Chapter 7

Delocalized electrons

Resonance structure Molecular orbital theory Diels-Alder reaction

Delocalized electrons

Iocalized vs delocalized electrons

 $\begin{array}{c} CH_{3} \\ NH_{2} \\ \hline \\ \text{localized electrons} \end{array} \begin{array}{c} CH_{3} \\ -CH_{2} \\ \hline \\ \text{localized electrons} \end{array} \begin{array}{c} CH_{3} \\ -CH_{2} \\ \hline \\ CH_{3} \\ CH_$

structure of benzene ~ historical review

$$C_6H_6$$

- **D**U = 4
- substitution reactions

only 1 mono-substituted product, then either

• 2nd substitution \rightarrow 2 or 4, not 3

X-ray and electron diffraction

- Iocating atoms (in crystal)
- planar
- C-C with the same length (1.33 < 1.4 < 1.54 Å)

Electrons are delocalized.

Ch 7 #6

Resonance [共鳴]

- = electron delocalization
- resonance contributors
 - = resonance structures = resonance forms
 - not real
- resonance hybrid

Rules for drawing resonance forms

Ch 7 #7

- 1. Move electrons only.
 - Never move atoms [nuclei].
- 2. Move π electrons and lone-pair electrons only.
 - Never move σ electrons.
- 3. Do not change total # of electrons (in the molecule).
 - Never change total charge. May change formal charge.
- 4. Move electrons to sp² or sp C (N, O), not to sp³ C (N, O).
 - $sp^2 C$ with = or (+); sp C with \equiv ; sp^3 with complete octet
 - May break π bond, not σ bond.
- Resonance <u>not</u> for actual movement of e's, but just for book-keeping.

Types of resonance

D lone-pair or π e's to sp C

 $CH_2 = CH - C \equiv N \iff CH_2 - CH = C = \ddot{N}$

 \square π e's to more e-negative atom

• π e's to more e-positive atom, when it is the only way

 $\dot{CH}_2 = CH - \ddot{O}CH_3 \iff \bar{CH}_2 - CH = \dot{O}CH_3$

Ch 7 #11

cyclic (π e's to sp² C)

 \square one e to sp² C

Relative stabilities of contributors

- stability depends on
 - 1. octet rule
 - 2. formal charge
 - 2-1. number ~ stable for no (or less) formal charge
 - less stable for (separated) charge
 - 2-2. location ~ stable for (–) on EN atom

Delocalization energy

- = resonance (stabilization) energy
- extra stabilization gained by resonance
- Iarger stabilization with
 - larger # of 'relatively stable' [important] contributors

p287

less resonance-stabilized lower resonance energy

Prob 8. Which is more resonance-stabilized?

Conjugation and resonance

isolated vs conjugated double bonds

conjugated ='s ~ ='s separated by one single bond

Heat of

A conjugated diene is more stable by

resonance

able 7.1	Dependence of the Length of a Carbon–Carbon Single Bond on			
	the Hybridization of the Orbitals Used in Its Formation			

Compound	Hybridization	Bond length (Å)
H ₃ C-CH ₃	sp^3-sp^3	1.54
H		
$H_3C - C = CH_2$	sp^3-sp^2	1.50
H H		
$H_2C = C - C = CH_2$	sp^2-sp^2	1.47
$H_3C-C\equiv CH$	sp^3-sp	1.46
Н		
$H_2C = C - C = CH$	sp^2-sp	1.43
HC≡C−C≡CH	sp-sp	1.37

@ 2011 Pearson Education, Inc.

Allene

- sp²=sp=sp²
- substituted allene is chiral (with no C*)
- a cumulated diene
 - more unstable than isolated diene
 - Prob 9 p292
 - cum < isol < conj</p>

Allylic and benzylic cation

Ch 7 #19

resonance-stabilized

 $\mathbf{RCH} = \mathbf{CH} \stackrel{+}{\longrightarrow} \mathbf{CH}_2 \iff \mathbf{RCH} = \mathbf{CH}_2$

relative stabilities of carbocations

relative stabilities of carbocations

relative stabilities

Molecular orbital and stability

MO from LCAO [linear combination of AO]

• 2 AO \rightarrow 2 MO = 1 BMO + 1 AMO

• ethane (π e's of C–C only)

Ch 7 #21

 $p_{\pi}\pi$

π*

p_z π

□ 1,3-butadiene

conformations of 1,3-butadiene

alkane (pentane or hexane)

Resonance and acidity

Carboxylic acids are (much) stronger acids than alcohols.

