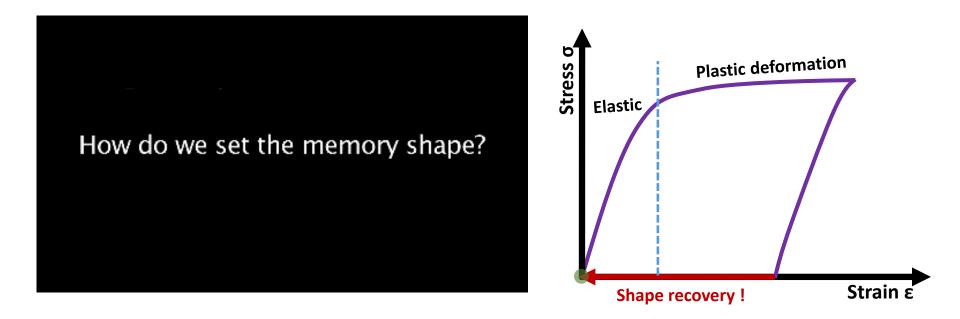


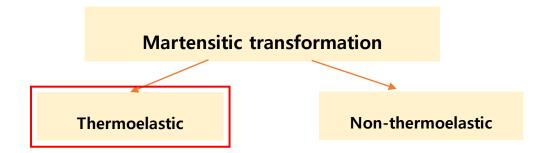
Shape Memory Alloys

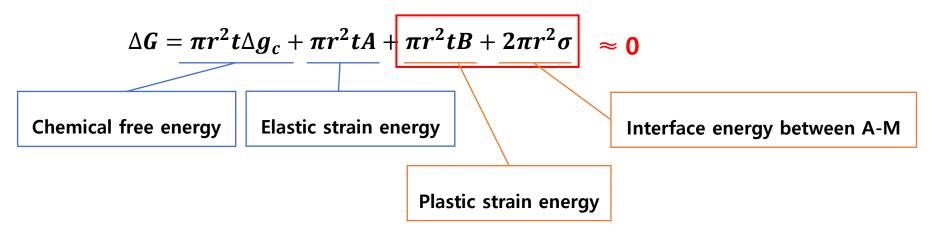
: An Overview & Nanoscale Characteristics


2020. 05. 18 Current status of Structural Materials

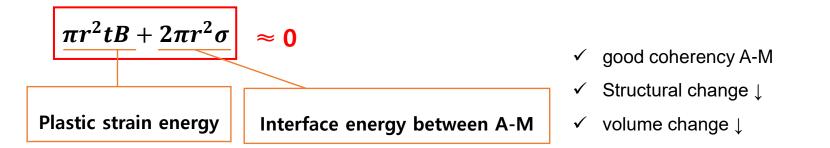
Ji Young Kim

- Shape Memory Alloys
 - Origin of SME : Thermoelastic martensitic transformation
 - Type of SME : one-way / two-way SME
 - Research trend of SMA
 - Alloy design / Orientation effect / Size effect at the nanoscale

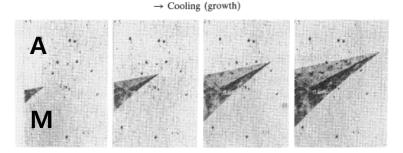

Concept of Shape Memory Alloys


High recovery strain through Phase transformation

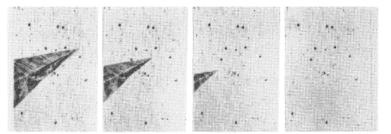
Study of reversible martensitic transformation (1949)



