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Chapter 4 Dispersion in Shear Flows

g

Objectives

- Describe the spreading of particles in shear flows

- Derive shear flow dispersion equation using Taylor’ analysis (1953, 1954)

for laminar flow in pipe and turbulent flow

- Extend dispersion analysis to unsteady flow and two-dimensional flow
(Fischer et al., 1979)

- Introduce unified approach for diffusion and dispersion (Holley, 1969)

- Introduce non-Fickian approaches for dispersion (Fischer, 1968)

* Holley, E.R. (1969). “Unified View of Diffusion and Dispersion,” ASCE JHD,
95(2), 621-632.
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4.1 Description of Dispersion in Shear Flow
— e ;S

We can classify the dispersion analysis into two categories:
(i) Fickian approach:

- Random walk theory (Taylor, 1921)

- Taylor theory (Taylor, 1953; 1954)

(i) Non-Fickian approach:

Aris (1956)

Fischer (1968)

- Chatwin (1980)

- Schmid (1995)

- Seo and Son (2008); Jung and Seo (2010); Park and Seo (2017)
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4.1 Description of Dispersion in Shear Flow

é
4.1.1 Introductory Remarks

» Dispersion - the spreading of particles in the direction of flow caused

primarily by the velocity profile in the cross section
* Flows with velocity gradients are often referred to as “shear flows.”

— shear effect

» This process can also be described with the analysis of diffusion by

continuous movements in turbulent flows (1921).

 However, Taylor developed a completely new method in analyzing the

spread of dissolved contaminants both in laminar flow in pipe and in

turbulent flow (1953, 1954). In this analysis, he derived a solution for

mass flux in the flow direction, and relate it with Fick’s law.
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4.2 Fickian Dispersion Model
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4.1 Description of Dispersion in Shear Flow
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line source

Shear Turbulent
translgtion diffusion
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4.1 Description of Dispersion in Shear Flow

4.1.2 Random walk model of spreading of particles in shear flow

Consider laminar flow in pipe with velocity profile shown below.

1) Assume two molecules are being carried in the flow; one in the center

and one near the wall.

Rate of separation caused by the difference in advective velocity

> separation by molecular motion in x-direction
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2) Because of molecular diffusion in r-direction, given enough time, any

single molecule would wander randomly throughout the cross section,

and would sample at random all the advective velocities.

— Therefore, if a long enough averaging time was available, a single

molecule’s time-averaged velocity would be equal to the instantaneous

cross-sectional average (U) of all molecules’ velocities.
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3) After some long enough “forgetting time” its location is independent of

the initial location, and therefore its velocity is independent of its initial
velocity.
— Thus, we can imagine that the motion of a single molecule is the sum of

a series of independent steps of random length.

4) If we adopt a coordinate system moving at the mean velocity, the

random steps are likely to be back and forward with respect to the moving

coordinate system.

— This motion is similar to the random walk, if the flow continues

unchanged for a time much longer than the “forgetting time.”
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4.1 Description of Dispersion in Shear Flow
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— Fickian diffusion equation, Eq. (2.4) can describe the spread of particles

along the axis of the pipes, except that since the step length and time

increment are much different from those of molecular diffusion we expect to

find a different value of diffusion coefficient.

— dispersion coefficient

 Now, find the rate of spreading for laminar shear flow in pipe

» For turbulent flow, the rate of spreading is described by a turbulent

diffusion coefficient as

e=<U?>T,

where U = velocity deviation; T, = Lagrangian time scale.
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4.1 Description of Dispersion in Shear Flow
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 The motion of a single molecule in laminar pipe flow is similar to the

motion of a fluid particle in turbulent flow in that the velocity of the

molecule is a stationary random function of time.

