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Delocalized electrons

Resonance structure
Molecular orbital theory
Diels-Alder reaction



Delocalized electrons I

O localized vs delocalized electrons

L 8_
CH; - NH, CH; CH—CH, 0:  delocalized
A X /] \ \ electrons
localized electrons ‘ ‘ localized electrons CH3C\:\ .

O structure of benzene ~ historical review
= CHg
o DU =4
= substitution reactions

replace a hydrogen replace a hydrogen
with an X CeHsX with an X > CeHpXy + CeHyXp + CeHyXo

one monosubstituted compound three disubstituted compounfi\q

CsHg




Ch 7 #3

= only 1 mono-substituted product, then either

H
| / shorter double bond

H._ /C\ H

/

| longer single bond
Lo

H \C/C‘\H
|
H

CH,C=C—C=CCH,

1©2011 Pearson Education, Inc.

m 2nd substitution = 2 or 4, not 3

CH,C=C—C=CCH, _ 'eplace2H's CH3C:C—C:C(|?HBr and BrCH,C=C—C=CCH,Br

with Br's
Br
@ 2011 Pearson Education, Inc.
‘? ¥ ¥ ¥ ;
& C C @
H_ /C\C/H H \\C/H SN H B \C/H H \\\\C/Br
ﬁ ‘ replace 2 H's [ ‘ i ‘ (ﬁ ‘ (E‘ |
C C with Br's C C C C C C C C
H N’ H H™ N\¢” Bt H N7 H H N\ H H N7 H
| | | | |
H H Br H H
1,3-disubstituted 1,4-disubstituted 1,2-disubstituted 1,2-disubstituted

product product product product
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s Kekule (1865)

shorter double bond

Ll I le bond
< onger single bon
equilibrium ﬁ 2 £

Kekulé structures of benzene

Br Br

AR BI'
- _Br rapid

{ ] H equilibrium

o Why not e-philic additions?

= Sabatier (1901)
H,, Ni i
150-250 °C, 25 atm

benzene

i

T
cyclohexane

ﬁéa\kawlhy so stable?

Dewar benzene

H H
N 11_17/
H

Ladenburg benzene



Ch 7 #5

O X-ray and electron diffraction

= |ocating atoms (in crystal)
= planar

= C-C with the same length (1.33 < 1.4 < 1.54 R)

i S®

m Electrons are delocalized.

cooo OO

ans orb[tal




Resonance [1Li5]
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O = electron delocalization

O resonance contributors
= resonance structures = resonance forms

= not real

O resonance hybrid

m real

/\2
(

resonance contributor

.‘()‘.
+
CH;CH, N\

4§ 1

resonance contributor

resonance arrow

/ AN
<>

. ‘

resonance contributor

> CHsCH, N
\RO.

resonance contributor

2
i
= =
s o
| [

| [
L J

~ -
e

resonance hybrid

0>
+ 7T

CH,CH, N
g

_resonance hybrid

®
@ s
H3CH2C—I\/{ S

e



Rules for drawing resonance forms ...

1.

Move electrons only.

= Never move atoms [nuclel].

. Move = electrons and lone-pair electrons only.

m Never move o electrons.

. Do not change total # of electrons (in the molecule).

= Never change total charge. May change formal charge.

. Move electrons to sp? or sp C (N, O), not to sp2 C (N, O).

m sp? C with = or (+); sp C with =; sp2? with complete octet
= May break © bond, not ¢ bond.

Resonance not for actual movement of e’s,
but just for book-keeping.



Types of resonance oo

O we'stosp?C

an sp? carbon

/""‘\ +V N an sp3 carbon
CH;CH=CH—CHCH; <— CH3CH-—-CH=CHCH; cannot accept electrons
resonance contributors N/ e )
CH,—CH * CH,CHCHj,
5+ ___localized electrons

resonance hybrid

3-center resonance

| an sp? carbon

(o Y

£ + -
CH;,CH=CH—CH=—CH-—-CH; s— CH;CH=CH-—-CH-—CH=CH, <— CH;CH -CH=—CH—CH=—CH;

resonance contributors

&+ &+
CH;CH-=CH==CH-=CH-=CH,
resonance hybrid

© 2011 Pearson Education, Inc.

