an alkyne is converted


□ to prepare *trans* alkene

H₃C Η Na or Li $CH_3C \equiv CCH_3$ NH₃ (liq) 2-butyne -78 °C CH₃ trans-2-butene @ 2011 Pearson Education, Inc. sodium gives sodium gives a strong base up an s electron up an s electron CH₃ CH₃ CH₃ CH₃ H-NH₂ Na• CH₃- $-CH_3 + Na_2$ H₃Ć H₃Ć $+ Na^+$ H₃C Η Η H₃C Η a radical anion a vinylic radical a vinylic anion a trans alkene a strong base $+ Na^+$ +⁻NH₂ $+ NH_2$ © 2011 Pearson Education, Inc. CH₃ CH₃ H₃C CH₃ H₃C CH₃ H₃C H₃C Η Η cis radical anion trans vinylic anion trans radical anion cis vinylic anion less stable because more stable more stable less stable because of electron repulsion of steric strain

© 2011 Pearson Education, Inc.

□ acetylide ion

need very strong base to prepare

Alkylation using acetylide ion

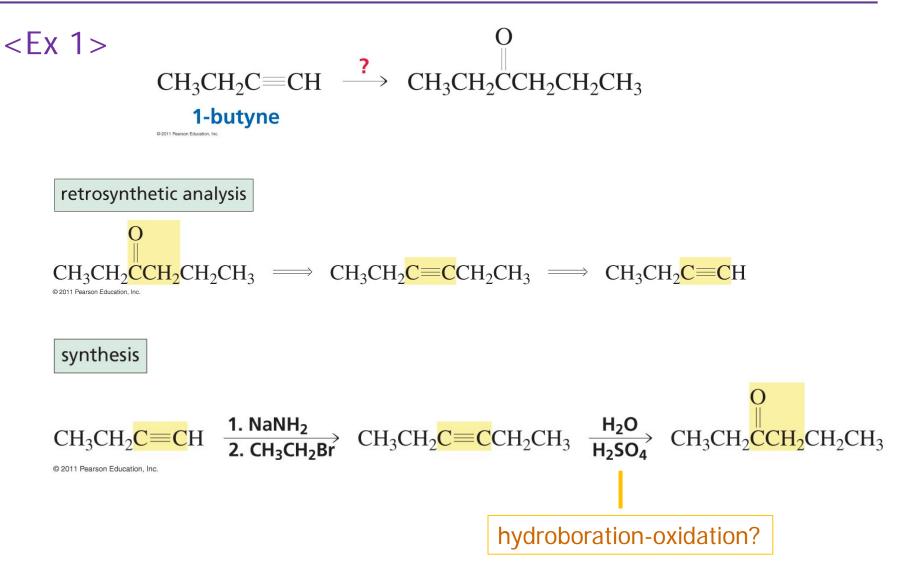
$CH_{3}CH_{2}C \equiv C^{-} + \frac{CH_{3}CH_{2}CH_{2}Br}{CH_{3}CH_{2}C} \equiv C\frac{CH_{2}CH_{2}CH_{3}}{3-heptyne} + Br^{-}$

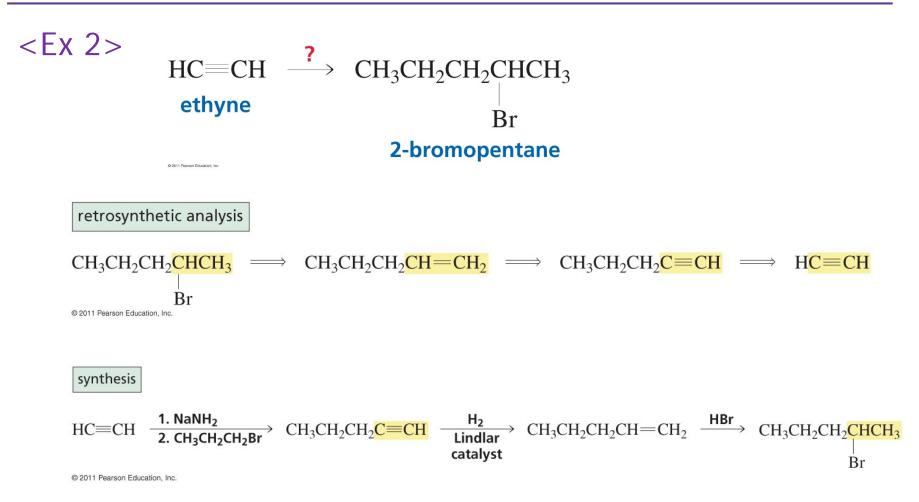
© 2011 Pearson Education, Inc.