« For laminar flow in pipe, the Lagrangian time scale will be proportional to

the time required to sample whole field of velocities, which is

proportional to the time scale for cross sectional mixing as

a.2

T, oc—

D

where D is molecular diffusion coefficient.
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The mean square velocity deviation of the molecule, <U?* > results primarily

wandering of the molecule across the cross section, during which it samples

velocities ranging from zero at the wall to the peak velocity u, at the centerline.
<U2>muf

where U, = maximum velocity at the centerline of pipe

Thus, longitudinal dispersion coefficient due to combined action of shear

advection and molecular diffusion is described, in the limit t >> T, , by the

relation of the form

2
2 o a
K=<U">T cu,”— — . (4.1)
D - — K is inversely proportional
~—_ | to molecular diffusion.
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4.1 Description of Dispersion in Shear Flow
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 Consider the x-position of a single molecule in the shear flow.

After the shear advection, its location in the x-direction is ulAt.

Then, after the molecular diffusion across the cross section, its location in

the x-direction would be uiAt, because the molecular diffusion causes the

molecule moving at random back and forth across the cross section.

— This motion is similar to the random walk, if the flow continues unchanged

for a time much longer than the “forgetting time.”

Thus, in the limit, the probability of the molecule being between X and X + AX

approaches the normal distribution with mean & and a variance &“.
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4.1 Description of Dispersion in Shear Flow
———————————————————————————————

r Molecular
\T diffusion
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4.2 Fickian Dispersion Model

4.2.1 A generalized model

Consider the 2-D laminar flow with velocity variation u(y) between side walls

Define the cross-sectional mean velocity as

parabola

_ 1
u:ﬁjo udy  (4.2)

Then, velocity deviation is : w:

u=u(y)-o @43) oL
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4.2 Fickian Dispersion Model
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Let flow carry a solute with concentration C(x, y) and molecular diffusion
coefficient D.

Define the mean concentration at any cross section as

— 1 ¢n _
C:FjoCdy, C=f(x)=f(y) (4.4)

Then, concentration deviation is

C =C(y)-C, C=C(xy) (4.5)
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4.2 Fickian Dispersion Model

Now, use 2-D diffusion equation with only flow in x-direction (v =0)

oc oC 0 0°C 0°C
—+U—+V/—=D—+D— (1)
ot ox Joy OX oy
Substitute (4.2)~(4.4) into (1) / oc _,
5

0° N0

£(5+C')+(U )—(C +C)= D{@T(C+C)+W +C)| (4.5)
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4.2 Fickian Dispersion Model
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Now, simplify (4.5) by a transformation of coordinate system whose origin

moves at the mean flow velocity

E=x-Ut _)6_5_1 8_§:_U (4.6)
OX ot
ot ot
T =t - —=0 —=1
OX ot 47
Chain rule
0 85 0 87 0 0
X OXOF Oxdr OF (b)
8_8§8L818:_U8+8 (©)

ot otoE ot or 0F or
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4.2 Fickian Dispersion Model
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Substitute Eq. (b)-(c) into Eq. (4.5)

_ _§(C+C)+—(C+C)+£)Z/+u)—§(C+C) D{%(C+C)+§C}

(4.8)

5* 0%C’
0&? oy’

—(C+C)+u _§(C+C) D{—(C+C)+

— view the flow as an observer moving at the mean velocity

S U is the only observable velocity as shown in Fig. 4.2 (b).
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4.2 Fickian Dispersion Model
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Now, neglect longitudinal diffusion because rate of spreading along the flow

direction due to velocity difference greatly exceed that due to molecular

diffusion. / /
.0 = o° = .
2

oC oc o€ o€ _ oC
or " or L or N e oy

(4.9)

~ This equation is still intractable because U varies with y.

— General solution cannot be found because a general procedure for

dealing with differential equations with variable coefficients is not available.
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4.2 Fickian Dispersion Model

Now introduce Taylor's assumption

— discard three terms to leave the easily solvable equation for C'(y)

66/+ a(/+u'§+u' og = DaZCI

u—=D (4.10)

[Re] Derivation of Eq. (4.10) using order of magnitude analysis

Take average over the cross section of Eq. (4.9)

1 ¢h d
— apply the operator FJ.O ()dy
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4.2 Fickian Dispersion Model

ac ag/+uzg __D%yg

Apply Reynolds rule of average, then we have

oC .oC
- u —

+U—=0 (4.11)
or  O&

Subtract Eq.(4.11) from Eq.(4.9)

8C .oC .oC 8C D82C'

(4.12)

or oc | 0E | 0F oy
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4.2 Fickian Dispersion Model

é

Assume C,C are well behaved, slowly varying functions and C >>C

.0C .0C .0oC
Then U—>>U .U
0 o0& o0&
Thus we can drop u'ﬁand u'£
0 o0&
. ) _
© :Daf v (d)
ot oy o0&
.0C

—U —— = source term of variable strength
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4.2 Fickian Dispersion Model
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— Net addition by source term is zero because the average of U is zero.

