— Chap. 4-6. Implicit Time Integration

o AF-ADI Scheme
Approximate factorization along &- and #- directions
|1+ puat(D;A" +D;A™) || 1+ uAt(D,B* + D;B7) | AU, =-AR],
with the factorization error = 1°At’ ((’ﬂ" / o0& )(GE” / 5‘77)

The resulting formulation requires block tri-diagonal matrix inversion along
¢- and - directions.
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¢-sweep (relaxation along the ¢-direction)
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n-sweep (relaxation along the #-direction)
At =, ) At j=, = | .=, At = ). =, .
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S U = U7, + AT,
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Chap. 4-6. Implicit Time Integration

For 2-D N x N mesh with single unknown at each grid point, operating count = O(N?)
| 1 |
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u for C-N < fully implicit :

3 types of errors
Linearization error for the implicit part
Factorization error to approximate the block penta-diagonal term
Discretization error of the residual term

Factorization error dominant at high frequency range, and parallelization issue

o LU-SGS scheme
o Instead of dimensional splitting, a variant of Gauss-Seidel relaxation is applied
to Eq. (2) in symmetric forward & backward manner.
See the works by Yoon and Jameson(1988), and others

o Ex) LU-SGS for 1-D case
oU OF AU" oF"  oF"™
+ (1 - ,u) =

From —+—=0, + u 0
ot Ox ox ox
With F"' = F" + A"AU", A" =[ 5|, AU +u A" | apr = =-R(U").
ouU At ox ox
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FromA" = A" + A", [I+ ,uAt(D AT+DA )] AU" = —AR" or
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- Chap. 4-6. Implicit Time Integration -

AU; +A(AJAU; AL AU, )+ A(A AU, - A AU} ) =—AR], A= uAt/Ax
- —AA AU+ 1+ (AT A7) |AU] + 24, AU, =-AR] or AAU" =—AR"

i+1 i+1

Gauss-Seidel relaxations in a symmetric fashion as follows

o (forward sweep) —AA; AU, + [I +A (Al+ —A; )] AU, = -AR]

« (backward sweep) [I +A (Al+ -A; )] AU! + 1A, AU’

i+1 i+1

—AA AU, =-AmR!
By substracting forward sweep from backward sweep,

[T+ 2(A] A7) |AU; + A4, AU, =| T+ A(A] - A7) |AU; or UAU" = DAU'

i+1 i+1
From AU" = D"'UAU" and LAU" = -AfR", we have LD"'UAU" = —AR"
— a variant of LU decomposition to invert AAU" = —ArR”
with L =—AA, +1+A(A] -A;), D=T+1(A] -A;), U=I1+A(A] —A )+ 1A,
Symmetric G-S relaxation to Eq. (2)

The same procedure for 2-D case with
1+ pAt(D;A" +D;A" + DB +D;B ) |AU" =—AR!, or AAU" = -AR'’
+ (forward sweep) | I+ A¢{(A7, ~A;,)+(B;, ~B;, )} |AU;, A&}, AU, - A/B;

i-1,j J i,j-1

AU;
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Chap. 4-6. Implicit Time Integration

« (backward sweep)

[I+At{(&* J-A)+(By, — By, )} |AUL + A, AT+ B, AT,

—AIAT

i-1,j

Subtracting forward from backward sweep gives LD'UAU" = —AfR".
with L=1+At(D;A"+D,B'~A" -B"), D=1+Af(A"-A +B'-B"),

AU}, - AB]

i,j-1

AU; , =-AR!,

i,j—1

U=I+At(D;A +D;B +A"+B").
« Instead of A-based splitting A" = R A" R;', B* = R,A}R,', a p-based splitting is introduced

to avoid block matrix inversion and to maintain diagonal dominance.

and k =1+ a(>0)

max

A’ :%(Kip(x)l), B* :%(]_Bip(B) ) with ,0 k‘/l

A variant of LU decomposition to efficiently invert AAU" = —ArR”"

Complete vectorization along diagonals of i+j=const (or coloring scheme)

Easily extendable to complex flows, such as chemical reacting flows
A-based splitting can be used for non-calorically perfect gas.