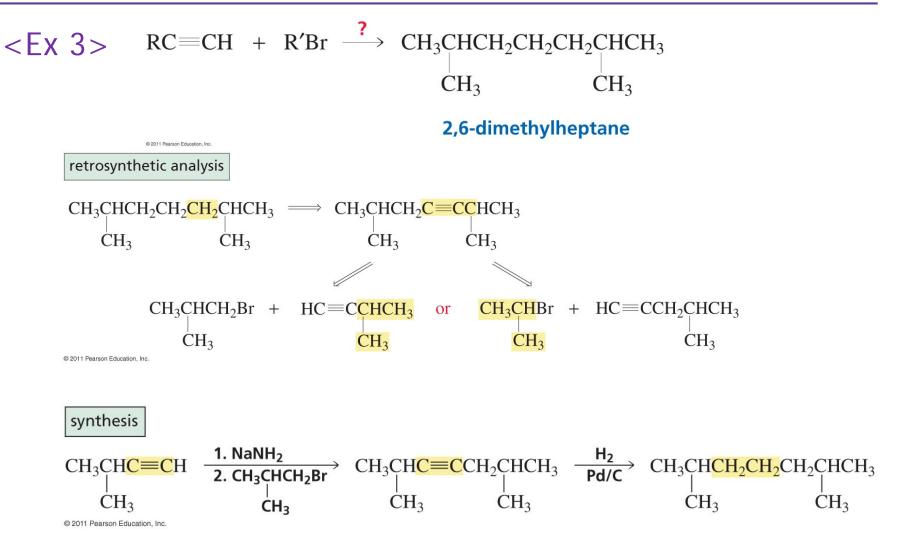
a nucleophilic substitution reaction Chapter 8

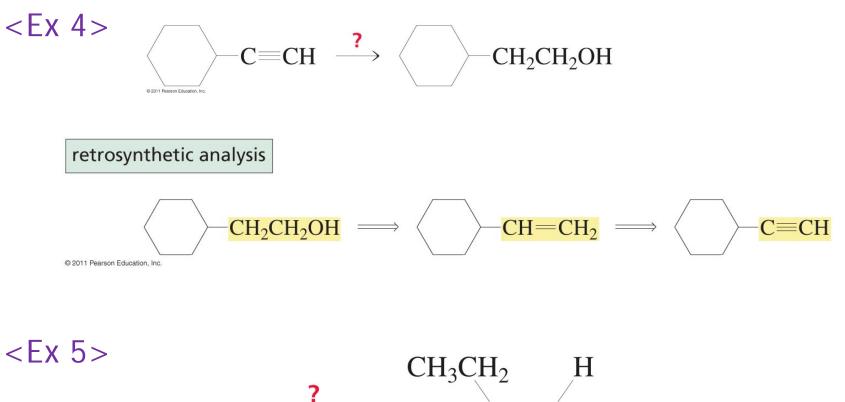
© 2011 Pearson Education, Inc.

- works (much) better with 1° alkyl or methyl halide
- converting a terminal alkyne to an internal alkyne

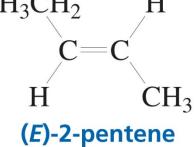

$$\begin{array}{cccc} CH_{3}CH_{2}CH_{2}C \equiv CH & \xrightarrow{\text{NaNH}_{2}} & CH_{3}CH_{2}CH_{2}C \equiv C^{-} & \xrightarrow{\text{CH}_{3}CH_{2}Br} & CH_{3}CH_{2}CH_{2}C \equiv C \xrightarrow{\text{CH}_{2}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}CH_{2}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{3}C} & \xrightarrow{\text{CH}_{$$

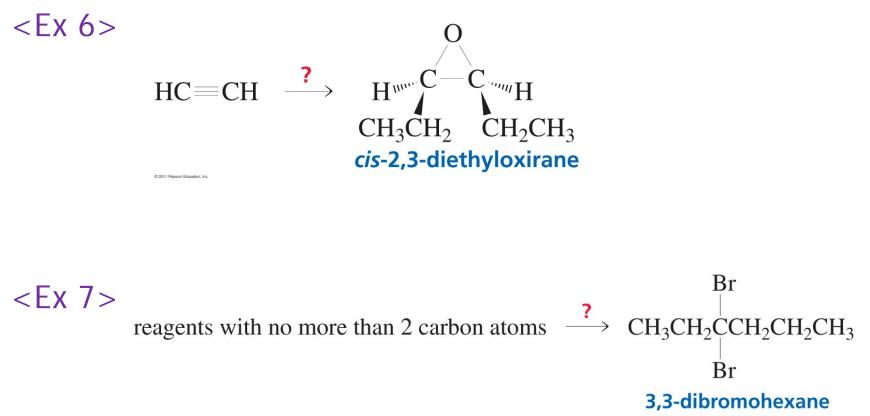

increasing the # of C


Designing synthesis


retrosynthetic analysis

- target compound \Rightarrow precursor \Rightarrow \Rightarrow starting material(s)
 - $\square \Rightarrow \sim retrosynthetic arrow$
- considering
 - time ~ fewer # of steps
 - cost ~ cheaper reactant(s)
 - yield ~ higher
- 'total synthesis'
 - complex comp'd from simple pieces
 - biological from petrochemical (bulk)
 - without the aid of biological process
 - developing new route





© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.