Assume that Z—C remains constant for a long time, so that the source is

constant.

Then, EqQ. (d) can be assumed as steady state.

—>£:O
or

Then (d) becomes

longitudinal ~ 20 cross-sectional
advective transport \u% =D aaycg ﬁ diffusive transport

(@ (b




26/155

4.2 Fickian Dispersion Model

g

—~ same as Eq. (4.10)

« The cross sectional concentration profileC (y) is established by a

balance between longitudinal advective transport and cross sectional

diffusive transport as shown in Fig. 4.3.

 |n balance, net transport =0

uCdy — {u'c_)dy +i(u'5)dxdy} +1-D % gk {—Dﬁdx +i(—D£jdydx} =0
OX oy oy oy

oy

0 [/ = 0 oC
——(uC )dxdy + D dydx =0
 (uC)aay+2 (0%

O/ — 9, oC
a_x(uc):ay[a @yj (4.13)
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4.2 Fickian Dispersion Model

: DaC’d + 9 ( aC,)d d
Lo — X+ — ydx
-" d d d
advective 1 ! | Y Y Y
transport, T 5
ucCdy _y T uldy + — (uC)dxdy
I I |T dx
| . !
o
, : - diffusive transport, —D 3y dx
| 1 > x
— dxl—
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4.2 Fickian Dispersion Model
—_— e aa

Now, let’s find a solution of Eq. (4.10)

6°C'(y)_1C . _1C

&° Doz :B& (y) (e)

Integrate (e) twice w.r.t. y

c( )_i@j ["udydy +C (0) (4.14)
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4.2 Fickian Dispersion Model

A y y
(NN
| h‘-"‘ | Advected
| | ®& linesource ¢
line source 4
1 JFI
r 4
u ;" I
a C x x

(@) (b) (©)
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4.2 Fickian Dispersion Model
—_— e aa

C(y)

M a
Ob

0 02 04 06 08 1 Oc
y
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4.2 Fickian Dispersion Model

Now, consider the rate of mass transport in the streamwise direction.

The mass transport, relative to the moving coordinate axis, is given by

Ly

: . . C \q—»
M = johqxdy= joh{u (y)C (y){—)zé—xﬂdy (f) —

Substitute (4.14) in (f)

M :johu'C'dy :%Z—fjohu'joyjoyu'dydydy (4.15)

jhu' {C' (O)}dy =0 since johu'dy =0
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4.2 Fickian Dispersion Model
—_— e aa

— EqQ. (4.15) means that total mass transport in the streamwise direction is

proportional to the concentration gradient in that direction.

. 0C
\ e (9)

—This is exactly the same result that we found for molecular diffusion.

But Eq. (g) is the integral sense for diffusion due to whole field of flow.

Now define a bulk transport coefficient, or “dispersion” coefficient,

in analogy to the molecular diffusion coefficient, by the equation
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4.2 Fickian Dispersion Model
—_— e aa

M
hxl OX (h)

4

where ( = rate of mass transport per unit area per unit time; h = depth =

area per unit width of flow

K = longitudinal dispersion coefficient (= bulk transport coefficient)

— express as the diffusive property of the velocity distribution (shear flow)

Then, (h) becomes

- oC
M =—hK =
~ (4.16)
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4.2 Fickian Dispersion Model
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Comparing Eq. (4.15) and Eq. (4.16) we see that

1 ¢h pypey .
K= —h—DyL u'|, |, udydydy (4.17)
Koci
D

y

Now, we can express this transport process due to velocity distribution as
a one-dimensional Fickian-type diffusion equation, following Eq. (2.4), in

moving coordinate system.