S-center resonance
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O lone-pair e’s to sp® C

# O 0F

;. c L x
2 > + )

R™/ “NH, R™ “NH, R™ “cH, ' NH,

an spz carbon| resonance contributors

an sp3 carbon

5 cannot accept
“ electrons
.
P o
R bez " amide resonance p286
resonance ri . .
/ gives strength of proteins and Kevlar®

O lone-pairorte’stospC

/ \ / 1

CH3CH C—=CH < > CH;CH—C— CH

. "’f‘\ {/\ + -
CH,~CH-C=N <—> CH, CH—C—N




Ch 7 #10

O & e's to more e-negative atom

o IO_D 0 A
(! <« > l+ -« >

CH;  H CH{ H

2-center resonance

®= 1 e’s to more e-positive atom, when it is the only way

CH, CH"OCH; <> CH, CH OCH;
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O cyclic (r €’'s to sp? C)

e ® H
l |
H C H H C H
xcf; tc/’ K‘C/ :;\C,f
| | - I |
HKCQ?CKH H/ \??CRH
H

O one e tosp?C

H
T T
H H H H

a e (in p orbital)




Relative stabilities of contributors I

O stability depends on

1. octet rule

2. formal charge

2-1. number ~ stable for no (or less) formal charge
= |ess stable for (separated) charge

2-2. location ~ stable for (—) on EN atom

1
— ..' 1 --.:L"": .p p._
2-2|*0% 121 0/ 0% 21
C =y «— Gy «> C
H~ “CH—CH, H< *‘““CH=5:H3 H™ SCH—CH,|1
not stable most stable less stable
not important [insignificant] | | more important less important
resonance contributor resonance contributor resonance contributor
should not draw contribute more
closer to real structure || c=0 ~ > 1.5 bond




Delocalization energy o s

O = resonance (stabilization) energy

O extra stabilization gained by resonance

O larger stabilization with

= larger # of ‘relatively stable’ [important] contributors

i :0: O: :(‘): ?
| .
C\ //CQ\\\ e C\\\”_ > //C\"_ %_" C
R 0Of R O ORI O & So.
relatively stable relatively stable

= more nearly equivalent contributors

CH,— CH—CH—CH, «— CH,—CH—CH—CH, <— CH,—CH—CHCH,

relatively unstable relatively stable relatively unstable
i 1.34 'lll' i i 1.34 'lll' [
C1-C2 ~ > 1.33 bond R =

H,C=—=CH——CH=—=CH,

T R

C2—-C3 ~ < 1.6 bond
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@i (O (o o

most stable

more important
contribute more
closer to hybrid

least stable
not important
may not draw

less stable
less important
contribute less

p287 CH, CH"OCH; <> CH, CH OCH;
more stable much less stable

more important
contribute more
close to real

contribute much

much less important

less

less resonance-stabilized
lower resonance energy
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Prob 7b. Which I1s more stable?

0 ?
CH; CH=—CH, or CHj; CH—CHCHj;
on o
9 | G~ |

CH;C—CH==CH; «— CH3;C=CH— CH'} CH3C—CH==CHCH; = CH3C=CH— CHCH:;

Prob 8. Which is more resonance-stabilized?

