E Chap. 2-2. Non-linear Stability and Total Variation

—

e Linear Stability and Non-linear Stability "
e Linear stability

Linear schemes with constant coefficients = Fourier error analysis and superposition
principle = Restriction on amplification factor to curb the unbounded growth of error,
|g |=[4"" /4" |<1 > boundedness of CFL number or time-step = Convergence to the
exact sol. of PDE with some norms (Lax equivalence theorem)

o Non-linear stability

Schemes become non-linear with coefficients containing solution = Fourier error analysis
superposition principle are no longer available.

Treatment of G-W phenomenon/Control of oscillation across discontinuity = Treatment of
local extrema and their behavior is essential. 2 Any useful tool?

e Total Variation as a Tool for Stability Criterion

e As a way to connect non-linear stability with a convergence of a computed
solution, total variation is considered.

TV (u(x,t)) = Hu'(x,t)HL = I_oo ‘u '(x)‘ dx (total measure of oscillation of u(x) using L, norm)
¢ In a discrete form

TV (u,) = Z ‘uj —uj_l‘=2(Zmaxima—2minima) 2
= |

(==Y — TV is a useful tool to measure local oscillation in 1—-D setting.
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— Chap. 2-2. Non-linear Stability and Total Variation

o Space of ‘Total Variation Stable’ Functions in D=[-M,M]x[0,T]
Consider H = {u el ,: TV, (u) <R and supp(u (x,t)) c[-M,M] for allze LQ,I]} S . |

uel , — HquT —j I dxdt 1s bounded.

TV, (u)<R — TV, (u jj(

supp(u(x,t))c[—M,M] forallte[O,T] — forallte[O,T], u(x,t):O if ‘x‘>M

H is a ‘compact set’ in L., = Every sequence in H has a ‘convergent
subsequence’ in H - By combining it with the Lax-Wendroff theorem, the
convergence to ‘a weak solution’ of SCL is guaranteed.

8u

jdxdt is bounded by R.

(Lax and Wendroff) If a consistent and conservative scheme yields a converged solution,
the solution converges to a weak solution of SCL.

Compare TV(total variation) stability with Lax equivalence theorem for linear stability
To be a conservative scheme is an additional essential element for capturing discontinuity in non-
linear problems
Difference in guaranteeing the quality of convergence

Non-linear stability does not necessarily converge to the physically correct solution = entropy condition ';
Convergence characteristics of linear/non-linear stabilities still depend on norms “
P
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Chap. 2-2. Non-linear Stability and Total Variation -

(Discrete Total Variation Stability in H) For a conservative scheme with a
Lipschitz-continuous numerical flux 77/, ,,
)

- )3
0

TV, (u,)< > Z[ u', -

n=0 Jj=—o n=

< i('a'm'ﬂ'm):(mﬂ)mv=T(a+/3)z

n+l n

I
n+ u —u

For the conservative finite volume discretization,

n+l ( n
j j+1/2 '71/2

‘ j+2 T 1/2‘

From a Lipschitz-continuous numerical flux,

F

n n n n n n
42 (“j—p sUj piiseeljg ) — (“.f—p—l s Ujporeslljg )

‘ j+2 T 1/2‘

< K _r£1<ar)<(q ]+V - ]+r 1 j+}" - ]+}” 1
Thus, |[u"" —u" L=, | < KA Z TV (u")< KAt(g+ p+1a = fAL
Jj==w0r==p

« TV (u") < a is realized by enforcing a strong TVD(TV diminishing) condition that TV (u""") < TV (u")
forallm and At: TV ("™ ) <TV W) <..TV(Wu')<TV(u’) = . As a relaxed condition, the TVB(TV

bounded) condition can be considered: 7V (u") < M for all n and Atz. — Since the exact solution of

SCL is constant along the characteristic, SCL has a non-increasing TV property.
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— Chap. 2-3. High Resolution Monotonic Schemes -

e Flux Corrected Transport (FCT) Method and Flux Limiter

The first algorithm that recognizes the importance of Godunov’s theorem
and introduces a way of non-linear limiting the cell-interface flux

See the works by Boris and Book(1973), Zalesak(1979), and others

See also the work by V. P. Kolgan(1972) mentioned by Van Leer(2011)
At
n+tl _ _n
u;— E(FjH/Z - Fj—l/2)