Driving force from austenite to martensite

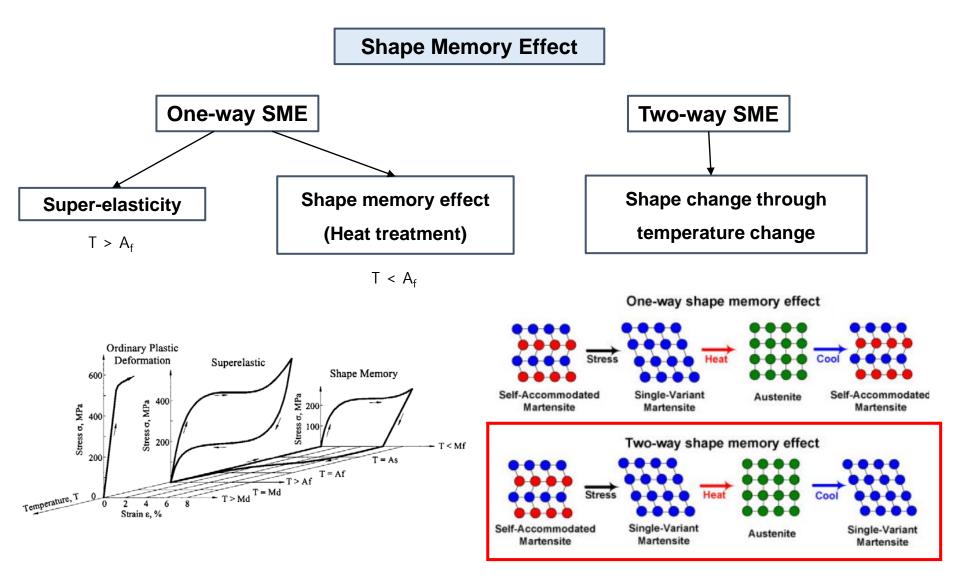


Hiroyasu Funakubo, «Shape Memory Alloys» (1984)


Origin of SME : Thermoelastic martensitic transformation

- ✓ SME : Martensitic transformation and reverse transformation through specific path with preferred variant
- Ordered phase with super-lattice, there is specific path with preferred variant depending on atomic bonding
 - \rightarrow Parent (austenite) has an ordered structure ex. B2, L2₁

→ Heating (shrinkage)

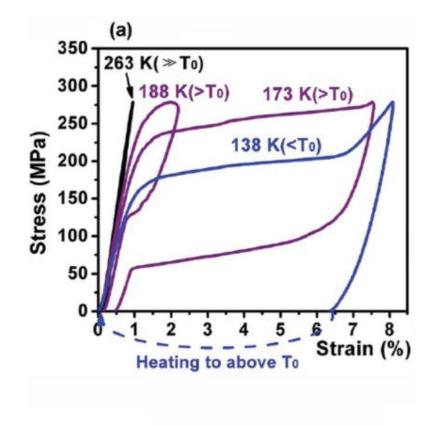


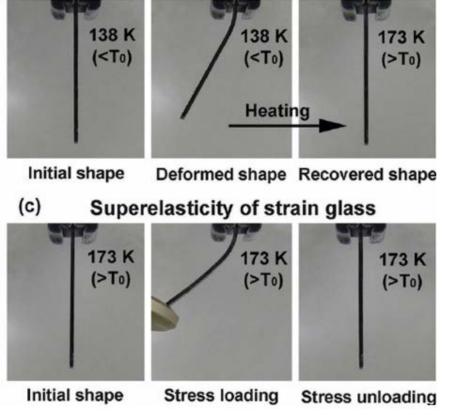
$$\Delta G = \pi r^2 t \Delta g_c + \pi r^2 t A$$

- **Cooling** : Equilibrium between chemical free energy difference and non chemical (elastic-strain) free energy
- Heating : Shrinkage of martensite until equilibrium

Hiroyasu Funakubo, «Shape Memory Alloys» (1984)

Type of Shape Memory Effect

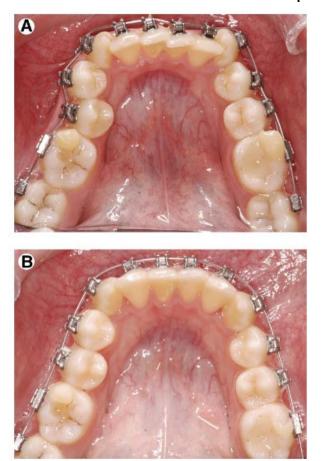



R. DesRoches et al., Journal of structural engineering 130(1) (2004) 38-46.

J Ma, I Karaman & R.D. Noebe, Internatinal Materials Reviews 55 (2010)

One way SME : Super-elasticity & SME of SMA

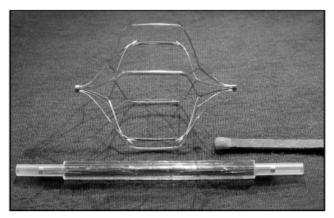
(b)

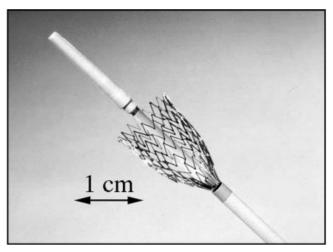

Shape memory effect of strain glass

Yu Wang et al., Physical Review Letters 97 (2006) 225703.

