Chapter 5. Basics of Higher-order Discretization Methods
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EChap. S-1. Comparison of Discretization Methods_ReVisited

e Discretization Methods Available
o FDM (Finite Difference Method)

Direct discretization of the differential form by assuming point-wise values defined at each
grid point

Z Clq fj+q
aq n af(Q) ~0 q;.f; atx=x; dq]

= . > +-1
at ax with h(=Ax),At dt h
Simple, efficient and easy to discretize

= 0 plus a suitable time-discretization

One-dimensional (or dimension-by-dimension) interpolation and transformation to
computational coordinate are essential. = not suitable to complex geometry

e FVM (Finite Volume Method)
Integration of the differential form of conservation laws over finite computational cell
Apply control volume analysis to each computational cell defined by (Ax, Af) using cell-
averaged quantities.

aq af (q) integration " +AL £X500 f (q) discretized form using
5 + ax over (h,Ar) J‘ I N d dt O cell-averaged quantities‘,
qj” —C]; Fj+1/2 (Q;_pa---a q;l+q)_Fj—1/2 (q;l—p—l’“"q;'lw—l) ~0 dqj —I(a" n
+ — or ——= (qj_p_la"'ﬂqj'+q)
. 1 fxp 1 1" +At :
M.M with EJ‘X-_M q( )dx qJ s AZ f(q(xj+1/2at))dt = F}+1/2 |
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“hap. 5-1. Comparison of Discretization Methods_Revisited
FVM (Finite Volume Method) (cont’d)

ki

Purely local analysis without assuming any grid structure or the shape of computational cell

—> suitable to complex geometry
Cell-wise interpolation for high-order accuracy = not flexible on general unstructured grids

FEM (Finite Element Method)

Weak formulation (or weighted-residual formulation) from the differential form of
conservation laws over each computational element

Local expansion of solution using basis functions followed by orthogonal projection of the
residual (or error) to test function space

oqg of(q) _, l e 9 dg, . .

— =0 > aka q¢idx+JaTk f¢,.dx—kafde —0on7, for¢, 1<i<ndof(n)
ndof (n)

— approximate g(x,?) on 7, using basis functions, g(x,t) = Z g ()¢ ,(x)

i=1
— evaluate temporal and spatial integral terms by numerical quadrature
Local formulation without assuming any grid structure or the shape of computational cell 2
suitable to complex geometry
Local expansion of solution with multiple DOFS - flexible for higher-order approximation
on general unstructured grids !
Uncertainty on conservative and accurate treatment of the boundary integral :
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* Chap. 5-1. Comparison of Discretization Methods Revisited

Value of high-order accuracy(~ O(h") withn > 2)
Ex) Behavior of computed solutions by changing order-of-polynomial approximation(N)
mesh size(K)

) 8_q+ a@_q =0 withxe[0,27], a =27, qo(x) =q(x,0)= Sin(zjﬂ-X)

ot ox
- With periodic BC and a fixed time step for all cases, computed results shows

D) |g—g,], = 0" < C(T)R"" = (¢, +¢,T)h"*" with T = target time
ii) computational cost = C(T)K (N +1)* with h = 2%, N = order-of-approximation

- Comparison of computed results reveals that higer-order approximation is beneficial

for the cases requiring 1) highly accurate solutions, i1) long-time integrations

N \ 2 4 8 16 32 64
1 1.00 2.19 3.50 8.13 19.6 54.3
2 2.00 3.75 7.31 15.3 38.4 110.
4 4.88 8.94 20.0 45.0 115. 327.
8 15.1 32.0 68.3 163. 665. 1271.
16 57.8 121. 279. 664. 1958. 5256.
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| “hap. 5-1. Comparison of Discretization Methods_Revisited

o Strategy for High-Order Accuracy

e One unknown (or one DOF) per one cell approach

Within a cell 7, , approximate the exact solution g(x) as a polynomial g,(x) by using
Taylor expansion with neighboring computational cells (or grid points)
I,
n-order polynomial approximation within 7, O O O
or (x) =4t ch(qj—aaqj—aw'"aqj+b—1sqj+b)xla X SXZX ), Witha+b=n
FDM: dire(lzt 1Taylor expansion, compact difference
FVM: TVD-MUSCL, ENO/WENO, MLP reconstruction
Cell-interface values estimated from g, (x) are used to evaluate a numerical flux.
+ Relatively simple, easy to understand, and suitable for coding
- Non-local computational stencil
As a result, when ¢, (x) is higher than linear polynomial,
Hard to treat boundary conditions, hard to handle 3-D complex geometry, and
hard to exploit parallel computations

