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Chap. 4-6. Implicit Time Integration

 AF-ADI Scheme
 Approximate factorization along ξ- and η- directions

 The resulting formulation requires block tri-diagonal matrix inversion along 
ξ- and η- directions.

 ξ-sweep (relaxation along the ξ-direction)

 η-sweep (relaxation along the η-direction)
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Chap. 4-6. Implicit Time Integration

 For 2-D N x N mesh with single unknown at each grid point, operating count = O(N2)

 μ for C-N ↔ fully implicit : 

 3 types of errors
 Linearization error for the implicit part

 Factorization error to approximate the block penta-diagonal term

 Discretization error of the residual term

 Factorization error dominant at high frequency range, and parallelization issue

 LU-SGS scheme
 Instead of dimensional splitting, a variant of Gauss-Seidel relaxation is applied 

to Eq. (2) in symmetric forward & backward manner.
 See the works by Yoon and Jameson(1988), and others

 Ex) LU-SGS for 1-D case
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Chap. 4-6. Implicit Time Integration

 Symmetric G-S relaxation to Eq. (2)


   
 

1 1 1 1

1 1 1 1

,   

   or  

Gauss-Seidel relaxations in a symmetric fashion as follows

 (forwar

n n n n n n
i i i i i i i i i i

n n n n n n
i i i i i i i i

t t x

t A t

   

  

   
   

   
   

             

               

U A U A U A U A U R

A U I A A U A U R U R

  
 

 

* *
1 1

*
1 1 1 1

1 1

d sweep) 

 (backward sweep) 

By substracting forward sweep from backward sweep,

n
i i i i i i

n n n
i i i i i i i i

n n
i i i i i

t

t

 

  

 

  
 

   
   

  
 

         
          

       

A U I A A U R

I A A U A U A U R

I A A U A U



 

     

* *

* 1 * 1

1

   or   

From  and , we have 

 a variant of LU decomposition to invert 

with ,  ,  

n
i i i

n n n n

n n

i i i i i i i i

U D

D U L t LD U t

A t

L D U



    

 

 

      
 

       
       

   

           

I A A U U U

U U ΔU R U R

U R

A I A A I A A I A A A 1.


  ,

The same procedure for 2-D case with

  or   n n n n
i jt D D D D t A t                       I A A B B U R U R

     * * *
, , , , , 1, 1, , 1 , 1

,

 (forward sweep) 

                             

i j i j i j i j i j i j i j i j i j

n
i j

t t t

t

     
   

           
 

I A A B B U A U B U

R





Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

Chap. 4-6. Implicit Time Integration

 A variant of LU decomposition to efficiently invert 

 Complete vectorization along diagonals of i+j=const (or coloring scheme)

 Easily extendable to complex flows, such as chemical reacting flows
 λ-based splitting can be used for non-calorically perfect gas.

 Parallelization issue and temporal accuracy

 LU-SGS / AF-ADI relaxation combined with MG
 After transferring solution and residuals onto coarse grid, compute the multi-grid forcing term (P) 

and update solution 
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Chap. 4-7. Time-Accurate Schemes

 TVD R-K scheme
 Higher-order R-K schemes preserving TVD stability

 See the works by Shu and Osher(1988), and others

 Linearly stable R-K schemes are not sufficient to support monotonic solutions.

 TVD-stable, multi-stage R-K schemes by optimizing standard R-K coefficients

0

 Ex: computed solutions with linearly(LS)/non-linearly(NLS) stable R-K methods
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Chap. 4-7. Time-Accurate Schemes
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   If  and  are all positive,  can be regarded as a convex combination of  operators as 
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 For -stage R-K methods, search optimal positive ,  yielding a maximal CFL time-step.

 2-stage/2nd-order TVD R-K schemes
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 Dual Time Stepping with 2nd-order Backward Differencing Formula
 2nd-order A-stable BDF
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Chap. 4-7. Time-Accurate Schemes

 Instead of linearizing the implicit residual term, solve the full non-linear BDF 
by introducing a pseudo-time derivative. 

 Solution of the original BDF can be recovered by converging Eq. (3).
 Explicit scheme

 Modified R-K schemes, such as (4,2) and (5,3) schemes, with local time stepping

 Implicit residual smoothing and multi-grid

 Implicit schemes, such as LU-SGS or AF-ADI with multi-grid

 With a fast convergence of inner iterations, an efficient 2nd-order time-accurate 
scheme allowing a larger Δt can be obtained.
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  - two-time scale: physical-time( ) for time accuracy and pesudo-time( ) for convergencet 
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