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Chapter 2. Non-linear Stability and Hyperbolic PDE
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~ Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

— -

e Gibbs-Wilbraham Phenomenon

Approximation of a profile including discontinuity by Fourier Series (or
interpolating techniques using basis functions)

Oscillations occurs across discontinuity with O(1) = It never dies out even if the number
of basis function is increasing.

Henry Wilbraham (1848), J. Willard Gibbs (1899)
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<Animation of the Gibbs phenomenon>
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Magnitude of overshoot/undershoot: (6///) ~ +14%
Locally converge (or L,, L, convergence) but not uniformly (L., convergence)
-> warning to naive capturing discontinuities by simply increasing the number

of interpolating function or mesh point 4
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F Chap. 2-1. G-W Ohenomenon, Godunov’s Theorem and Monotonicity

e First-Order Scheme and Numerical Diffusion

For u, + au_=0 with Upwind or L-F scheme

| | 1.2} E;(act H
o LF
a n n a n " *  Upwind
4 withu’™ =u’ - E(Fj”/z — FH/Z) 0s} o
ij+1/2,L7F = E(u;, + u;‘l+1 ) - N Au;’l+1/2 0.6}
[ ° 0.4}
Modified equations
0.2} o
alx ) o
—(1-0*)u_+... forupwind of
2 XX p

I/lt + aux =1 sz —> ut +aux = Cluxx... 05 055 06 065 07 075 08 08 09 095 1

~—(1-0)u,+.. forL-F

L 2At

Leading error term is numerical dissipative = smooth transition across
discontinuity without oscillations

Excessive numerical dissipation of O(Ax)
Unacceptable loss of accuracy = Too many grid points
Viscous computation and resolution of boundary layer requires at least 2"-order accuracy.

e Second-Order Scheme and Numerical Dispersion

With L-W or B-W scheme
2
a; , . a At ., a(l-o), , :
. F}+l/2,L—W = E(u] + ujﬂ)——AujH/2 . ij+l/2,BfW =au, +TAuH/2 witha >0
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e Second-Order Scheme and Numerical Dispersion (cont’d) Lax-Wendroft
1.5
Modified equations .
[ aAY?
¢ (l—az)um... for L-W
ul +aux = anz ‘u'sa.u;_n.z 04 06 0B 10
(2-30+07)u,,... forB-W Beam-Warming
1.0
_ discrete FT N . 3\~ _
U, +au, = o, —— i (o,) +i (aa) + 0,0 )u (,)=0 s
—il aw+c, 0’ A = o0
—>i(wm,t)~e S i, (o,t)~e " 05

00 0.2 0.4 06 0.8 1.0

Numerical dispersion relation : a(w)=aw+c@’ vs. a, (0)=aw
For each Fourier component with o, group velocity 4, ()= da(w)/dw

ca, (a)) =a+3c,w’ ~ a for small wave number (long wave length)

# a for large wave number (short wave length)
Fora >0, ¢, <0 for L -W — lagging error
¢, >0 for B—W — leading error
e Observation

Numerical oscillations across discontinuity occurs regardless of differencing
type (central or upwind) once the order of accuracy is greater than one.
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E Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity |
e Godunov’s Barrier Theorem on Monotonicity

e General form of one-step numerical schemes for u, +au_=0 -
n+l n . n+l . . n+l __ n
Z,Bqu = z%uj+q with B st. u;" can be uniquely obtained (or B, ju™ =4, u")
q q

Jjtq

Linear mapping . n+l __ Z n _ ( )
> U Ciglhjys Cig =€, (AX,ALa
q

n+l __

: 1 1
Upwind : u”" = 5(0+ o Du’, + (=] o u; +§(| o|—o)u

n

J j+l

. n+1_6 n 2 n 2 n
L-W :u; —E(GJrl)uj_1 +(-0)u; +E(O'—1)Mj+1

o Conditions for consistency and accuracy

n+l __ n
For u, = Zcquﬁq
q
2

2

t AP (qAx)

u;, +u At +u, T+ =u,; —au At+a’u_ 7+ = Zcq u; +qAxu, + 5 u_ +..
q

Consistency : » ¢, =1 Eq. (*1)

q
First-order accuracy : AxY gc, =—-aAt > » qc, =0 Eq. (*2)

q q
Second-order accuracy : Ax* g’c, =a’At* - Y q’c, =0’ Eq. (*3) 5
q q
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(GodunovV's barrier theorem) For the fully discretized /inear scheme of u

it can not be better than first-order accurate if the scheme is not oscillatory.
(Positivity condition) If R is stable in maximum-norm, ¢, should be non-negative.

(pf) Suppose it is not true, then there exists some negative c, .

ifc, >0

1
Choose u]., st. ], = {—1 ifc, <0

n

Then, |ju

_ n+l __ n o__ n
. =1land U; _Ruj _Zcquﬁq _z|cq |
q q

Since the scheme is consistent, Zcq =1 and
q

Zq:cq qu:‘cq‘ - wﬁzq:‘cq‘zu;”lﬁ

Thus, ¢, should be non-negative.

n

u un+l

1=

o0

The scheme cannot be better than first-order accurate.

. oy . 2
(pf) Since ¢, > 0, define positive , with ¢, =, and

a,=\Jc,, B,=4\e,

For second-order accuracy, we have

Zaqz =1 (consistency), Za B, =—o (Ist-order), Z ﬂqz = o’ (2nd-order)
q q q

| o

A‘a?'anced Computational Fluid Dynamics, 2019 Spring

~ Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

_ n _ n
- Ruj = Zcquj+q’
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E Chap. 2-1. G-W Phenomenon, Godunov’s Theorem and Monotonicity

By Cauchy-Schwartz inequality,

o) ez T

But equality holds only if = ke, for some 'constant' k.
This is possible only if ¢, has only one non-zero value.
From Eq. (*1), ¢, =1 for the specific §, and, from Eq. (*2), o = -§ = —k.

But this cannot be satisfied for arbitrary value of a, Ax, At (or equivalently, o).

o Constructive implication of Godunov’s barrier theorem
To obtain more than 2™-order scheme without oscillations, the scheme should be
‘non-linear’ even for linear equation. > Aside from the linear stability for the linear
difference schemes, such as Von Neumann stability, the need to develop non-linear
stability theory becomes apparent.

Maximum-norm boundedness means that a computed result is non-oscillatory.
e Oscillation check of first- or second-order linear schemes from the view point
of positivity condition

« Upwind : uj” :%(0'+ o Duj + (=] o Du; +%(| o|-o)uj,
LF =T 100
o <
n+l G(1+G) n 2 n O'(I—O') n |
« L-W u; :Tu1_1+(1—0' )uj—Tuj+1
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