] i i
C L




Conjugation and resonance n 7 716

O isolated vs conjuaated double bonds

Heat of
hydrogenation
Pd/C
CH,=CH—CH,—CH=CH, + 2H, —— CH;CH,CH,CH,CH; 60.2

1.4-pentadiene
an isolated diene

CH,=CH—CH=CHCH; + 2H, — Pd!C CH;CH,CH,CH,CH3 54.1

1.3-pentadiene
a conjugated diene

® conjugated ='s ~ ='s separated by one single bond
‘Gﬂ-mﬂz*\
CH,=CH-CH=CH-CH,-CH=CH, i
\ | | M? @ ., \ ~CH ax
conjugated Isolated
- resonance not conjugated

These two pi bonds
are conjugated.
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O A conjugated diene is more stable by

= resonance
CH,~CH—CH—CH, <> CHy~"CH'{CH~CH, < > CH,—CH—CH—CH,

] hybl’idization state single bond formed ‘ single bonds formed by

by sp?-sp? overlap sp3—sp? overlap

CH,=CH—CH=CH—CHj4 CH,=CH—CH,—CH=CH,
1,3-pentadiene 1.4-pentadiene

® 2011 Pearson Education, |

Table 7.1 Dependence of the Length of a Carbon-Carbon Single Bond on

the Hybridization of the Orbitals Used in Its Formation

Compound Hybridization Bond length (K)
H;C—CHj, sp—sp’ 1.54

H
H3C (‘3=CH2 spo—sp” 1.50

lal ol
HZC:‘C—é:CHz sp*—sp* 1.47
H:ECe=tt—GCH spP—sp 1.46

H
H2C=(‘3—CECH sp*—sp 1.43
HE=E—(E=CF] sp—sp I3

©2011 Pearson Education, Inc.



Allene oh 7 s
o CH, :C:CH

! cumulated double bonds
\ H H H H
\ S % /
C=C=C C=C=C
Vg AN { \
H;C CH; H;C CH;

m sp2=sp=sp2

A

O substituted allene is chiral (with no C*)

O a cumulated diene o e

= more unstable -2 NN
than isolated diene

m Prob 9 p292

= cum < isol < conj

Energy

L B
Heats of Hydrogenation

bexane




Allylic and benzylic cation o7

an allylic a benzylic |
~carbon carbon

‘\ "" \\ f‘f

|/ R V

\ 7 N\ + \ T,

ik i 4 \\ﬁCHR QCHz

CH,=CHCH;, CH,—CHCHR e —
the allyl cation an allylic cation a benzylic cation the benzyl cation

O resonance-stabilized

RCH CH'YCH, <« > RCH CH CH,
(At

I & e §  SitiiRe—s of St e—d, =CHR «— R

relative stabilities of carbocations

R R H H
7 + + / 7 / +
most % R—C+\ > CH, = CH,=CHCH, = R—CJ’\ > R—CJ“\ o H—C+\ > CH,=CH ﬁ least
stable R H H H stable
a tertiary benzyl allyl a secondary a primary methyl vinyl

carbocation cation cation carbocation carbocation cation cation

© 2011 Pearson Education, Inc.
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relative stabilities of carbocations

R R H H
7 + + / 7 / +
most % R—C+\ > CH, = CH,=CHCH, = R—CJ’\ = R—C+\ S H—C+\ > CH,=CH ﬁ least
stable R 0 H H stable
a tertiary benzyl allyl a secondary a primary methyl vinyl
carbocation cation cation carbocation carbocation cation cation

© 2011 Pearson Education, Inc.

relative stabilities

R R H
Va 2 Z
most CH,—CH—C’ > CH,=CH—C’ > CH,=CH—C’
stable X N N\
R H H
tertiary allylic cation secondary allylic cation allyl cation

R R

/ 2 7
A o O
stable R H H

tertiary benzylic cation secondary benzylic cation benzyl cation

©2011 Pearson Education, Inc.