L
oC _, C

(4.18)

ar o0&
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4.2 Fickian Dispersion Model
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Return to fixed coordinate system

(4.19)

— 1-D advection-dispersion equation

C, U = cross-sectional average values

= Balance of advection and diffusion in Eq. (4.10)
Suppose that at some initial time t = 0 a line source of tracer is deposited
in the flow.

) Initial period: Initially, the line source is advected and distorted by the

velocity profile (Fig. 4.4).

a
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4.2 Fickian Dispersion Model
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At the same time the distorted source begins to diffuse across the cross

section.
— Shortly we see a smeared cloud with trailing stringers along the boundaries
(Fig. 4.4Db).

During this period, advection and diffusion are by no means in balance.

— Cross-sectional average concentration is skewed distribution (Fig. 4.4c).

— Taylor's assumption does not apply.

ii) Taylor period: If we wait a much longer time, the cloud of tracer extends

over a lonqg distance in the x direction.
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4.2 Fickian Dispersion Model

A y y
(NN
| h‘-"‘ | Advected
| | ®& linesource ¢
line source 4
1 JFI
r 4
u ;" I
a C x x

(@) (b) (©)
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4.2 Fickian Dispersion Model
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. oC . .
-~ (C varies slowly along the channel, and 8_ Is essentially constant over
X

a lonq period of time.

- C becomes small because cross-sectional diffusion evens out cross-

sectional concentration gradient.

Once the balance is established further longitudinal spreading follows Eq.
(4.19), whose solution is nhormally distributed cloud moving at the mean

2
do _oK

speed U, and continuing to spread with

dt
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4.2 Fickian Dispersion Model
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Chatwin (1970) suggested
h2
i) Initial period: t < 0.4E

— advection > diffusion

2
ii) Taylor period: t > 0.4%
- advection = diffusion

- Variance of the dispersing cloud grows linearly with time

- The initial skew degenerates into the normal distribution.

- canuse Eq. (4.19)
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4.2 Fickian Dispersion Model

h2
Chatwin (1970) Taylor period t> 0'43
2
X > 0.1U — , centerline injection
Fischer et al. &
Complete transverse mixing
(1979) W2
X > 0.4U — , side injection

2!
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4.2 Fickian Dispersion Model

B. Concentration deviation, C’'(y) & cross-sectional average concentration, C(x)

. . After shear After lateral
=9 8.4 @t=1, Y advection 4  diffusion
| i
1 1
1 1
1
1
u(y) N :
1 1
 Cong) |
1 1
1 1
1 1
1 1
" : — & :
C : cl |
‘_l 1
1 1
Coé) |
% -
Cps| |
! 1
- :
-+ 1
i |
- :
> x
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4.2 Fickian Dispersion Model
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After shear After lateral
4Y advection C(y, &) C(y.&3) 4 diffusion
e == R T 5

(i)t =t;
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4.2 Fickian Dispersion Model

4.2.2 Laminar flows

(1) Laminar flow between two plates

Consider laminar flow between two plates —» Couette flow
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4.2 Fickian Dispersion Model
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2
Suppose t>3 — tracer is well distributed

— Taylor’s analysis can be applied
From Eq. (4.14)

. 15C
C'(y)=5=-], ], udydy +C'(0 (4.20)
L1 S Fayay +C () @
_1C U LTy oh
" D ox 2[2hy}hdy+c( 2)
2
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4.2 Fickian Dispersion Model
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1 6C ¢v|Uy* Uh . h
S dy+C (——
{ } y+C( 2)

Dox“5| 2h 8

1oC[uy® unh | . h
- LRyl +C-3)
Dox| 6h 8 7| » 2

_185{Uy3_Uh UhZ_th}r. h

+ C(——
6h 8y48 16 (2)

" D ox

~ 3 2 3
_1oCU {y _h y_h_}LC'(_ﬂj (4.21)

"Dox2h 3 47 12
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4.2 Fickian Dispersion Model