For u, +au, =0 with u}" =u]
{an-order (or more) in smooth region
+1/2 =

« Design F,,,, st. F,
J*/2 / Ist-order across local extrema

J

. F 1, @ 2nd-order 'non-monotonic' flux (say, Lax-Wendroff flux)
— Let
FJ.L+1 1, + @ Ist-order 'monotonic’ flux (say, upwind flux)

I . LY L c , ~1 for smooth region
Fop =Fipta,, (Fj+1/2 - Fj+1/2) = Fp+ Fyp withe) ~0 near local extrema
Two-step procedure
- S1) Compute F;, ,, F,,, from u]
« S2) Define 'anti-diffusive' flux
Fopn= Fjlj-l/z - FjL+1/2 = d_f+l/2 - dﬁrl/z = &huj, ), (&= g —&" >0) —

« S3) Obtain the intermediate lower-order (or 1st-order) 'monotonic' solution
s
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E Chap. 2-3. High Resolution Monotonic Schemes

- (Fh L) |

J
« S4) Correct FM/Z s.t. the final updated solution (") is free of extrema not found in iz, oru}

c ~ _ L H \_ e
Fo,= aj+1/2Fj+1/2 = aj+1/2( j+2 j+1/2)_aj+1/28Auj+1/2 & Az"]+1/2 with 0<e« ., <1

Jj+l/ j+Yy

« S5) Update the final solution with the corrected flux F ,+1 P

At At
ntl _ — c c _n L H L
u, =u; = Ax(Fm/z F H/z) U Ax{ [F iz T jap (F/+1/2 Fily )] 12 =[] j-1/2 }
« S6) The corrected flux F ]+1/2 is designed as

: Ax  _ ~ Ax | _ . Ax . Ax o _
ij—l/Z = min mOd(E Auj—l/zﬂF}+l/25EAuj+3/2) = min mOd(E j-y2> € & Au Ujrns A7 — A, y)))

The anti-diffusive flux is controlled by the intermediate monotonic solution such that it

does not create new local extrema. i

= Monitor the intermediate monotonic soln. to check local extrema 7:—

- Updated soln. satisfies the monotonic constraint in terms of the Aul,,, | AT,
intermediate distribution Aﬁf Fiap fr=®--
min(i,_,u,;,1,,,) < ”n+1 <max(u,_,,u;,u;,) ___4

Overall construction is largely based on numerical

intuition lacking theoretical basis or mathematical rigor. 1 . —

J= J J+1 1 j+2

Two-step pr
WO-SIEp p ocedure <Determination of the corrected flux> =

= = Generalized one-step procedure by Zalesak
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Chap. 2-3. High Resolution Monotonic Schemes

o Example

Linear advection problem with smooth and discontinuous profiles
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FCT method for smooth profile FCT method for discontinuous profile
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Chap. 2-3. High Resolution Monotonic Schemes

o TVD Schemes using Flux Limiters

A class of one-step monotonic schemes using a refined form of flux limiters
See the works by Harten(1983, 1984), Sweby(1984), Yee(1989), and others
Solid mathematical foundation with TVD stability

e Let F.), 1,be a 2nd-order non-monotonic flux and F’ .L+1/2 be a Ist-order monotonic flux,

and the limited flux form is assumed as F, , = F,,, + ¢, ( 2 Fjﬁl/z)
¢, is a limiter function which monotors the local behavior of solution u].

- Take F},, as the L-W flux, and F_,, as the upwind flux

For u, + au_ =0 with a > 0, the L-W scheme becomes

u'?“zu'?—%(u'? —u" )+%2( ul, = 2ul )

n n n O-(I—O') n At
=uj—0'(uj—uj_1)——2 ( 1 2u +u ) u; _E(F}H/z_Fj-vz)
Thus, 7= aw’ + 20" ar L Consider £ = au + a-9) ny  with 4 >0
> T2 J J+12 J+/2 R /2 2 V.