Molecular orbital and stability o

O MO from LCAO [linear combination of AO]
= 2A0 > 2MO =1BMO + 1 AMO o,

O ethane (rw e’s of C—C only)

destructive
overlap

Energy

energy of the
p atomic orbitals

in-phase 7 molecular
possible orbitals
alignment

of orbital

© 2011 Pearson Education, Inc.

node = anti-bonding interaction
overlap = bonding interaction

A
\ A y, ™ antibonding
¥ 2 molecular LUMO
b orbital
out-of-phase
___________________________________ constructwe
overlap

energy of the p
atomic orbitals

T ,. 7 bonding
— ¥ molecular HOMO

orhital

energy levels

LUMO = lowest unoccupied MO
HOMO = highest occupied MO
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O 1,3-butadiene

A v Y

pi?ﬁi?i’éﬁfﬁﬂﬁss g g w —1 | 2 overlaps — 1 node = +1 ~ HOMO
a v —— | 3 overlaps — 0 node = +3
; 1.34 A '

; 1.34 A '

H,C=—CH——CH=—72=CH,

O overlaps — 3 nodes = -3

1 overlap — 2 nodes = -1 ~ LUMO

Energy

CH,==CH==CH==CH, H—C
146 A
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m delocalization energy

Energy

delocalization energy

E of © €'s in ethene
avg E of Tt e’sin 1,3-BD

energy of the
p atomic orbitals

)

ethene

the CH3 group causes the 7 electrons are
the = electrons to be conjugated

isolated

7~ molecular orbitals energy levels

_ 1,3-butadiene
CHQ =CHCH2CH :CHQ _CHZ_
1.4-pentadiene

lowest energy lowest energy
7 molecular orbital of 7 molecular orbital of
1,4-pentadiene 1,3-butadiene

© 2011 Paaeson Education, Ine
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® symmetric vs anti-symmetric MO

|
anti-symmetric xx xxuru

symmetric

iry

anti-symmetric

anti-symmetric

» —H—  symmetric

symmetric

7 molecular orbitals energy levels
1,3-butadiene
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O 1,3,5-hexatriene

{ 'Y 1 & ]
x x xx x g —— antisymmetric
x x : x q'ls o Symmetric LU MO
antisymmetric L U M O H O M O
&
(]
S
energy of the LE % symmetric H O M O

at
excited state

gz % antisymmetric Wlth /71/
at or for reaction

ground
iy % symmetric state

p atomic orbitals

7 molecular orbitals energy levels

® 2011 Pearson Education, Inc.
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O benzene This should be green.

Energy

Y, and ¥, degenerate
+2 bonding interactions

6 overlaps — 0 node = +6
(+5 in lowest-E MO of 1,3,5-hexatriene)

more resonance-stabilized ~ aromaticity
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conformations of 1,3-butadiene

L § O
; — .
_:’i:-:-nmbine
A'J U 0 0 o out-of-phase
s . - . I
s n J_J ., Combine
- | ~.jn phase
- "%, LUMO
I iy
N )
= | HOMO to LUMO HOMO ta LUMO
,_"5 s oacitation: sexcitation:
™ | large gag: iemaller gap:
- i'eibgsi:ir%t on e * labsorption
L |:in far UV :In nearer LIV
o [tat 165 nm :at 215 nm
= - 0 HOMO
: 53
i ¥ i
z | o
: ~tombine
OH_ 0% oul-ol-phase /\/
I .
0 J .. combing
‘~.i|_'| phase ¢
n_“ | H. . S—tranS
[transoid]
Two molecules of Ethene Butadicne conformation
[Ethylene]

W,

W,

i

R

7\

S-CIS
[cisoid]
conformation
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O energy of w e’s

A
________________________________________ el energy of
g p atomic
£ orbitals

4 L
allene ethyne % i AH* w_h
H»

%

cumulated terminal ethene 1,3-butadiene 1,3,5-hexatriene benzene
diena alkyne
=E:..-"-"‘x = ©2011 Pearson Education, Inc.
penta-1,2-diene o Y internal
A alkyne
_
203 kI peril-2-yiwe:
(698 keal) isoluted
2= 201 kI diene
E_, {5495 kealy M isolated
= 275 k| penta- | d-diene diene
(658 koal) il :
trinns-hexa- 1L 4-diene comnjugiled
252K diene
(6402 kealy o P
(5 }{I“ ht‘:]_! frans-pentis- 1, 3-dienes
225kl |
i A L - " 153.7 kcal).
¥ i i L] ¥ ¥

alkane (pentane or hexane)




Resonance and acidity
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O Carboxylic acids are (much) stronger acids than alcohols.