Application of SE & SME behavior of SMA

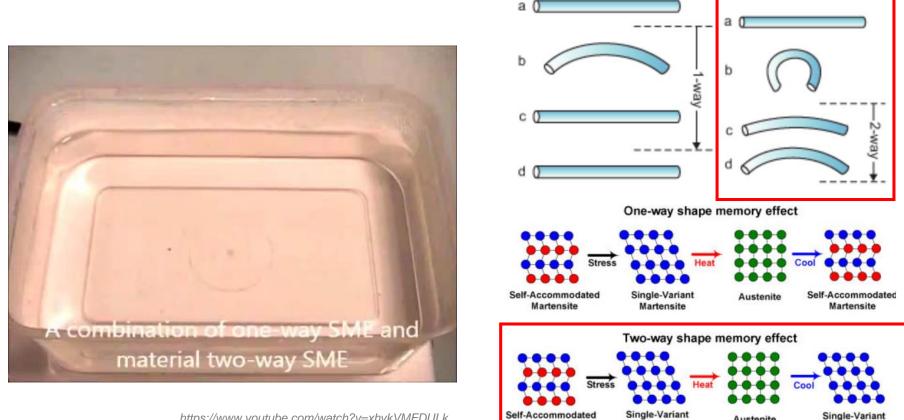
Super-elasticity


 $T > A_f$



N. Pandis et al., Semianr in Orthodontics 16 (2010) 249-257.

Shape Memory Effect


 $T > A_f$

T.W. Duerig, «The use of superelasticity in modern medicine», MRS bulletin (2002)

Application of two-way SMA

https://www.youtube.com/watch?v=xhykVMFDULk

J Ma, I Karaman & R.D. Noebe, Internatinal Materials Reviews 55 (2010)

Martensite

https://en.wikipedia.org/wiki/Shape-memory_alloy

Austenite

Biomedical application as temperature sensitive sensor / grabber

Martensite

Martensite

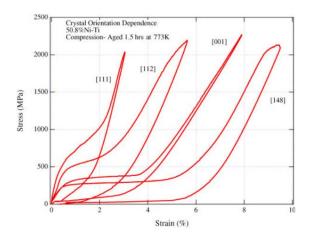
- ✓ Thermoelastic Martensitic transformation
- ✓ Ordered phase as parent austenite phase

Alloy	Composition	M _s (°C)	Transformation Temperature Hysteresis (°C)	Type of Transformation*	Ordered or Disordered
AgCd	44~49at.%Cd	-190~-50	~15	B2→M2H	ordered
AuCd	46.5~50at.%Cd	30~100	~15	B2→M2H	ordered
CuAlNi	14~14.5wt.%Al	$-140 \sim 100$	~35	DO ₃ →2H	ordered
	3~4.5wt.%Ni				
CuAuZn	23~28at.%Au	$-190 \sim 40$	~ 6	L21→M18R	ordered
	45~47at.%Zn				
CuSn	~15at.%Sn	$-120 \sim 30$		DO ₃ →2H or18R	ordered
CuZn	38.5~41.5wt.%Zn	$-180 \sim -10$	~10	B2→9R or M9R	ordered
CuZnX	few wt.% ×	$-180 \sim 100$	~10	B2→9R or M9R	ordered
(X=Si, Sn, Al, Ga)				DO ₃ →18R or M18R	
InTl	18~23at.%Tl	60~100	~ 4	FCC→FCT	disordered
NiAl	36~38at.%Al	$-180 \sim 100$	~10	B2→M3R	ordered
TiNi	49~51at.%Ni	$-50 \sim 100$	~30	B2→B19	ordered
FePt	~25at.%Pt	~-130	~ 4	$L1_2 \rightarrow \text{ordered BCT}$	ordered
FePd	~30at.%Pd	~-100		FCC→FCT→BCT	disordered
MnCu	5~35at.%Cu	$-250 \sim 180$	~25	FCC→FCT	disordered

