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Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

 Gibbs-Wilbraham Phenomenon
 Approximation of a profile including discontinuity by Fourier Series (or 

interpolating techniques using basis functions) 
 Oscillations occurs across discontinuity with O(1) It never dies out even if the number 

of basis function is increasing.

 Henry Wilbraham (1848), J. Willard Gibbs (1899)

 Magnitude of overshoot/undershoot: 

 Locally converge (or L1, L2 convergence) but not uniformly (L∞ convergence)

 warning to naïve capturing discontinuities by simply increasing the number 

of interpolating function or mesh point

<Animation of the Gibbs phenomenon>
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Chap. 2-1. G-W Ohenomenon, Godunov’s Theorem and Monotonicity

 First-Order Scheme and Numerical Diffusion
 For                     with Upwind or L-F scheme

 Modified equations

 Leading error term is numerical dissipative  smooth transition across 
discontinuity without oscillations 
 Excessive numerical dissipation

 Unacceptable loss of accuracy  Too many grid points

 Viscous computation and resolution of boundary layer requires at least 2nd-order accuracy.

 Second-Order Scheme and Numerical Dispersion
 With L-W or B-W scheme
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 Second-Order Scheme and Numerical Dispersion (cont’d)
 Modified equations 

 Numerical dispersion relation :                  
For each Fourier component with ω, group velocity 

 Observation
 Numerical oscillations across discontinuity occurs regardless of differencing 

type (central or upwind) once the order of accuracy is greater than one.
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 Godunov’s Barrier Theorem on Monotonicity
 General form of one-step numerical schemes for 

 Upwind : 

 L-W : 

 Conditions for consistency and accuracy
 For

 Consistency :  

 First-order accuracy :

 Second-order accuracy :

Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

 

1 1 1

Linear mapping 1

 with   .   can be uniquely obtained (or B )

 ,   , ,

n n n n n
q j q q j q q j im ex

q q

n n
j jq j q jq jq

q

u u st u A

u c u c c x t a

    
 




 

    

 



u u

1n n
j q j q

q

u c u


 22 2
2... ... ...

2 2 2j t tt j x xx q j x xx
q

q xt t
u u t u u au t a u c u q xu u

  
              

  


1q
q

c 

q q
q q

x qc a t qc        
2 2 2 2 2 2

q q
q q

x q c a t q c      

Eq. (*1)

Eq. (*2)

Eq. (*3)

1
1 1

1 1
( | |) (1 | |) (| | )

2 2
n n n n
j j j ju u u u    

      

1 2
1 1( 1) (1 ) ( 1)

2 2
n n n n
j j j ju u u u

   
      

0 xt auu



Advanced Computational Fluid Dynamics, 2019 Spring Aerodynamic Simulation & Design Laboratory, SNU







Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

1(Godunov's barrier theorem) For the fully discretized  scheme of ,

 it can not be better than first-order accurate if the scheme is not oscillatory.
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 Constructive implication of Godunov’s barrier theorem
 To obtain more than 2nd-order scheme without oscillations, the scheme should be 

‘non-linear’ even for linear equation.  Aside from the linear stability for the linear 
difference schemes, such as Von Neumann stability, the need to develop non-linear 
stability theory becomes apparent.
 Maximum-norm boundedness means that a computed result is non-oscillatory.

 Oscillation check of first- or second-order linear schemes from the view point 
of positivity condition
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