

Substitution and Elimination reactions

- Chapter 8. Substitution reactions of RX
 - 9. Elimination reactions of RX
 - 10. Substit'n/Elimin'n of other comp'ds
 - 11. Organometallic comp'ds
 - 12. Radical reactions

Chapter 8

Substitution reactions

 $S_N 2$ reactions $S_N 1$ reactions

Substitution and/or elimination rxns Ch 8 #3

 \square S_N1, S_N2, E1 and/or E2 mechanism, depending on

the nature of e-philic C, LG, Nu: (B:)

solvent polarity

Substitution reactions

nucleophilic substitution [S_N]

2 mechanisms

$$S_N^2 \qquad (\ddot{N}u + -C - X - V - V - Nu + X^-)$$

rate = k [Nu:] [R-X] ~ 2nd-order ~ bimolecular

□ 1-step ~ concerted ~ 1 TS

$$S_{N}^{T} \xrightarrow{\delta+l} - C_{-}^{\delta-} \xrightarrow{k} \longrightarrow -C_{+}^{l} + X^{-}$$

$$-C_{+}^{l} + \overrightarrow{Nu} \longrightarrow -C_{-}^{l} - Nu$$

$$rate = k [R-X] \sim 1st \text{-order} \sim unimolecular (in RDS)$$

$$2 \text{-step} \sim 1 \text{ interm and } 2 \text{ TS}$$

inversion of configuration

S_N2: steric effect

of alkyl groups

Table 8.1 **Relative Rates of S_N2 Reactions for Several Alkyl Halides** $R - Br + Cl^{-} \xrightarrow{S_N 2} R - Cl + Br^{-}$ Alkyl halide **Class of alkyl halide Relative rate** CH₃-Br methyl 1200 CH₃CH₂-Br primary 40 CH₃CH₂CH₂-Br 16 primary CH₃CH-Br secondary 1 CH₃ CH₃ CH₃C-Br tertiary too slow to measure CH₃ © 2011 Pearson Education, Inc.

relative reactivities of alkyl halides in an S_N2 reaction

most > methyl halide > 1° alkyl halide > 2° alkyl halide > 3° akyl halide $< \frac{100}{100}$ unreactive to undergo an

Ch 8 #6

S_N2 reaction

□ size of substituent

$CH_3CH_2 - Br$	primary	40	\mathbf{S}
$CH_3CH_2CH_2 - Br$	primary	16	
CH ₃ CH ₃ CCH ₂ Br CH ₃	primary	10-6	

steric hindrance and activation energy

S_N2: effect of leaving group

■ Weaker base is better leaving group.

relative rates of reaction

HO ⁻	+	RCH ₂ I	\longrightarrow	RCH ₂ OH	+	I ⁻	30,000
HO	+	RCH ₂ Br	\longrightarrow	RCH ₂ OH	+	Br	10,000
HO ⁻	+	RCH ₂ Cl	\longrightarrow	RCH ₂ OH	+	Cl	200
HO ⁻	+	RCH ₂ F	\longrightarrow	RCH ₂ OH	+	F ⁻	1

strong acid ~ weak conj base ~ good leaving group

relative reactivities of alkyl halides in an S_N2 reaction

© 2011 Pearson Education, Inc.

> EN of I = $2.5 \sim RI$ not polar, but reactive \sim polarizability

S_N2: effect of Nu: (1) - basicity

- basicity ~ ability to accept [share a lone pair with] proton
- nucleophilicity ~ ability to attack [give e to] e-philic C
- The two are not always parallel.

D Stronger base is better nucleophile.

charged vs neutral	stronger base, better nucleophile		weaker base, poorer nucleophile	
Actually, (very strong) conj base of weak acid.	НО ⁻ СН ₃ О-	>	Н ₂ О СН ₃ ОН	
	$^{-}NH_{2}$	>	$\rm NH_3$	
weakest NH ₃ < H ₂ O < HF acid	CH ₃ CH ₂ NH ⁻	>	CH ₃ CH ₂ NH ₂	
strongest -NH ₂ > HO ⁻ > F ⁻ base best nucleophile				

S_N2: effect of Nu: (2) - size and solvent #10

- size and solvent effect
 - larger Nu \rightarrow better polarizable \rightarrow better overlap with C

Iarger Nu: → weaker B: → less solvated by protic solvent
 protic solvent ~ donates H ~ contains H bonded to O or N

• eg H₂O, ROH, RCOOH, RNH₂

~ poor Nu:'s, used in $S_N 1$

weaker B: \rightarrow weaker interaction to solvent \rightarrow better access to e-philic C Larger Nu: is better Nu: in protic polar solvent.

basicity and nucleophilicity antiparallel

- In aprotic solvents, stronger B: is better Nu:.
 - Nonpolar solvents do not dissolve ions.
 - Aprotic polar solvents do not strongly interact with anions.
 - eg DMF, DMSO ~ solvents for $S_N 2$

□ bulky Nu: \rightarrow sterically-hindered \rightarrow lower nucleophilicity

B: attacks H (from surface); Nu: attacks C (from back)

t-Bu-O⁻

- **strong B: with poor nucleophilicity**
- sometimes useful

S_N2: reversibility

□ reversible when ΔG^{\dagger} (forward) $\approx \Delta G^{\dagger}$ (reverse)

• when ΔG or $\Delta \Delta G^{\dagger}$ is not large

when with similar basicity

reversible to irreversible, when Le Chatelier

$$CH_{3}CH_{2}Cl + CH_{3}OH \iff CH_{3}CH_{2}OCH_{3} \xrightarrow{fast} CH_{3}CH_{2}OCH_{3} + H^{+}$$
$$H + Cl^{-}$$

© 2011 Pearson Education, Inc.