= inductive effect (of e-withdrawing O)
o account for the (smaller) part of the difference

m resonance effect C
. _ _ CH; OH
o stabilize conj base (more than acid) acetic acid
pKa=4.76
H,0t+ O
CH.CH,0 | ° (|: g
CHf O

Acertate ion has a large amount of resonan

Acetic acid has a small amount of
resonance stabilization relative to ethanol.

@ 2008 Brooks/Cole - Thomson

relatively stable

relatively stable

)

EB Acg \\ stabilization relative to ethoxide ion.

o

5 H0' +

i3 CH,CO, 0
CH3CHZOHJLH___ AGS AG] is smaller than AG.° (|_|: PO
+H,O0 = Tt o

CH,CO,H + H,0 SN
e CH; OH

CH;CH,OH
ethanol
pK, = 15.9

?_
C:

=

CH; O

relatively stable

?u
C

.t

‘OH

relatively unstable
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O phenols vs cycloalkanols -~ OH ~__oH
\v\l/ L I CH;CH,OH
. _ -
. IndUCtlve phenol cyclohexanol ethanol
b PKa=16 pKa= 16

o sp?Cvssp3C

phenol = carbolic acid
m resonance

Q):H OH [ om y CoH OH
O - = - -
U0 }
ol charge separation and O* (and C)
H - less important forms
5 7} 0: % 'y 3

phenolate ion

©@2011 Pearson Education, , Inc.

C- = less important forms
—> lower resonance energy (than carboxylic acid)
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o arylamine vs alkylamine @/&m Qﬂ%
= Inductive

protonated aniline protonated cyclohexylamine
O sz C vs 5p3 C _ pK,=4.60 pK,=11.2
® resonance NH, NH,
J =T -
no lone pair of N
Pf°t°"ated aniline cyclic resonance only

cyclic resonance +

Oﬁ\mg NH, @/\mg @;NHZ
P > i «— (r O/
‘u 5

aniline

© 2011 Pearson Education, Inc.

o Arylamines are weaker base than alkylamines




QOrganic acids (and bases) on 7 452

pK,<0 pK,=5 pK,= 10 pK, =15
O
1 | +
ROH RNH; ROH
H P
R OH
+
OH
H NH, OH
LG L @
R OH
H;0"

©2011 Pearson Education, Inc.

O acid stronger by

= inductive effect
o e-withdrawing through o bonds

= resonance effect
o resonance-stabilizing (conj base)
o resonance e-withdrawing (through = bonds)
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SIS EE R

Phenol 0: -:0 @
pK, = 10
© 208 S e p-NltrOphenOl ©2006 Braoks/Cole - Thomson
pK, = 7.15

62008 Brooks/Cote - Thomson

= inductive effect of NO,

m resonance effect

o resonance-stabilizing conj base
= additional resonance contributors due to NO,

o resonance e-withdrawing of NO,
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. R OH
NO,
NO,
NO, m-Nitrophenol o-Nitrophenol
pK, = 8.36 oK, = 7.22

p-Nitrophenol
pK, = 7.15

€ 2006 Brooks/Cole - Thomson

Q- Q-0

—:gj 0: —0 @ —:_q Q:—

& 2006 Brooks/Cole - Thomson

OH
O,N NO,

NO,

2.4.,6-Trinitrophenol
(picric acid)
pK, = 0.42



Resonance e-withdrawing or donating,, . ...

O Prob 19 p304 Q
P @COOH or Eﬁ@COOH
_O ——

©2011 Pearson Education, Inc.

pK, = 4.2 pK, = 3.4

a

= (additional) resonance stabilization effect (of NO,)?
o No. not with COO-. same to acid and conj base.