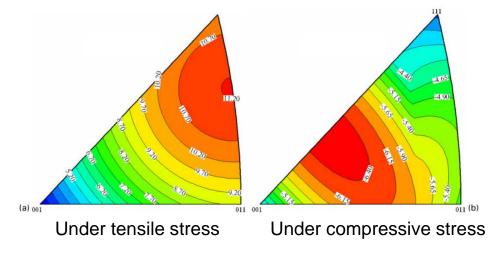
TABLE I.1 Data for Alloys which Exhibit a Complete SME.

* FCT means face centered tetragonal lattice; BCT means body centered tetragonal. For other symbols see section 1

Hiroyasu Funakubo, «Shape Memory Alloys» (1984)

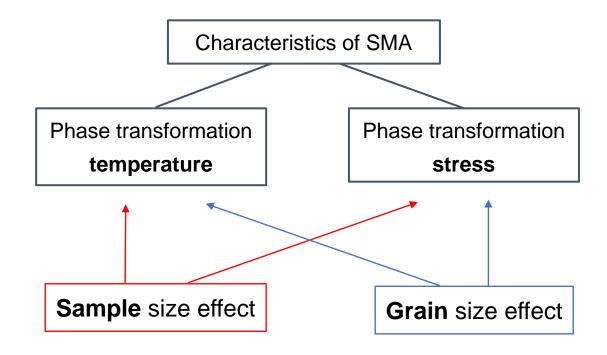

Previous approach to control the SMA properties : Alloy design

Control the phase stability (austenite)

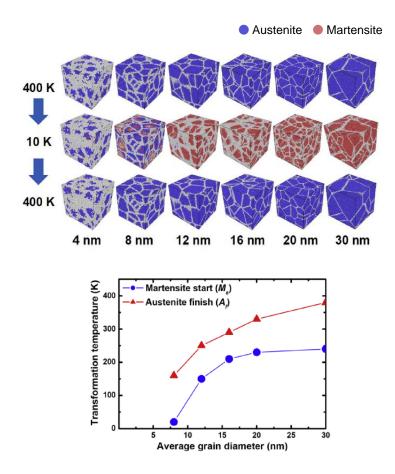

NiTi Based SMAs	M_f	M_s	A_s	A_f	Reference
$\mathrm{Ti}_{50}\mathrm{Ni}_{50}$	15	55	80	89	[49]
Ti _{49.5} Ni _{50.5}	-78	-19	9	53	[56]
$\mathrm{Ti}_{49}\mathrm{Ni}_{51}$	-153	-114	-89	-40	[4]
$\mathrm{Ti}_{49}\mathrm{Ni}_{51}\mathrm{Cu}_{10}$	8	30	35	50	[56]
$\mathrm{Ti}_{50}\mathrm{Ni}_{40}\mathrm{Cu}_{10}$	21	41	53	67	[56]
$\mathrm{Ti}_{44}\mathrm{Ni}_{47}\mathrm{Nb}_9$	-175	-90	-85	-35	[45]
${\rm Ti}_{42.2}{\rm Ni}_{49.8}{\rm Hf}_8$	50	69	111	142	[57]
${ m Ti}_{40.7}{ m Ni}_{49.8}{ m Hf}_{9.5}$	61	90	118	159	[57]
${ m Ti}_{40.2}{ m Ni}_{49.8}{ m Hf}_{10}$	103	128	182	198	[57]
${ m Ti}_{35.2}{ m Ni}_{49.8}{ m Hf}_{15}$	95	136	140	210	[57]
${ m Ti}_{30.2}{ m Ni}_{49.8}{ m Hf}_{20}$	127	174	200	276	[57]
$\mathrm{Ti}_{48}\mathrm{Ni}_{47}\mathrm{Zr}_5$	20	65	75	138	[58]
$\mathrm{Ti}_{43}\mathrm{Ni}_{47}\mathrm{Zr}_{10}$	45	100	113	165	[58]
$\mathrm{Ti}_{38}\mathrm{Ni}_{47}\mathrm{Zr}_{15}$	100	175	175	230	[58]
$\mathrm{Ti}_{33}\mathrm{Ni}_{47}\mathrm{Zr}_{20}$	205	275	265	330	[58]
$\mathrm{Ti}_{50}\mathrm{Pd}_{50}$	550	563	580	591	[49]
${ m Ti}_{50}{ m Ni}_{20}{ m Pd}_{30}$	208	241	230	241	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{10}\mathrm{Pd}_{40}$	387	403	419	427	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{5}\mathrm{Pd}_{45}$	467	486	503	509	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{45}\mathrm{Pt}_5$	10	29	36	49	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{40}\mathrm{Pt}_{10}$	-8	18	-27	36	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{30}\mathrm{Pt}_{20}$	241	300	263	300	[49]
$\mathrm{Ti}_{50}\mathrm{Ni}_{20}\mathrm{Pt}_{30}$	537	619	626	702	[49]