$CH_3CH_2CI + HO^- \longrightarrow CH_3CH_2OH + CI^-$ an alcohol	H ₂ O vs HCI
CH_3CH_2Br + $HS^- \longrightarrow CH_3CH_2SH$ + Br^- a thiol	
$CH_3CH_2I + RO^- \longrightarrow CH_3CH_2OR + I^-$ an ether	
CH_3CH_2Br + $RS^- \longrightarrow CH_3CH_2SR$ + Br^- a thioether	
CH_3CH_2 Cl + $^{-}NH_2 \longrightarrow CH_3CH_2NH_2 + Cl^{-}$ a primary amine	
$CH_{3}CH_{2}Br + \ \ \ \ \ \ CR \longrightarrow CH_{3}CH_{2}C \equiv CR + Br \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\begin{array}{cccc} CH_{3}CH_{2}I & + & \hline C \equiv N & \longrightarrow & CH_{3}CH_{2}C \equiv N & + & I \\ & & a \text{ nitrile} \end{array}$	

> Check the direction and reversibility (with Table 8.3 p345).

Prob 13 p346 good Nu: amine and good leaving iodide

- exhaustive methylation
- Actually, method for amine preparation

$$\square 1^{\circ} \rightarrow 2^{\circ} \rightarrow 3^{\circ} \rightarrow 4^{\circ}$$

S_N1: unimolecular nucleophilic substit'n_{8 #16}

- 2-step rxn with 1st RDS
 - rate = k [R-X] ~ 1st-order ~ unimolecular

© 2011 Pearson Education, Inc.

S_N1: reactivity

□ reactivity ← stability of C⁺ intermediate

- 3° > 2° alkyl halide
- no S_N1 for 1° and methyl

Table 8.4Relative Rates of S _N 1 Reactions for Several Alkyl Bromides (solvent is H2O, nucleophile is H2O)				
Alkyl bron	nide	Class of alkyl bromide	Relative rate	
CH ₃ CH ₃ C—Br		tertiary	1,200,000	
CH ₃ CH—E	Br	secondary	11.6	
CH ₃ CH ₂ -	Br	primary	1.00*	
CH ₃ —Br		methyl	1.05*	

*Although the rate of the S_N1 reaction of this compound with water is 0, a small rate is observed as a result of an S_N2 reaction.

© 2011 Pearson Education, Inc.

S_N1: stereochemistry

addition of Nu: on sp² C of intermediate \rightarrow racemic

- stereochemistry affected by solvent polarity
 - high portion of inverted product in nonpolar solvent
 - typically 50 70%

S_N1: C⁺ rearrangement

\square in S_N1, not in S_N2

effect of leaving group

the same as in S_N2

relative reactivities of alkyl halides in an S_N1 reaction

© 2011 Pearson Education, Inc

• effect of Nu:

<u>no</u> effect ~ <u>not</u> participate in RDS

> Typically, Nu: in $S_N 1$ is also the solvent.

- 'solvolysis' in general
- hydrolysis, alcoholysis

Allylic and benzylic halides

 \square in S_N2

resonance-stabilized TS

1° and 2°, not 3°

 \square in S_N1

- resonance-stabilized C⁺
- 3° and 2°, 1° also

© 2011 Pearson Education, Inc.

may give more than 1 product

© 2011 Pearson Education, Inc

Ch 8 #24

Name	Structure	Relative Rate
lsopropyl chloride tert-Butyl chloride	CH_{3} $CH_{3}CH-CI$ CH_{3} $CH_{3}C-CI$ CH_{3} $CH_{3}C-CI$ CH_{3}	ا ۱ × ۱۵ ⁵
Allyl chloride	CH ₂ =CHCH ₂ -Cl	3
Benzyl chloride	PhCH ₂ —Cl	30
Diphenylmethyl chloride	Ph ₂ CH—Cl	$I imes I0^4$
Triphenylmethyl chloride	Ph_3C — Cl	$I \times 10^{9}$

resonance-stabilizing carbonyl?

