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Chapter 5. Basics of Higher-order Discretization Methods
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 Discretization Methods Available
 FDM (Finite Difference Method)

 Direct discretization of the differential form by assuming point-wise values defined at each 
grid point

 Simple, efficient and easy to discretize

 One-dimensional (or dimension-by-dimension) interpolation and transformation to 
computational coordinate are essential.  not suitable to complex geometry

 FVM (Finite Volume Method)
 Integration of the differential form of conservation laws over finite computational cell

 Apply control volume analysis to each computational cell defined by (∆x, ∆t) using cell-

averaged quantities.
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 FVM (Finite Volume Method) (cont’d)
 Purely local analysis without assuming any grid structure or the shape of computational cell

 suitable to complex geometry

 Cell-wise interpolation for high-order accuracy  not flexible on general unstructured grids

 FEM (Finite Element Method)
 Weak formulation (or weighted-residual formulation) from the differential form of 

conservation laws over each computational element

 Local expansion of solution using basis functions followed by orthogonal projection of the

residual (or error) to test function space

 Local formulation without assuming any grid structure or the shape of computational cell 

suitable to complex geometry

 Local expansion of solution with multiple DOFS  flexible for higher-order approximation 

on general unstructured grids

 Uncertainty on conservative and accurate treatment of the boundary integral

 ... 0

( )
( )

1

( )
0  0 on   for ,  1 ( )

 approximate ( , ) on  using basis functions, ( , ) ( ) ( )

 evaluate temporal and

i
Tk

k k k

dx
i

i i k iT T T

ndof n
i

k k i
i

dq f q
q dx f dx f dx T i ndof n

t x t dx

q x t T q x t q t x

   









         
  

 



  


 spatial integral terms by numerical quadrature



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU

Chap. 5-1. Comparison of Discretization Methods_Revisited

 Value of high-order accuracy 
 Ex) Behavior of computed solutions by changing order-of-polynomial approximation(N) 

mesh size(K)
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< Scaled computation cost >

N   \ K 2 4 8 16 32 64
1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.

16 57.8 121. 279. 664. 1958. 5256.

n(~ O(h ) with n > 2)
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 Strategy for High-Order Accuracy
 One unknown (or one DOF) per one cell approach

 Within a cell     , approximate the exact solution          as a polynomial           by using 
Taylor expansion with neighboring computational cells (or grid points)

 nth-order polynomial approximation within 

 FDM: direct Taylor expansion, compact difference

 FVM: TVD-MUSCL, ENO/WENO, MLP reconstruction

 Cell-interface values estimated from           are used to evaluate a numerical flux.

+ Relatively simple, easy to understand, and suitable for coding

- Non-local computational stencil

As a result, when          is higher than linear polynomial,

 Hard to treat boundary conditions, hard to handle 3-D complex geometry, and

hard to exploit parallel computations

 Multiple DOFs per one cell approach
 Within an element    , approximate the exact solution         as a polynomial          

by a linear combination of local shape functions (or basis functions).

Chap. 5-1. Comparison of Discretization Methods_Revisited
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 Multiple DOFs per one cell approach (cont’d)
 nth-order polynomial approximation within 

 Each coefficient      is regarded as an unknown or a degree of freedom (DOF).

 Finite element discretization based on weighted residual formulation is commonly 
adopted to determine the evolution of      .

+ Highly local construction  compact stencil

As a result,

 Only nearest elements sharing a common cell interface/vertex are necessary → amenable 
to parallel computation

 Easy to implement boundary conditions

 Easier to tackle 3-D complex geometry

- More mathematical background and more efforts to implement it into a code

- More delicate numerical treatment for temporal and spatial integral terms

- More data storage and/or more computational costs in general

 Overcome via computational techniques such as parallel computing or h/p adaptation
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 Discretization of 1-D SCL,
 Weighted residual formulation

 Approximate solution of            within the cell

 Choice of the polynomial space     and basis function       determines the nature of solution.

 Approximate solution does not satisfy the governing equation exactly.

 Minimize the residual, R, in the weighted integral sense over the test function space

 Choice of the weight function      determines the nature of the discretized equation.
 Discrete Fourier spectral method:

 Galerkin approximation:                      

 Discontinuous Galerkin (DG) Method
 Integration-by-parts over the cell     with a compactly supported          

 a weak form:

Chap. 5-2. Basic Formulation
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 DG approach to treat the boundary integral
 Approximate solution allows to be discontinuous, in the sense of     , at the cell interface     .

→ f is not uniquely determined at the cell interface.

 If         ,                                                     Thus, the weak form becomes                           or  

the finite volume discretization. → In order to maintain conservation at      , f is 

approximated by a conservative numerical flux H from finite volume method.

 Spatial approximations

Chap. 5-2. Basic Formulation
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 Semi-discrete form with a matrix-vector notation

 Strong form by taking integration-by-parts once more

 Weighted residual is dependent on the choice of numerical flux H and test function 

 Smoothness of     is not essential.

 Various approaches to remove the boundary integral term
 Collocation penalty approach, using Dirac delta functions

 Choice of Basis Function
 Classification of polynomial basis functions

 (Option 1) Modal basis function to represent a specific solution distribution (or mode shape) 

 Solution of a singular Sturm-Liouville problem

Chap. 5-2. Basic Formulation
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 Legendre polynomial(   ) is a special case of the Jacobi polynomial(        ) which is a 
solution of the general singular Sturm-Liouville problem.

Chap. 5-2. Basic Formulation
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< Example of modal basis functions > 
(Legendre polynomials)

< Example of nodal basis functions > 
(Cubic Lagrange polynomials)
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 (Option2) Nodal basis function

Chap. 5-2. Basic Formulation
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lynomials contain other orthogonal polynomials as a special case, 

    and they are quite useful for Gauss-like quadratures and construction of multi-dimensional basis.
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