P.K. Kumar and D.C. Lagoudas, « Introcutction of Shape Memory Alloys» (2008)

Mechanical response depending on the orientation

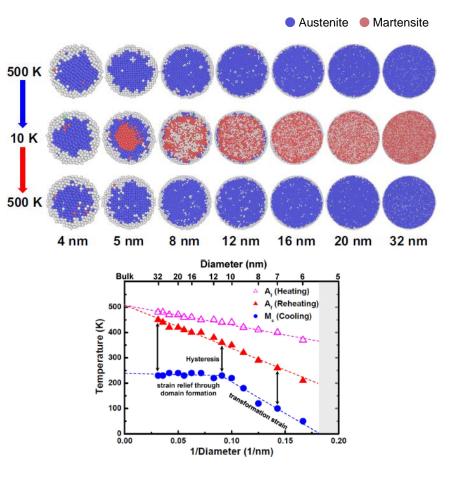


Maximum transformation strain depending on the orientation


New approach : Abnormal behavior at the nanoscale

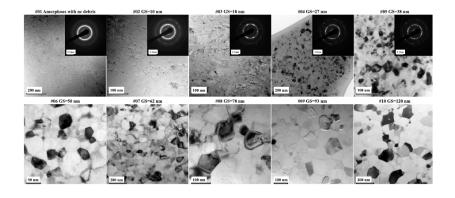
Surface area to volume ratio increases

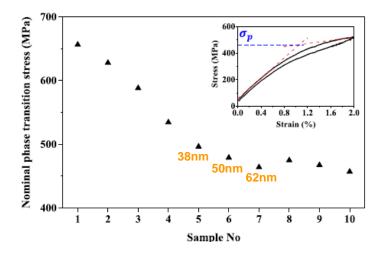
Size effect on phase transformation temperature


Grain size effect

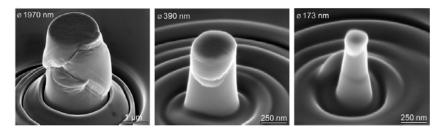
- 1. austenite over-stabilization : $\gamma_{auestenite} < \gamma_{martensite}$
- 2. Grain boundaries work as energy barrier

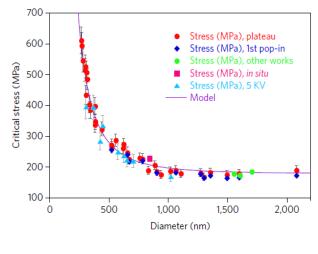
W.S. Ko et al., Acta Materialia 123 (2017) 90-101

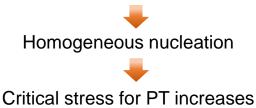

Sample size effect



- - W.S. Ko et al., Physical Review Materials 2 (2018) 030601


Size effect on phase transformation stress


Grain size effect



Transformation strain mechanism : Grain boundaries work as mechanical constraints. Sample size effect

Dislocation starvation

J.F. Gomez-Cortes et al., Nature nanotechnology 12 (2017) 790-796

- Origin of SME : Thermoelastic martensitic transformation
- Type of SME : one-way / two-way SME
- Research trend of SMA
 - ✓ Searching alloy system
 - ✓ Alloy design using additional element
 - ✓ Orientation effect
 - ✓ Size effect at the nanoscale
- Industrial / Biomedical / Electrical Applications

Thank you for your kind attention

Type of Martensitic Transformation