Parallelization issue and temporal accuracy

LU-SGS / AF-ADI relaxation combined with MG

After transferring solution and residuals onto coarse grid, compute the multi-grid forcing term (P) r‘
and update solution — 4AU” by LU-SGS or AF-ADI =—-At(R+P) by multi-grid |

i
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Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboraton&m



E Chap. 4-7. Time-Accurate Schemes

e TVD R-K scheme

o Higher-order R-K schemes preserving TVD stability
See the works by Shu and Osher(1988), and others

Linearly stable R-K schemes are not sufficient to support monotonic solutions.
« Ex: computed solutions with linearly(LS)/non-linearly(NLS) stable R-K methods

I, ifx<0

-0.5, 1fx<0

- One-step Euler-forward from the semi-discrete form of u, = L(u) by evaluating F
with a 2nd-order monotonic flux — u"" =u" + AtL(u") with TV ("™ < TV (u")

- 2-stage R-K time integrations

u, +uu_ =0 with u,(x) = {

@LS) u® =u", u® =u® —20AtLU®), u® =u® + %AtL(u(O)) - %Am(u(”) S =u®

(NLS) =y =y ) +AtL(u(°)) = =lu(°) +lu(1) +1AtL(u(l)) -y =y®?
’ ’ 2 2 2

— both are the same for linear case, but yield different solutions for non-linear case.
TVD-stable, multi-stage R-K schemes by optimizing standard R-K coefficients
« One-step TVD scheme: "™ =u" + AtL(u") = EL(u") with TV (") < TV (u")

« Multi-stage TVD R-K schemes: from general m-stage R-K method as

© _n (k) _ Nk () () . k-1 _ n+l _ (m)
u’'=u", u _ijo(ajk“ + B, AtL(u )) with ijoajk =L 1<k<m, u"" =u
P

W
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Chap. 4-7. Time-Accurate Schemes

(k

If ¢, and g, are all positive, u ' can be regarded as a convex combination of EL operators as

k-1 ; ; k-1 i . ﬂ -
u® = ZFO ay (u(” + Ath(u(”)) :Zj:O ajkEL(u(’)) with Az, = a—JkAt. Thus, TV ") <TV '™
ik

For m-stage R-K methods, search optimal positive o, 5, yielding a maximal CFL time-step.

« 2-stage/2nd-order TVD R-K schemes
u =u” + AL W), u® = %u(o) + %u(” +%AtL(u(”)
« 3-stage/3rd-order TVD R-K schemes

u =y + AL, u® = %u(o) +%u(1) +%AtL(u(”), u® zéu(o) +%u(2) +§AtL(u(2))

« m-stage/m th-order TVD R-K schemes?
- 5-stage/4th-order SSPRK scheme

- Non-linearly stable R-K schemes with maximal CFL number and minimal complexity

e Dual Time Stepping with 2"-order Backward Differencing Formula

| o

A‘(.i';'anced Computational Fluid Dynamics, 2019 Spring

2nd_grder A-stable BDF

WU __juy » S - Ly Ly +R(U")=0
d 2At At 2A

« (Dahlquist's stability barrier theorem) For y, = f ( v, t) , general linear multi-step methods

k k
of Z ay,. = z hp.f,.. can acheive 'A-stability' with the maxim order of 2'.

i=0 i=0

-
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Instead of linearizing the implicit residual term, solve the full non-linear BDF
by introducing a pseudo-time derivative.

« Define extended residual, R*(U), in terms of U
30 -4U" +U""

R'(U)= DAL

+R(U)=0

~

. P dU . -
introduce a pseudo-time derivative term N d + R (U) — 0 E q (3)
T

to update solution, U, by sub-iterations in terms of 7

- two-time scale: physical-time(#) for time accuracy and pesudo-time(7) for convergence
Solution of the original BDF can be recovered by converging Eq. (3).

Explicit scheme
Modified R-K schemes, such as (4,2) and (5,3) schemes, with local time stepping
Implicit residual smoothing and multi-grid

Implicit schemes, such as LU-SGS or AF-ADI with multi-grid

With a fast convergence of inner iterations, an efficient 2"-order time-accurate
scheme allowing a larger A¢ can be obtained.
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