By symmetry C =0 @ y=0
~ 3
o taCUl bl o _h
D ox 2h| 12 2

~ 2
C'(—hj‘ 1 6C Uh

2) Daox 24
. 1oCU |y h°
C'(y)= -
) D8x2h{3 44

h .. 1éC h?
->@y=—;C=—7-U {——} (4.22)
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4.2 Fickian Dispersion Model

g
—> SD :—i=—0.042
oC

C Un? 24
OX

Dispersion coefficient K

h
K :—%jzgu'\jgngu'dymjdy ox
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4.2 Fickian Dispersion Model

=——Dquy+C -— j/

10CU (y
— d
j— {D OX 2h(3 4 y]}y

8x
B U2 g y4 h2y2
o 3 h o dy ;
2h°D- 3 4 )
h
U2 y5 h2y3 2 /
C20°D| 15 12 |« : | b,
U2h2 2 -0.05 CrDKth@ 0.05 —

~ 120D (4.23) ox
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4.2 Fickian Dispersion Model

-~ y U/z

@Ht=0
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4.2 Fickian Dispersion Model

é

Note that K oc i
D

- Larger lateral mixing coefficient makes C to be decreased.

(2) Laminar Flow in a Tube

Consider axial symmetrical flow in a tube —» Poiseuille flow

Tracer is well distributed over the cross section.

2

u(r)=u, [1— r_z] ~ paraboloid (a)

a
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4.2 Fickian Dispersion Model

Integrate u to obtain mean velocity

dQ = u2zrdr [« N _uo’:u(r) | ;

~Q=| aZﬂr{uo (1—%}(#
0 a

= 270,22 '11(1—5}1 (ij ®

Jo g a’ a

= 27u,a’ 'Olz(l— 2%)dz

=L a’ (4.24)
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4.2 Fickian Dispersion Model
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By theway, Q=0 - 7a’

U= u—o (4.25)
. > :
2-D advection-dispersion equation in cylindrical coordinate is
2 2 2
L,y [1-1 )€ _pfdt, 1 oC )
ot a” ) ox or’ ror ax

Shift to a coordinate system moving at velocity

2
Neglect % and oC

as before

ot OX?
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I
Let z=—,=X—-Ul, 7=t
a

Decompose C, then (b) becomes

ua®,1 _, 6C o0°C 10C
(Z-2°)—=— =
D 2 oc oz Z 07
E=o at z=1 (4.26)
0z

Integrate twice w.r.t. z

. -
c' =8 (22 —£z4j§+ const (©)
8D
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4.2 Fickian Dispersion Model

K=r——=— __[u'C'dA (d)

Substitute (a), (c) into (d), and then perform integration

K — a’uy’ (4.27) ( “: 1. _u\(ff(r) 0 -
192D 0 a: y )

[Example] Salt in water flowing in a tube

D=10"cm?’/sec

u, =1cm/sec
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4.2 Fickian Dispersion Model
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a=2mm
R = ud — (0.00) (0'004) — 40 << 2000 - laminar flow
Y 1x10°°
202 (0.2)° (1)
K = a Uy =( ) () =21cm?/sec ~10°D
192D 192(10—5)
= |nitial period
2 0.4(0.2) _
=042 = 2402 ) 60sec— 27min
D (10- )
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4.2 Fickian Dispersion Model
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—(0.5)(1600) = 800cm

_890_ 4,000a
0.2

X > X, — 1-D dispersion model can be applied

4.2.3 Dispersion in Turbulent Shear Flow

Cross-sectional velocity profile in turbulent motion in the channel is different

than in a laminar flow.

Consider unidirectional turbulent flow between parallel plates
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4.2 Fickian Dispersion Model

g
Begin with 2-D turbulent diffusion equation

oC oC oC O ( oC j 0 oC
—+U—+V—-= &, — —
ot OX oy OX OX

ay gy 8y (a)

where, C, U,V = time mean values; the cross-sectional mixing

coefficient £(Y) is function of cross-sectional position.