——
upwind

Lax-Wendroff correction
yielding lagging oscillations

« Design the limiter function, ¢, = ¢(r;), to meet with the TVD stability by introducing a parameter

’_

rp=Au, ), / Au,,,, , to measure the change of local slope (or total Varlatlon)
[ S
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Chap. 2-3. High Resolution Monotonic Schemes

Three-point TVD schemes
(Harten) The three-point scheme of the form u’”l =Ru" =u;-C,_ ,Auj , + D, ,Au; ,+1/z

isTVDIit C,,,, D,,,,20,and C,,,, +D,,,, <1 for all ;.

n+l n+l n+l
(pf) Auj:l/Z = uj-:l '+ = (1 ¢, JH2 T ]+1/2 )Auj+1/2 + Dj+3/2Auj+3/2 + C] 12U, -1/2

‘A”ﬁll/z‘ > ( j+1/2 Dj+l/2)

2.0 >TV( 7“) TV(RM ‘Au;’ﬁ/z‘ < Z‘AM;H/Z‘ =1V (uj)
J

Auj s, ‘ +Cp ‘Auf‘l/z‘

A”j+1/2‘ + Dj+3/2

Re-interpretation of Godunov’s positivity condltlon using TV or enforcing TVD stability by positivity condition

Flux limited form of L-W scheme

uj = Mj —E(an/z _Fj—l/z)

1—
= u] —g{aw -uj) +M(Aum¢j ~ A )}

=ty = CppAuiyy + Dy, > €y =0 1= > b Dyp=———5—9,

2 )
pos\i/tive negXtive
Auj,, o(l-o)|  Au}
/2 " — +1/2
IR DoysBitjers = Dy A o Ay, Cp =0t 2 ¢, 7 Au —=—¢.,|and D, , =0 -
s Uj i =

 Note that TVD stability is based on linear stability, and does not give time-step information.
[ -
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Chap. 2-3. High Resolution Monotonic Schemes

£ ¢<=»\4_2 =

¢(r)=0, if r <0 (to prevent the accentuation of local extrema)

2"d-order TVD Region and TVD limiters
« ¢(r),_,=1 to get a smooth transition with second-order accuracy

» TVD condition is satisfied if 0< C, |, <1 for all;.

1- Au'] .
0£0+0( o) ¢, 2”/2 —¢., <1 > ¢_J_¢ L
2 " Au j Y

I/'j

<2 forallj or

4(r)
Thus, we have ¢(r) s.t 0< p <2and 0<¢(r)<2, if r>0

« Convex combination of L-W and B-W is desirable to avoid
too much compression (region B) or too much diffusion (region C).

Thus, the TVD region (region A) is preferred.

p(r) 4 6(r) = 2r P
« TVD limiters B-W, with ¢(r) =
- superbee limiter: ¢(r) = max{0, min(l,2r), min(r,2)} ¢=F- p(r) =2
- van Leer limiter: ¢(r) = (|r|+r)/(1+|r]) / B P 2 y
- MC limiter: ¢(r) = max {0, min((1+7)/2,2,2r)} ha - - ..
- minmod limiter: ¢(7) = min(l,r) 7 C
- many other limiters are possible. Upwind (¢(+ ;0) = r
d TVD region — 2nd grder TVD region ;

| o
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E Chap. 2-3. High Resolution Monotonic Schemes
o Monotone stability

Alternative (but more restrictive than TVD) approach to realize nonlinear stability (by
Harten, Hyman and Lax) R Nl

At
n+l _ n n n n n n n
« Foru;” =u; ——(Fj+1/2 (uj_p,uj_pH,...,uj+q)—Fj_l/2 (uj_p_l,uj_p,...,uj+q_1))

Ax
—H( TS L O TN TN T u;+q_l,u;+q), the scheme is called monotone
aunﬂ 8H '
if = >0, forall / e[-(p +1),q]. Then, u’; converges to a weak solution of SCL.

n
auj+l auj+l

« Lipschitz-continuous monotne flux

: : : At
Consider three-point schemes with u;.’“ =u" ——(FJ.H/2 (uiu,)-F,_, (u;_l,u;’)),
M S0 aln{ At OF) -y, _0, ahz _ iy Arf O —aF"‘j/z >0, 20 __A Frp 5,
ou’;,, oui , Ax Ou’_ ou; Ax| oOu] ou; ou’;,, Ax ou’,,
oF .
In general, £, ,(u;,u,,,) is a Lipschitz-continuous monotne flux, if a’ 2 >0 and a’—m <0.
U, u.
J j+1
Several fluxes belong to this category such as
ar . .\ 4 a
oy = 5(”] +”J+1) 5 AL, - Fp e = ) (u +u,+1)_ueglafﬂ]|a(u)|A”,+1/z
a n n 1 ”j+l __‘
'Fj+1/2,E0 = 5(”1 +”j+1)_5_’.uj a(”)|dl '

l—h- v W
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Chap. 2-3. High Resolution Monotonic Schemes

o Example

Linear advection problem with smooth and discontinuous profiles
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Flux-limited method with minmod limiter Flux-limited method with minmod limiter