Vinyl and aryl halides

Ch 8 #25

Competition btwn $S_N 2$ and $S_N 1$

Table 8.5Comparison of S _N 2 and S _N 1 Reactions			
S _N 2	S _N 1		
A one-step mechanism	A stepwise mechanism with a carbocation intermediate		
A bimolecular rate-determining step	A unimolecular rate-determining step		
No carbocation rearrangements	Carbocation rearrangements		
The better the nucleophile, the faster the rate of the reaction.	The strength of the nucleophile does not affect the rate of the reaction.		
Reactivity order: methyl $> 1^{\circ} > 2^{\circ} > 3^{\circ}$ (No reaction with tertiary.)	Reactivity order: $3^{\circ} > 2^{\circ} > 1^{\circ} > \text{ methyl (No reaction with primary or methyl.)}$		
Product has the inverted configuration relative to that of the reactant.	Products have both the retained and the inverted configurations relative to that of the reactant.		
Leaving group: $I^- > Br^- > Cl^- > F^-$	Leaving group: $I^- > Br^- > Cl^- > F^-$		

© 2011 Pearson Education, Inc.

Table 8.6Summary of the Reactivity of Alkyl Halides in NucleophilicSubstitution Reactions			
Methyl and 1° alkyl halides	S _N 2 only		
Vinylic and aryl halides	Neither $S_N 1$ nor $S_N 2$		
2° alkyl halides	$S_N 1$ and $S_N 2$		
1° and 2° benzylic and 1° and 2° allylic halides	$S_N 1$ and $S_N 2$		
3° alkyl halides	S _N 1 only		
3° benzylic and 3° allylic halides	S _N 1 only		

© 2011 Pearson Education, Inc.

Competition: effect of Nu:

□ rate of 2°, (1°/2°) allylic, or benzylic halide

rate = k_2 [alkyl halide][nucleophile] + k_1 [alkyl halide]

- as reactivity and concentration of Nu: up, more S_N2
- absence of good Nu: \rightarrow S_N1
- □ high conc'n of good Nu: \rightarrow S_N2 poor Nu: [absence of good Nu:] \rightarrow S_N1
 - good Nu: ~ -OH, -OR poor Nu: ~ H₂O, ROH
- > Usually, $S_N 2$ more desirable over $S_N 1$
 - gives single product
 - <u>no</u> racemization, <u>no</u> C⁺ rearrangement, <u>no</u> resonance interm

Solvent in organic reactions

homogenize and control heat of the rxn

- must not react with the reactants, interm's, and products
- (must) dissolve the reactants, interm's, and/or products
- must be chosen considering polarity.
- polar vs non-polar solvent
 - water-like [hydrophilic] vs oil-like [hydrophobic]
 - favorable vs not-favorable interaction with ion
 - high vs low ε Table 8.7 p361
- protic (polar) vs aprotic (polar) solvent
 - giving vs not-giving H
 - containing H bonded to O or N vs not

Effect of solvent in S_N1 and S_N2

relative charge in reactant(s) vs in TS

- When reactant(s) is more highly charged than TS is,
 - a polar solvent stabilizes
 [solvates] reactant(s) more
 than it solvates TS,
 - and raises ΔG^{\ddagger} .
 - **Δ** As ε up, rate down.
- When reactant(s) is less highly charged than TS is,
 - a polar solvent stabilizes TS more than it solvates reactants, and enhance ∆G[‡].
 - As ε ↑, rate ↑.

Progress of the reaction

@ 2011 Pearson Education. In:

Ch 8 #29

- reactants [RX] neutral; TS more highly charged (close to C⁺)
- S_N1 faster in polar solvent
- If with charged reactant(s), slower in polar solvent.
 - full vs dispersed charge

Actually, ion-dipole interaction energy provides much of the R-X dissociation energy.

Reaction of 2-Bromo-2-methylpropane in an S _N 1 Reaction		
Solvent	Relative rate	
100% water	1200	
80% water / 20% ethanol	400	
50% water / 50% ethanol	60	
20% water / 80% ethanol	10	
100% ethanol	1	
11 Pearson Education, Inc.		

Table 8.8 The Effect of the Polarity of the Solvent on the Rate of

- If with neutral reactant(s), faster in polar solvent.neutral vs partially charged
- **Typically**, $S_N 2$ in aprotic polar solvent
 - best to use non-polar solvent, but ions not soluble
 - aprotic polar [DMF, DMSO] better than protic polar

 $S_N 2$ is favored by good Nu: in aprotic polar solvent.

 $S_N 1$ is favored by poor Nu: in protic polar solvent.

Inter- vs intramolecular S_N

bifunctional molecules

can undergo inter- or intra-molecular substitution reaction

- depending on
 - concentration ~ high conc'n favors intermolecular reaction
 - □ size of the ring ~ effect of ring strain and tethering

(intramolecular) cyclization substitution rxn

5- or 6-membered rings are easily formed

7- or higher-membered rings are hardly formed
 One end hard to find the other

p368

© 2011 Pearson Education, Inc.

□ rate of S_N2? RO-/DMSO

□ rate of S_N1? ROH

Biological methylating agent

□ CH₃I is a good methylating agent

- better than CH₃Br or CH₃Cl
- insoluble in water ~ cannot be used in biological system

