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Chapter 1. Review on ‘Introduction to CFD’
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Chap. 1-1. Topics Covered

 Classification of PDE
 Characteristics of 2nd-order linear PDE  Elliptic, Parabolic, and Hyperbolic PDE

 Basic concept and linear stability
 Finite difference approximation of spatial and temporal derivatives

 Truncation error and consistency  Fourier error analysis

 Modified equation  numerical dissipation and numerical dispersion

 General concept of stability  Von Neumann stability and Lax equivalence theorem

 Domain of dependence/influence  CFD condition and stability

 Discretization of Parabolic PDE
 Basic explicit/implicit schemes, and stability analysis

 Splitting or factorized schemes for multi-D problems  ADI/AF-ADI in terms of 
delta/non-delta forms

 Difference between delta and non-delta form for steady-state computations

 Discretization of Elliptic PDE
 Relaxation methods depending on the choice of P with A = P+B  Jacobi/G-S/ADI, and 

versions of over-relaxation

 Similarity between relaxation method for elliptic PDE and time-marching method for 
parabolic PDE

 Multigrid convergence acceleration  CGC strategy for linear elliptic PDE, V-/W-cycle
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Chap. 1-2. Basic Theory of SCL 

 Hyperbolic PDEs
 Wave propagation problems with limited D of Dep. and limited D. of Inf.

 Formation, propagation and interaction of linear and nonlinear waves

 Convection-dominated flows, compressible flows, convective flows admitting 
discontinuous solutions

 Scalar conservation law
 Linear convection equation

 Burgers’ equation

 Euler Equations 

 General Form of SCL
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Chap. 1-2. Basic Theory of SCL 

 Ex 1) Linear wave equation


 Ex 2) Nonlinear wave equation
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Chap. 1-2. Basic Theory of SCL 

 Ex 2) Nonlinear wave equation (cont’d)
 Problem of differentiability at discontinuity

 A sinusoidal initial profile leading to a discontinuous saw-tooth profile 

 Behavior of the exact solution
 Assuming convex flux function (                         ), extrema of the exact solution are 

determined by the initial condition, and after forming a discontinuity, they are decaying to              

to create wider expansion region.
 This is true to the case of intersection of discontinuities to create a single discontinuity.

 In case of non-convex flux function for real gas flows or two-phase flows in porous media, intersection of 
discontinuities creates multiple discontinuities along with a new monotonic wave profile bounded by the multiple 
discontinuities.
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Chap. 1-2. Basic Theory of SCL 

 Integration of SCL  Conservative Finite Volume Discretization
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 Conservation of  in ( , ) stating that

      change of  over ( , ) during   net flux across the boundary of ,  during 
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Introduce a finite volume computational cell with ( , ) ( , ) and ( , ) ( , ),

and define an approximate quantity averaged over  and 

 cell-averaged value: 
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, ,    cell-interface numerical flux: ,

Then, Eq.(*2) can be discretized, called conservative finite volume discretization, as
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By applying the integral form of SCL (or using Eq.(*3)),  problem of differentiability is avoided.
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Chap. 1-2. Basic Theory of SCL 
 Integral conservative form and the condition for correct shock speed

 Integral form and the problem of non-uniqueness
 Ex) Correct behavior of discontinuities under various initial conditions
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Physically relevant Physically irrelevant Physically relevant

I.C. 1: Compression shock
I.C. 3: Rarefaction 

shock and fans
I.C. 2: Rarefaction 
shock and others
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Chap. 1-2. Basic Theory of SCL 

 Flow physics from the 2nd law of thermodynamics states that expansion shock is 
not allowed.   entropy condition
 Characteristics across discontinuity should converge.  For the right-moving shock with

 More generally, the entropy condition by Oleinik can be considered to include non-convex 
cases.

 Ex) Consider a SCL with

What would be the expected entropy solution for convex and non-convex flux functions?

 How to implement ?
 Solve a vanishing viscosity form

 Design a numerical flux such that it contains a proper form of numerical viscosity

 Entropy function and entropy flux  entropy inequality

, [ ] / [ ] . Thus, case III is the physically correct solution.L R L Ru u u S f u u   

 with some(?) 0t x xxu au u   

 Motivated by the entropy inequality of the Euler equations  ( ) ( ) 0,

  Consider the entropy inequality of SCL as ( ) ( ) 0 

  with ( ) :  entropy function, ( ) :  entropy flux. 

  Then, by req

t x

t x

s us

U u F u

U u F u

  
 



2

2
uiring =  and 0, ( ) and ( ) satisfying the entropy inequality 

  can be obtained.  

dF df dU d U
U u F u

du du du du


( ( ) ( )) / ( ) [ ] / [ ] ( ( ) ( )) / ( )L L R Rf u f u u u S f u f u f u u u      

 0

1 if 0

0 if 0

x
u x

x


  



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

Chap. 1-2. Basic Theory of SCL 

 Conservation law and weak solution



 Mathematically both equations are the same in smooth region, but not, in discontinuous region

 Note that 

 Conservative Scheme
 Applying the integral form of SCL over 

 For 1-D case with 
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Eq. (*3)  gives 0,
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 Discrete realization of the integral conservation law over the computational domain
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Non-conservative 
solution

Exact

Chap. 1-2. Basic Theory of SCL 
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 Ex) Non-conservative scheme and shock speed

 For Burgers eqn. of                       with I.C. of

 A non-conservative upwind scheme : 

 From Eq. (*4), 

But from the R-H condition of SCL, 

 Consistency
 General form of conservative scheme

 Eq. (*5) is called consistent with SCL if          goes to the true flux f(u) in the constant 
flow.

 A stronger condition to satisfy the consistency is the Lipschitz continuity of         , or 
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