LT (oo
I t V O t rI I t fI t ti V 0 l///////////////////// //////////////////////////////////////////////////////////////‘I

oC 6 éoC " t0)
>—g,
OX OX =~ OX Wz

Assume U

[
P PP P ”
’ R x

[Rel u>¢, ~Uu
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4.2 Fickian Dispersion Model

Then (a) becomes

oc  ,oC a[ acj
A Pt

(b)

ek oyl Y oy
Now, decompose C and u into cross-sectional mean and deviation
o(C+C)

0 O -
p- (u+u)—(C+C)— o yg'/(/€+C) (c)

Transform coordinate system into moving coordinate according to U
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4.2 Fickian Dispersion Model
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Now, introduce Taylor's assumptions (discard three terms)

;9C _ a(g a_c‘j
R Y (4.28)

Solution of Eq. (4.28) can be derived by integrating twice w.r.t. y

. 0C ¢v 1y . .
C = 5 jo . jo u'dydy +C'(0) (4.29)

Mass transport in streamwise direction is

M = johu'C'dy :gjohu'joygijoyu'dydydy
y
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4.2 Fickian Dispersion Model

M€
h 0
1eh ey 1oy
K= _ﬁjo u fo g—yjo u dydydy (4.30)

4.2.4 Taylor's analysis of turbulent flow in pipe (1954)

r dz 1 ‘ -,
Set Z:g —)a:g ( a TT —u‘\;j‘(r) T )

B4 )

Then, velocity profile is

u(z)=u,—u f(z2) (a) (4.31)
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4.2 Fickian Dispersion Model
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where U” = shear velocity = |2 (4.32)
0

f(z) = logarithmic function

[Re] Velocity defect law [Eq. (1.27)]

_3u 230 . -
U=U+——+ u log,, = (4.33)
2 Kk K a

in which K = von Karman's constant= 0.4

¢ = distance from the wall
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4.2 Fickian Dispersion Model
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u=0+3.75u" +5.75u" log,, S
a

d —*u =3.75+2.5In£ (4.34)
u a

The cross-sectional mixing coefficient can be obtained from Reynolds analogy.

— The mixing coefficients for momentum and mass transports are the same.

1) momentum flux through a surface

T ou .
—=—&,— =1 Daily & Harleman (p. 56)

N\ or
p kinematic

eddy viscosity
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4.2 Fickian Dispersion Model
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i) mass flux - Fickian behavior Ty
CER A
q=—¢ oc — 2 > x
“or | 7/ : )
.- 4 _ 7
L (b (4.35)
or or

For turbulent flow in pipe, shear stress is given

I
=17 4 27, (c) (4.36)
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4.2 Fickian Dispersion Model
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Differentiate (a) w.r.t. r

u__dt@d_ .01 d 4.37

or dz dr dz a ) (4.37)
Divide (c) by (d)

r oz,

ou . .df 1 (©)

— u
or dz a
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4.2 Fickian Dispersion Model

Substitute (e) into (b) /— (u*)z
o)=L = 2z,  az(zr,/p) azu
ST AT A
o or o dz a dz dz

Now, it is possible to tabulate U (r) =u(r)—u, &(r) (f)

And, numerically integrate Eq. (4.39) [Taylor's equation in radial

coordinates] to obtain C (r) using £(I') obtained in (f)

(4.39)

. 0C 0°C 10oC
u—e =g¢ —+
or r or

4
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4.2 Fickian Dispersion Model
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Again, numerically integrate Eq. (4.30) to find K

K =10.1au \ (4.40)

in which a = pipe radius

[Cf] For laminar flow in a tube, K =

192D
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4.2 Fickian Dispersion Model
—_— e aa

4.2.5 Elder's application of Taylors method (1959) in open flows

Consider turbulent flow down an infinitely wide inclined plane of depth d

assuming von Karman logarithmic velocity profile

. u .
u(y) =;(1+ Iny) (a) (4.41)
- _ du u 11
where U =u-U0 - = . (b)
dy «xyd
y =yl/d \— o _,
dy




4.2 Fickian Dispersion Model

For open channel flow, shear stress is given

du - .

r=pe—=r,(1-Y) w (c) (4.42)
dy profile
 (1-y) 7, (A-y)

g(y)= P TR u_iiwcy'(l—y)du (d) (4.43)

dy Ky d

Substitute Eq. (a) and Eq. (d) into Egs. (4.29) and (4.30) and integrate
. Cd(&1l.,d-y,,
C :——Z(Z —( - y) —O.648j (4.44)

