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Chapter 5. Basics of Higher-order Discretization Methods
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 Discretization Methods Available
 FDM (Finite Difference Method)

 Direct discretization of the differential form by assuming point-wise values defined at each 
grid point

 Simple, efficient and easy to discretize

 One-dimensional (or dimension-by-dimension) interpolation and transformation to 
computational coordinate are essential.  not suitable to complex geometry

 FVM (Finite Volume Method)
 Integration of the differential form of conservation laws over finite computational cell

 Apply control volume analysis to each computational cell defined by (∆x, ∆t) using cell-

averaged quantities.
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 FVM (Finite Volume Method) (cont’d)
 Purely local analysis without assuming any grid structure or the shape of computational cell

 suitable to complex geometry

 Cell-wise interpolation for high-order accuracy  not flexible on general unstructured grids

 FEM (Finite Element Method)
 Weak formulation (or weighted-residual formulation) from the differential form of 

conservation laws over each computational element

 Local expansion of solution using basis functions followed by orthogonal projection of the

residual (or error) to test function space

 Local formulation without assuming any grid structure or the shape of computational cell 

suitable to complex geometry

 Local expansion of solution with multiple DOFS  flexible for higher-order approximation 

on general unstructured grids

 Uncertainty on conservative and accurate treatment of the boundary integral
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 spatial integral terms by numerical quadrature
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 Value of high-order accuracy 
 Ex) Behavior of computed solutions by changing order-of-polynomial approximation(N) 

mesh size(K)
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      ii) computational cost ( ) ( 1)  with ,   = order-of-approximation

   - Comparison of computed results reveals that higer-order approximation is beneficial 
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C T K N h N
K


  

ring i) highly accurate solutions, ii) long-time integrations

< Scaled computation cost >

N   \ K 2 4 8 16 32 64
1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.

16 57.8 121. 279. 664. 1958. 5256.

n(~ O(h ) with n > 2)
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 Strategy for High-Order Accuracy
 One unknown (or one DOF) per one cell approach

 Within a cell     , approximate the exact solution          as a polynomial           by using 
Taylor expansion with neighboring computational cells (or grid points)

 nth-order polynomial approximation within 

 FDM: direct Taylor expansion, compact difference

 FVM: TVD-MUSCL, ENO/WENO, MLP reconstruction

 Cell-interface values estimated from           are used to evaluate a numerical flux.

+ Relatively simple, easy to understand, and suitable for coding

- Non-local computational stencil

As a result, when          is higher than linear polynomial,

 Hard to treat boundary conditions, hard to handle 3-D complex geometry, and

hard to exploit parallel computations

 Multiple DOFs per one cell approach
 Within an element    , approximate the exact solution         as a polynomial          

by a linear combination of local shape functions (or basis functions).

Chap. 5-1. Comparison of Discretization Methods_Revisited
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Chap. 5-1. Comparison of Discretization Methods_Revisited

 Multiple DOFs per one cell approach (cont’d)
 nth-order polynomial approximation within 

 Each coefficient      is regarded as an unknown or a degree of freedom (DOF).

 Finite element discretization based on weighted residual formulation is commonly 
adopted to determine the evolution of      .

+ Highly local construction  compact stencil

As a result,

 Only nearest elements sharing a common cell interface/vertex are necessary → amenable 
to parallel computation

 Easy to implement boundary conditions

 Easier to tackle 3-D complex geometry

- More mathematical background and more efforts to implement it into a code

- More delicate numerical treatment for temporal and spatial integral terms

- More data storage and/or more computational costs in general

 Overcome via computational techniques such as parallel computing or h/p adaptation
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 Discretization of 1-D SCL,
 Weighted residual formulation

 Approximate solution of            within the cell

 Choice of the polynomial space     and basis function       determines the nature of solution.

 Approximate solution does not satisfy the governing equation exactly.

 Minimize the residual, R, in the weighted integral sense over the test function space

 Choice of the weight function      determines the nature of the discretized equation.
 Discrete Fourier spectral method:

 Galerkin approximation:                      

 Discontinuous Galerkin (DG) Method
 Integration-by-parts over the cell     with a compactly supported          

 a weak form:

Chap. 5-2. Basic Formulation
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 DG approach to treat the boundary integral
 Approximate solution allows to be discontinuous, in the sense of     , at the cell interface     .

→ f is not uniquely determined at the cell interface.

 If         ,                                                     Thus, the weak form becomes                           or  

the finite volume discretization. → In order to maintain conservation at      , f is 

approximated by a conservative numerical flux H from finite volume method.

 Spatial approximations

Chap. 5-2. Basic Formulation
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 Semi-discrete form with a matrix-vector notation

 Strong form by taking integration-by-parts once more

 Weighted residual is dependent on the choice of numerical flux H and test function 

 Smoothness of     is not essential.

 Various approaches to remove the boundary integral term
 Collocation penalty approach, using Dirac delta functions

 Choice of Basis Function
 Classification of polynomial basis functions

 (Option 1) Modal basis function to represent a specific solution distribution (or mode shape) 

 Solution of a singular Sturm-Liouville problem

Chap. 5-2. Basic Formulation
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 Legendre polynomial(   ) is a special case of the Jacobi polynomial(        ) which is a 
solution of the general singular Sturm-Liouville problem.

Chap. 5-2. Basic Formulation
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< Example of modal basis functions > 
(Legendre polynomials)

< Example of nodal basis functions > 
(Cubic Lagrange polynomials)
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 (Option2) Nodal basis function

Chap. 5-2. Basic Formulation
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lynomials contain other orthogonal polynomials as a special case, 

    and they are quite useful for Gauss-like quadratures and construction of multi-dimensional basis.
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 Lagrange polynomial by interpolating some selective points

  - ( )   Thus,  ( )  by definition.

  -  is not diagonalized.

  - Typically employed in flux reconstruction app
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