= inductive effect of (e-withdrawing) NO,

m resonance e-withdrawing NO,

withdrawing electrons by resonance

o) QLA 0
\of % 5 N
NOCOOH < o NQCOOH < N:QLCOOH
/ / AN
0 0 o

O
e Oreon — e
N COOH <—— N COOH
/ o Ly
@) O +
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O Prob 20 p305

@COOH cmo@com

ﬁ pK; = 4.20 pK, = 4.47

= inductive e-withdrawing OCH,
= resonance e-donating OCH,

donating electrons by resonance
J sA
)

'\
. + 3 - -
CH;0 COOH «—> CH39=®"—COOH Co CH3Q{>3COOH

t/

) 4
CH;0 QCOOH s CH3QOCOOH

© 2011 Pearson Education, Inc.

m resonance effect outweighs inductive effect




Resonance and rxn product S
O resonance-stabilized intermediate

@CH CHCH; + HBr —— QCHCHQCH:; + @CHZCHCHg

100% 0%

+ -

a secondary benzylic cation  a secondary alkyl carbocation

O reaction of isolated dienes

© 2011 Pearson Education, Inc.

CH,—CHCH,CH,CH=CH, + HBr - > CH;CHCH,CH,CHCH,

1,5-hexadiene excess Br He
st
CH,—CHCH,CH,C—=CH, + HCl ——> CH,—CHCH,CH,CCH;
2-methyl-1,5-hexadiene 1 mol |
1 mol Cl

5-chloro-5-methyl-1-hexene
major product




Reaction of conjugated dienes o 7 e

O addition to symmetrical conj diene
= 1,2- and 1,4-addition

12 3 4
R CH CH CH CH R

~

the conjugated system

&
CHQZC{—)CHZCHz + H;Br: — CH;—CH—CH=CH, <—— CH;—CH=—CH—CH,
.. + +
. 3 B A
1,3-butadiene K't,:]:ﬁ‘.r: an allylic cation £3 :ﬁr:_/
% o+ O+ l
CH; CH CH CH,
(;HZ—CHQ—CH:CHz CH;—CH—CH=CH, + CH3—CH=CH—(|3H2
a primary Br Br
carbocation 3-bromo-1-butene 1-bromo-2-butene

1,2-addition product 1,4-addition product

@ 2011 Pearson Education, Inc

m H* adds to C1 or C4, not to C2 or C3
o 1° vs resonance hybrid

m1,2->1,4-?
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O addition to unsymmetrical conj diene

™ o

1 4

CH,—=C—CH=CH, + HBr — CH3—(‘: —CH=CH, + CH3—C—CH—(‘3H2

2-methyl-1,3-butadiene By Br

3-bromo-3-methyl- 1-bromo-3-methyl-
1-butene 2-butene

i e b
carbocation formed by adding H* to C-1 carbocation formed by adding H* to C-4

© 2011 Pearson Education, Inc.

= H* adds not to C2 or C3

= H* adds to C1 or C4
o {1,2- + 1,4-addition} or {3,4- + 1,4-addition}
o {3°+ 1°C*"} or {2° + 1° C*}
o {mono- + tri-subs =} or {di- + tri-subs =}



Kinetic vs thermodynamic control o 7o

CH,—CHCH—CH, + HBr —— CH3(|IHCH=CH2 + CH3CH=CH(|3H2

1,3-butadiene
Br Br
1,2-addition product 1,4-addition product
kinetic product thermodynamic product
at —80 °C 80% 20%
at 45 °C 15% 85%
both products have the
;amti tr?_ns'ict;gnpstate B / B
or the first ste F
CH;CH=CHCH, " ~ o A Z
> \ CH;CHCH==CH, \ c \ 5
g intermediate : \ I’everSIb|e
- CH,—CHCH—CH, B
+ HBr /
A o
\ CH,CH—CHCH,
|
CH,CHCH—CH, ~ \ Br \ C
Br o . .
Irreversible