o Multiple DOFs per one cell approach
Within an element 7, , approximate the exact solution g(x) as a polynomial q: (x) !
by a linear combination of local shape functions (or basis functions). '
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— ﬁap. 5-1. Comparison of Discretization Methods_Revisite""

o Multiple DOFs per one cell approach (cont’d) \J

n'-order polynomial approximation within T,

n+l ]‘;{ — B sl W |
q]]: (.X) = Zq]((l)¢l (.X), xk—l/z S X S xk+l/2 D D e D
/=1

Each coefficientq; is regarded as an unknown or a degree of freedom (DOF).

Finite element discretization based on weighted residual formulation is commonly
adopted to determine the evolution of q;.

+ Highly local construction = compact stencil
As a result,

Only nearest elements sharing a common cell interface/vertex are necessary — amenable
to parallel computation

Easy to implement boundary conditions

Easier to tackle 3-D complex geometry

More mathematical background and more efforts to implement it into a code

More delicate numerical treatment for temporal and spatial integral terms

More data storage and/or more computational costs in general

= Overcome via computational techniques such as parallel computing or //p adaptation
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Chap. 5-2. Basic Formulation

e Discretization of 1-D SCL,q, +f (q) =0
o Weighted residual formulation

Approximate solution of g(x,?) within the cell 7, =[x, ,,,%,.,,,]
ndof ()

g(x,0)=q; (x,0)= Y. q" ()¢, (x), where {¢} V" and ndof (n) =dim(V")=n+1
/=1
Choice of the polynomial space 7" and basis function {4} determines the nature of solution.

Approximate solution g, (x,) does not satisfy the governing equation exactly.
h h h
o9 I _q 9% 9 (q) _R(¢")

« Non-zero residual: —+
Minimize the residual, R, in the weighted integral sense over the test function space

ot Oox ot ox

. 'ka R(q})w.(x) =0 over the whole domain D = T for weighted functions {w (x)},.._, o

Choice of the weight function W, determines the nature of the discretized equation.
Discrete Fourier spectral method: w,(x)=¢ ™"

Galerkin approximation: w,(x)= ¢ (x)
e Discontinuous Galerkin (DG) Method
o Integration-by-parts over the cell 7, with a compactly supported ¢.(x)

- a weak form: ka R(@w (x)=0 — ka (q,+ £.(q)) ¢ dx = ka q.4 dx + ka fode=0

0 . L) —
— akaqqﬁiderIaka;/ﬁindx—kafa—i’dx:O -
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Chap. 5-2. Basic Formulation

e DG approach to treat the boundary integral

Approximate solution allows to be discontinuous, in the sense of C° at the cell interface 8T

— f 1s not uniquely determined at the cell interface.
ndof (n) (O]

If ¢ =1,q (x,0)= Z q." (1) f,(x) =q." (¢). Thus, the weak form becomes dcq_l’; + f

the finite volume dlscretlzatlon — In order to maintain conservation at o7, , f is

k+1/2 = O or

approximated by a conservative numerical flux H from finite volume method.

jq¢ +j H(q ,q.)¢ dx— jf a’x 0 with

- q_: the value of ¢ at the boundary 0T obtained from g(x) of the cell T
q. : the value of ¢ at the boundary 0T obtained from g(x) of the adjacent cell sharing 0T
e Spatial approximations

0 o,
_Lk q,’jqﬁl dx+IaTkH:(qZ_,q:+)¢i dx_Lk fkh(qllz)a_ﬁldx: 0

J ( > g>(t)¢,j¢,.dx+ ., Hi(a) q;.),dx - Inﬁ(qb%dx:o

S L[S o] ppas |+ [, G g e 1 =0

ndof (n) )

Thus, we have ., ([, ¢¢,dx)8q" [ Hg gl ) dx=[ f(q) aag’jf dx = 0.

