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+ Higher order extension: i  L, i+1  R by monotonic interpolations

− Three-wave approximation with    and 

Entropy  fix '
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with a tunable parameter

 No built-in mechanism to distinguish expansion shock and compression shock (violation

  of entropy condition)
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 rigorous remedy is necessary.

 Do not satisfy the positivity condition (or failure of linearization)

  problems in high-expansion region

 Suffering from shock instability known as carbuncle phenomeno
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Supersonic flow with M = 8.0 around cylinder
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 Two-wave Approximate Riemann Solver
 A two-wave approximation to increase the robustness of Roe’s approximate 

Riemann solver
 See the works by Harten, Lax and van Leer(1983), and others

 Assume three Riemann-states divided by minimum and maximum wave             speeds 
and obtain a cell-interface flux by integrating conservation laws directly.
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 Flux at a cell-interface using 
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 Thee-state approximation improves robustness (ex: shock stability and positivity condition) 
significantly but contact discontinuity cannot be captured accurately. 

 Modified HLL scheme
 Four Riemann-states by adding contact discontinuity into HLL scheme (HLLC scheme)

 See the works by Toro et al.(1994)
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 Four Riemann-states approximation

  Assuming that ( , ) ( , )  ( , ) ,
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 Estimation of ( , ) crucial to determine the accuracy and robustness: min(0, , ),

  max(0, , ) (Einfeldt  .(1991))
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 Estimation of 
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 RoeM
 Cure the shock instability of Roe’s FDS while maintaining the accuracy

 See the work by Kim et al.(2003), and others

 Introduce a multi-dimensional dissipation term controlled by Mach number-based 
weighting functions to cure shock instability

 Behavior of numerical mass flux and its connection to shock instability
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 Roe's FDS: ,   1   shock instability but exact capturing of CD

 HLL: ,  0  shock stability but no exact capturing of CD
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 Linear stability analysis with 

 Mach-number-based weighting functions f and g to control the feeding rate of 
pressure field and the damping rate of density field.

 Numerical flux at a cell-interface
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 Characteristics of RoeM
 Total enthalpy preservation for inviscid steady flow (by formulation based on H)

 Cure of shock instability/carbuncle phenomenon (by f, g).

 Exclusion of expansion shock, stability of expansion (by b1, b2)

 Exact capturing of SW and CD  good for N-S Computations (by f, g)
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Iteration Number = 550
Initial Condition for
RoeM2

Iteration Number = 350

Density Contour (Roe’s FDS)
Iteration Number = 250

Density Contour (RoeM)
Iteration Number = 650

Iteration Number = 750

Iteration Number =1000

RoeM SchemeRoe’s FDS
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Supersonic flow with M=8 around cylinder

Quirk Test