—_—
Progress of the reaction
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—78 °C

CH,=—=CHCH=CHCH; + DCI — > CH,CHCH=CHCH; + CH,CH=CHCHCH;
1.3 pentadiene | | |
D €l D Cl
1,2-addition product 1,4-addition product
78% 22%

© 2011 Pearson Education, Inc.

secondary allylic cation
= Why not 50/50? seonday K

2
.. CH,—CH—CH=CHCH; <— CH,—CH=—CH-— CHCH
= proximity effect 2 F ’ [ i
D cCI” D cCI

TCI%‘is closer to C-2 than to C-4

©2011 Pearson Education, In

O Due to proximity effect, 1,2- is always the kinetic product.

$H3 . i
CH,—CHCH—CCH; + HBr — CH3(‘IHCH=CCH3 + CH3CH=CH(|ICH3

4-methyl-1,3-pentadiene

Br Br
4-bromo-2-methyl-2-pentene 4-bromo-4-methyl-2-pentene
1,2-addition product 1,4-addition product

kinetic product
thermodynamic product

© 2011 Pearson Education, Inc.
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HCI

CH;CH=CHCH=CHCH; —— CH3CH,CHCH=CHCHj + CH3;CH,CH=CHCHCHj
2,4-hexadiene | |
Cl Cl
4-chloro-2-hexene 2-chloro-3-hexene
1,2-addition product 1,4-addition product

kinetic product

the products have the same stability

© 2011 Pearson Education, Inc.

= As temp up, reaction goes to 50/50.
Prob 31 p314

b. CH; cl CH;
O/ HCI ©< CH; N Q/
Cl

kinetic product

thermodynamic product

CH=CHCH; CH— CHCH;

CH=CHCH;, ‘
C. O/ HCI 04 Cl + U Cl

kinetic product thermodynamic product




Diels-Alder reaction

Ch 7 #43

O reaction of conjugated diene and alkene [dienophile]

R

CH,—CH—CH—CH, + CH,—CH—R —>

conjugated diene dienophile

® a pericyclic reaction
= concerted rxn thru cyclic TS

nucleophile

—7 I

new o bond

conjugated diene dienophile transition state new
four 7 electrons two 7 electrons six 1 electrons double bond

new o bond |

© 2011 Pearson Education, In¢.

= a [4 + 2] cycloaddition
o 4dre’s+ 2mxne’sfrom3n bonds of reactants
o to form 6-w-e cyclic TS
o and cyclic product with 1 n [2 e] and 2 ¢ [4 e] bonds
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m a 1,4-addition reaction

nucleophile % electron-withdrawing group

4 I 4 I
H CH, \ C H CH, 0
S ™ L Pt
sC CH CH; o i CH CH;,4
P=g, e R
2 2
S il \(;Hz . H/ \CH/g

electrophile

a 1,4-addition reaction to 1,3-butadiene

©2011 Pearson Education, Inc.

= e-withdrawing group (like C=0 or C=N) makes C of

dienophile electrophilic 0 o
A e
>
CH, CH  CH; CH, CH  CH;
resonance contributors of the dienophile

8_?
C
ot -
CH2:CH = \CHS

resonance hybrid

e




MO view of D-A rxn s

o to form bond, e transfer from HOMO to LUMO
and overlap of orbitals

{ : :f b-

! : : overlapping orbitals

5 E E have the same color

y (are in-phase)

diene
anti- N
sym 4
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D-A reaction: examples ch 7 #47
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D-A reaction: regioselectivity
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CH2=CHCH7\CHOCH3
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donating electrons
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resonance contributors of the diene

withdrawing electrons
by resonance

:b'\ 07
S T 77N\
CH,~CH H CH,—CH H

resonance contributors of the dienophile
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D-A reaction: conformation of diene ., ...
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D-A reaction: stereochemistry o 7 0

O endo rule (by Alder) .
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