/=1
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Chap. 5-2. Basic Formulation

o Semi-discrete form with a matrix-vector notation

dq h h h h h a(I)
M —~=—( H'(q' ,q')®dx+| fl(qg))—dx,
=L HL @)+ | Sl (g ——d

where M, = UTk 9, dx} oy orrin q, = [%E”(t)]ndof(n) ,and @ = [¢i(x)]nd0f(n)
e Strong form by taking integration-by-parts once more

0 o¢ oq,  of;
Ejaqﬁdx+janH¢idx—kafadx:O > ja[%+a)¢gdx:j%[ﬁ_ﬂ,ﬁ]¢gdx

dq of,
or M, — b+ [ Z-®dv=[ [ /!~ H](q!q..) | ®dx
Weighted residual is dependent on the choice of numerical flux / and test function ¢,

Smoothness of ¢, is not essential.
Various approaches to remove the boundary integral term
Collocation penalty approach, using Dirac delta functions ¢,(x) =o0(x—y,)

e Choice of Basis Function

e Classification of polynomial basis functions
(Option 1) Modal basis function to represent a specific solution distribution (or mode shape)

Solution of a singular Sturm-Liouville problem

-~

d’¢ (x de (x
(1-x%) ¢”£ )_ ZxM +n(n+1)¢@ (x)=0 forxe[-1,1], n=0
. dx dx
i
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Chap. 5-2. Basic Formulation

> j —[(x* —1)"] (Rodrigues' formula) gives a sequence of n"-order Legendre ploynomialé ¥y

5 4,00 =1 4=, AW =26F -1, 40 =5 (x =3, 40 =2G5F =308 43
« Notable properties

=

- $,(0)=

- Orthogonality: | ¢, dx = 2,2 -5, and [\ 8,0 dx =0 with ¢,(1) =1, ¢,(~x) = (-1)"¢,(x), n20
] = ]
— M, =[m,] withm, = [ $4,dx and § =/ ||¢|| becomes the identity matrix.
- Recurrence:

(n+1)g, . (x)=2n+1x¢ (x)—ng _(x), ¢”“ =(n+1)¢g +x dj” L and d¢"+‘ - % =2n+1)¢g,n21
hx X

dx
legendre polynomials Cubic Lagrange Shape Functions
. T T L=
-
05 /// !
gL /-"// Pofx) —— = 0
/// Pf 3
V- s —
i I 1 [ P ——] 05
1 05 0 05 1 - -0.5 0 05 1
3
< Example of modal basis functions > < Example of nodal basis functions >
(Legendre polynomials) (Cubic Lagrange polynomials)
- Legendre polynomial(g,) is a special case of the Jacobi polynomial(P“”’) which is a !

solution of the general singular Sturm-Liouville problem. 4
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Chap. 5-2. Basic Formulation

—
L

—
(a,f3) (a B)
(1-x )w [B-—a—(a+ B+ 2)x] ( ) +n(n+a+ B+)P“"(x)=0 forxe[-1,1], n>0,
X
d (“ ﬁ)( ) (a,B) . S £\NB |
and (a,f)>—-1|or — (1 X )w(x) +n(n+a+ +Dwx)P " (x) =0 with w(x)=(1-x)"(1+x)
(@.p) (= 1) 1 & 2 N . :
— P (x )— ) [w(x)(1—-x")"] (Rodrigues' formula) or a form of hypergeometric function
« Notable properties
- Orthogonality: fl PP PP w(x)dx = f(a, f,i)5, with P“” (-x) = (=1)"P“"(x), n>0
- Recurrence: xP'“” (x) = a P“” (x)+ b P“" (x) +a, P%" (x) and
(@.f)
dPn (}’l +o+ ,B+1) n(DiH A4 with a = an(a,,B,n), bn — bn(a,,b’,n), n>1
dx 2
- Jacobi polynomials contain other orthogonal polynomials as a special case,
and they are quite useful for Gauss-like quadratures and construction of multi-dimensional basis.
. P (x)=¢ (x) (Legendre polynomials)
. PTT(x) =T (x) = con(nf) with x = cos 6, -7 <6<z (Chebyshev polynomials)
(Option2) Nodal basis function
 Lagrange polynomial by interpolating some selective points
ndof (n)
- $(x)=
j=t X, — ;
- M, is not diagonalized.
- Typically employed in flux reconstruction approach such as FR/CPR, ESFR
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