69/155
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4.2 Fickian Dispersion Model
—_— e aa

Input kx =0.41

K =5.93du’ (4.46)

4.2.6 General form for the longitudinal dispersion coefficient

Introduce dimensionless quantities

y'=%—>y=hy', dy = hdy (a)

U= —>u':u"\/u:'2 (b)

12

u
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4.2 Fickian Dispersion Model

Shear flow dispersion

parabola

pollutant

it

\\\

c shear advection + transverse
(separation) diffusion

1N

t=0 i)t = At~ i)t = At™

A
Y
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4.2 Fickian Dispersion Model
—_— e aa

where E = cross-sectional average of &

U = velocity deviation from cross-sectional mean velocity

1

{5 pref

= intensity of the velocity deviation (different from turbulent intensity)

~ measure of how much the turbulent averaged velocity deviates

throughout the cross section from its cross-sectional mean
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4.2 Fickian Dispersion Model
—_— e aa

Substitute (a) ~ (c) into Eq. (4.30)

- _%\/UZIZ%\/u_ithB."olu”J‘oy'é.“oylu”dy'dyldy'
e (L e 0

Set |:—j01u" joy%joy'u"dy'dy'dy' (4.47)
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4.2 Fickian Dispersion Model
—_— e aa

Then (d) becomes

hu*
E

K= I (4.48)

| =0.054~0.10 —»1=0.10
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4.2 Fickian Dispersion Model

0.0625
“= u“(l__) 1921)
s l _y_z d 0.0952 idluol
=, .
d) d 945 D
h 0.10 272
U= U’Z U'h
h 120D
Empirical a 0.054 10.1 au”
0.067 5.93du

=+ 1+
K d
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4.3 Dispersion in Unsteady Shear Flow
I ————————————————————,

Real environmental flows are often unsteady flow.

- reversing flow in a tidal estuary; wind driven flow in a lake caused by a

passing storm

» Application of Taylor's analysis to an oscillatory shear flow

Suppose that unsteady flow = steady component + oscillatory component

(i) Linear velocity profile with a sinusoidal oscillation

u=u %Sin(@j (1)

where T = period of oscillation

r
v
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4.3 Dispersion in Unsteady Shear Flow

flip-flop' sort of flow
- reversing instantaneously between u=U % and -u=U Y after time
interval T

2
— after each reversal the concentration profile has to be reversed

— substitute - y for yin Eq. (4.21)

Cy) - 16C U {y h y}

" Dox2hl 3 4
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4.3 Dispersion in Unsteady Shear Flow

g

~ But enough time bigger than mixing time (T, ~h?/ D) is required before

the concentration profile is completely adopted to a new velocity profile.

(1) T>>T,

- concentration profile will have sufficient time to adopt itself to the velocity

profile in each direction

- time required for to reach the profile given by EQ.(4.21) is short

compared to the time during which has that profile.

— dispersion coefficient will be the same as that in a steady flow

— dispersion as if flow were steady in either direction
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4.3 Dispersion in Unsteady Shear Flow

é
2) T << T,
- period of reversal is very short compared to the cross-sectional mixing time

- concentration profile does not have time to respond to the velocity profile

- C will oscillate around the mean of the symmetric limiting profiles,
which is C =0.

— dispersion coefficient tends toward zero

— no dispersion due to the velocity profile
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4.3 Dispersion in Unsteady Shear Flow

(1) TKT,K=0

Line is returned
exactly to its
original position

*No cross-
sectional mixing

; iﬂ——#—"%
s | JEE N |
%—mﬁf %%ggg_ﬁg
'?F u<%T> """" e GT)
: ==
t=0 1 5 3 7
=_T, — t==T =—T,-T
t 4T,4T > t 22
C Line source is C

stretched out

v
=




4.3 Dispersion in Unsteady Shear Flow

(i)T>» T, K ~ Ky

F

&
t=0 _1

=3

@ Line source
is stretched out

N

81/1556

t = - T
4
® Then dye is well mixed
over cross sectional area due

to lateral diffusion
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4.3 Dispersion in Unsteady Shear Flow

b Y

ngsy
=T

4 2 t=7
® Mixed plane is @ Then this is well
stretched in opposite mixed again laterally

direction
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4.3 Dispersion in Unsteady Shear Flow