- inductive effect (of e-withdrawing O)
 - account for the (smaller) part of the difference
- resonance effect
 - stabilize conj base (more than acid)

CH₃CH₂OH

ethanol

 $pK_a = 15.9$

O

acetic acid

 $pK_a = 4.76$

 CH_3

OH

Arylamines are weaker base than alkylamines

Organic acids (and bases)

acid stronger by

- inductive effect
 - $\hfill\square$ e-withdrawing through σ bonds
- resonance effect
 - resonance-stabilizing (conj base)
 - **\square** resonance e-withdrawing (through π bonds)

- inductive effect of NO₂
- resonance effect
 - resonance-stabilizing conj base
 - additional resonance contributors due to NO₂
 - resonance e-withdrawing of NO₂

ò:-

© 2006 Brooks/Cole - Thomson

Resonance e-withdrawing or donating ch 7 #35

Prob 19 p304

(additional) resonance stabilization effect (of NO₂)?

■ No. not with COO⁻. same to acid and conj base.

inductive effect of (e-withdrawing) NO₂

resonance e-withdrawing NO₂

© 2011 Pearson Education, Inc

- inductive e-withdrawing OCH₃
- resonance e-donating OCH₃

© 2011 Pearson Education, Inc.

resonance effect outweighs inductive effect

Resonance and rxn product

resonance-stabilized intermediate

5-chloro-5-methyl-1-hexene major product Ch 7 #37

2-methyl-1,5-hexadiene 1 mol 1 mol

- H⁺ adds to C1 or C4, not to C2 or C3
 1° vs resonance hybrid
- 1,2- > 1,4- ?

addition to unsymmetrical conj diene

- H⁺ adds <u>not</u> to C2 or C3
- H⁺ adds to C1 or C4
 - □ {1,2- + 1,4-addition} or {3,4- + 1,4-addition}
 - $\Box \{3^{\circ} + 1^{\circ} C^{+}\} \qquad \text{or } \{2^{\circ} + 1^{\circ} C^{+}\}$
 - $\square \{mono- + tri-subs = \} or \{di- + tri-subs = \}$

Kinetic vs thermodynamic control

Ch 7 #40

Progress of the reaction

Due to proximity effect, 1,2- is always the kinetic product.

© 2011 Pearson Education, Inc.

As temp up, reaction goes to 50/50.

Prob 31 p314

Diels-Alder reaction

reaction of conjugated diene and alkene [dienophile] R $CH_2 = CH - CH = CH_2 + CH_2 = CH - R$ conjugated diene dienophile @ 2011 Pearson Education Inc a pericyclic reaction = concerted rxn thru cyclic TS nucleophile new σ bond electrophile conjugated diene dienophile new transition state new σ bond two π electrons four π electrons double bond six π electrons © 2011 Pearson Education, Inc.

a [4 + 2] cycloaddition

- 4 π e's + 2 π e's from 3 π bonds of reactants
- **•** to form $6-\pi$ -e cyclic TS
- \blacksquare and cyclic product with 1 π [2 e] and 2 σ [4 e] bonds

a 1,4-addition reaction

resonance hybrid

@ 2011 Pearson Education, Inc.

MO view of D-A rxn

to form bond, e transfer from HOMO to LUMO and overlap of orbitals

Ch 7 #45

D-A reaction: examples

H

Ch 7 #47

 $\begin{array}{cccccccc} H_{3}C & & & CO_{2}CH_{3} \\ H_{3}C & & & C & & \Delta \\ H_{3}C & & & C & & H_{3}C & & CO_{2}CH_{3} \\ \end{array}$

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

D-A reaction: regioselectivity

Ch 7 #48

D-A reaction: conformation of diene Ch 7 #49

bridged bicyclic compounds

D-A reaction: stereochemistry

Ch 7 #50

,,,,**C**

Η

+

© 2011 Pearson Education, Inc.

