Neuronal ensemble control
of prosthetic devices by a

__human with tetraplegia
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Motivation

Many people suffer from the motor impairment due to
damage to the spinal cord, nerves, or muscles

They have intact movement related areas of the brain
Current assistive technologies have some limitation

Neuromotor prostheses (NMPs) can be a solution.
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Neuromotor Prostheses (NMPs) (1)

Brain-Computer Interface (BCI)
Use the existing neural substrate for that action
Produce Safe, unobtrusive and reliable signal

Case of using neurons in the primary motor cortex (Ml)
arm area of monkey
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Neuromotor Prostheses (NMPs) (2)

 Requirement
— 1. sensor
— 2. decoder
— 3. Computer gateway
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BrainGate and placement, and the
participant
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BrainGate demo
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Signal quality and variety (1)

« Discriminated neural activity at electrode 33,34,22,95
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Signal quality and variety (2)

« Local field potentials during neural cursor control
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Modulation by intent (1)

« Evaluated Modulation while MN imagines a series of

movements
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Modulation by intent (2)

e Activation of the non-selective neurons
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Modulation by intent (3)

Hand-instruction-related modulation for three
simultaneously recorded neurons
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Linear filter construction

Transform between firing patterns and intended action
Basis of instructed actions

By tracking a technician's cursor
Use the least-squared formulation
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Intact monkey’s MI neurons became to modulate firing before movements
onset, activity is tuned to hand movement direction

To compare this neural activity with Ml of a human with spinal cord injury,
MN performed a step tracking, ‘center-out’ task using the neural cursor

“Center-out” task
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MI neurons can be actively engaged and encode task related information
even after spinal cord injury and in the absence of kinaesthetic feedback
and limb movement
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Directional tuning during center-out task
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Reconstruction of neural cursor position during pursuit tracking
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e Center-out task performance

— To evaluate the speed and accuracy of cursor control which are essential design parameters

for practical NMP
— MN tried 80 times, paired t-test p<0.0001

Figure 6 | Centre-out task performance. a, Target acquisition accuracy
during the centre-out task. For each of six sessions, MN acquired between
73-95% of the radially placed targets. Control targets were not present on
the monitor during task performance, but were marked as acquired if,
during post-hoc analysis of the cursor movement, the cursor had traversed
the location of one of the other three pseudo-randomly selected targets
before the correct target (see Supplementary Video 1). Data from days 72,
77, 83, 84, 86, 90 are shown. b, Time-to-target performance during centre-
out task for MN (blue )} and three able-bodied controls (red). Only successful
target acquisitions in <7 s are shown for MN. Arrows on the abscissa
represent median times to target for each distribution. Controls’

performances (n = 3 controls, 80 trials each) are collapsed into 0.2-s bins. —

MN's performance (398 trials) is collapsed into 0.5-s bins for visual clarity.
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e Control signal can operate external physical assistive devices
— MN used a simplified computer interface to

Open simulated e-mail Adjust the volume, channel, and
& draw a circular figure power of TV

Nepral/Rridgesimmmes (Neural pong) Control the coupled prosthetic hand g




Control the robotic limb

These demonstrates control of physical devices without computer cursor
feedback is possible in tetraplegic humans

MI-based NMP may have the property of allowing external device control
with little more disruption than encountered in able-bodied humans
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Human unable to move or sense his limbs can operate a NMP using Ml
neuronal ensemble spiking activity as a control source

Neural spiking remains in the MI area and can be modulated by intention
years after spinal cord injury.

Cursor and external device control may also be improved through learning.

They believed that NMPs can be used scaled so that parallel commands
could be derived simultaneously from multiple sensors each in separate
cortical regions.

A wireless, implantable and miniaturized system combined with automation
will be required for practical use.
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