(eleleale)
50000
o (o)
I r o o]
c
(s}
g
D
’ o o
L . ° J
boococoscold Oncascocoed
Q0000

Flux-limited method with van Leer limiter Flux-limited method with van Leer limiter

o
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E Chap. 2-3. High Resolution Monotonic Schemes

—

o Example !

Linear advection problem with smooth and discontinuous profiles

e . .
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Flux-limited method with superbee limiter Flux-limited method with superbee limiter

Performance of limiters depending on flow regions

Sharp capturing of discontinuous region and preservation of smooth extrema
Clipping error of extrema : O(Ax) ~ O(Ax”)

o Implicit TVD formulation
(Harten) The three-point one-step general implicit formulation, Lu""' = Ru", is TVD
ui"t 0D, Au,, —C oA )) T =l +(1=0)D),pAu L, —CpAu; )" with 0< 0 <1,
if the following conditions hold for all ;.
*C, > Dy, 20, and (1-0)(C),,, + D) <1 > TV(Ru") <TV(u")

o " } = TV@"")< TV(u")_,‘
. «K<-0(C,_,,,D,, ) <0 for some constant K. — TV(Lu"")2TV(@u"") "

-
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Chap. 2-3. High Resolution Monotonic Schemes

For arbitrary wave speed a

2
u;’+1=u;7—%(u;’+l—u;’_l)+%( T~ 2ul +ul ) N |
u —G(Ltj—uj_l)—o-(lT_o-)( ui, —2u; +u; 1) ifa=0

u’?—a(zﬂ —uj)+@( —2ul tu 1) ifa<0

J J+l J+1
f 1- 1-
auj+MA U,y = au, +(—O-)Au.+l/2¢. if a=0,
2 2 J J
Thus, we have F, |, =1
a (1 + O') (1 + 0') )
Lazuﬂ1 —TA jap > aug, —Auj+1/2¢j+1 if a<0.
It can be shown that F,, , satisfies the three-point TVD condition with ¢, in the 2nd-order TVD region
r’) ifa>0 Au,
s.t. @, = i ’_) _ with = —12 :L_. Finally, we have
T 8@r) ifa<0 T Aug, T

a n
P}+1/2 = o) (Z/l +u]+1) |2| Auj+1/2 +[sgn(a)_o-] ) aAu]_H/z
jifa=0
j+1 if a<0

-
[ g

~4{ug e )+ 20, (s (a)-)-sun(a) s it/ =

| o
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Chap. 2-3. High Resolution Monotonic Schemes

e For non-linear case

Similar formulation for variable wave speed leads to

)

Fj+1/2 = a
n i+1/2
fj+1 _JT(1+O',+1/2>A”J+1/2¢,+1 if a;.,,<0
1, ., " ‘ ]+1/2‘ ¢
25(](, +fj+1) 5 A”J+1/2 |:Sgn(aj+l/2) O'/+1/2:| 5 ]+1/2A”/+1/2
_ 1 n n aj+1/2 A
—E(f] +fj+1)+ ’ ¢j' (Sgn(aj+l/2)_O-j+1/2)_sgn(aj+l/2) ”J+1/2
fjn+1_fjn
X —_— if uj, #u] ; At 4= Jita.,,620
with @, =3 " 7Y, MA G2 = ‘ 1“/2‘ —— Jj+lifa,,,<0

! (”7) if ul, =u;
Monitor local flow behavior based on solution difference or flux difference
+[ 1 j Au, ), or (F" _FUP)j—1/2 _4a; 1/2(1_0" 1/2)A”j 12

= LW uUpP
7 A”j+1/2 (F -F )j+1/2 J+1/2(1 +1/2)Auf+”2

-~
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