* Fate of an instantaneous line source when T << T,

Solution of Taylor's equation by Carslaw and Jaeger (1959)

Taylor’s
equation

u=u =U

unsteady flow

unsteady
aC / source term
85
27t

hsm———( u=0) (1)
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4.3 Dispersion in Unsteady Shear Flow

use —_—
N WL W L W VL .

i L-'-I
R E R EEE R R

at
C'D/htU TS
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4.3 Dispersion in Unsteady Shear Flow

é

Replace unsteady source term u'a— by a source of constant strength by

setting t =1,
8C D82(32 _uY y@C sin 27t )
or oy h oOXx
%C*:O at y:ig (e)
C'(y,0)=0

(f)

where C = distribution resulting from a suddenly imposed source

distribution of constant strength as shown in Fig. 2.8
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4.3 Dispersion in Unsteady Shear Flow

é

As diagrammed in Fig. 2.8, the solution for a series of sources of variable

strength can be obtained by

. t 0
C (y,t) :joac (y’t_to;to)dto (9)
For large t
. t 0 .«
Cly =], =Cyt-tt)dt (h)

C’ can be expressed by the sum

C(y,t)=u(y)+w(y,t) (i)
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4.3 Dispersion in Unsteady Shear Flow

é

w(y,t) can be solved by separation of variables and Fourier expansion.

Further integration of the result leads to

2 o0 n
= Zlih Toc =D sin(2n—1)7zl
"D T, OX 73 (2n - 1 h

1
2

T 27t
on—1)’ +1| sin| ££2+6
X[z( )Tj (T 2“)
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4.3 Dispersion in Unsteady Shear Flow

é

Average over the period of oscillation of K

oC )
== j[j quy/haX)dt

2 1.2 2 2
224 E(Ij Z(Zn—l)*% %(Zn—l)z(le +1} (4.55)

T>>T, K, = (4.56)
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4.3 Dispersion in Unsteady Shear Flow

é
[Re] Caseof T >>T,

For a linear steady velocity profile, u=U %sin o

1 Uzhzsinzg 457
120 D D (4.57)
1 U’h®
—> K, = 220 D is an ensemble average of K over all values of o

Intermediate behavior, Eq. (4.55) - Fig.4.18
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4.3 Dispersion in Unsteady Shear Flow

=0.1>K ~0.03K,

10

—=1->K ~0.8K, ;

=10>K =K, “ /
e

T

e e e e

\

o(
\

\
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4.3 Dispersion in Unsteady Shear Flow

é

(i) Flow including oscillating and a steady component

— pulsating flow found in blood vessel

u(y)=u,(y)sin2zt/T +u,(y)
u,=u, =Uy/h (4.59)
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4.3 Dispersion in Unsteady Shear Flow

é

Assume that the results by separate velocity profile are additive.

g
Let C =C, +C, is solution to £+u( )6C 88(2
ot OX oy
Then Cl' is solution to the equation
oC _ o'C
8t OX 6y2

And C, ' is solution to the equation

oc, oC oC,

=& 2
ot OX oy
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4.3 Dispersion in Unsteady Shear Flow

The cycle-averaged dispersion coefficient is

h
K:% OT—% Z‘h(ulsin¥+u2j(cl'+C2')dydt

1 [ 173 4.60
S | hulclsm dydt+j u,C, dy (4.60)
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4.3 Dispersion in Unsteady Shear Flow

g

where K, = result of oscillatory profile = f (T /T,) - Fig. 4.18

K, = result of steady profile

= Application to tidal rivers and estuaries

Consider shear effects in estuaries and tidal rivers

Flow oscillation - flow goes back and forth.

Consider effect of oscillation on the longitudinal dispersion coefficient

K =K, f(T") (4.61)

where f(T') is plotted in Fig. 4. 18.

T'=T/T,= dimensionless time scale for cross-sectional mixing




95/155
4.3 Dispersion in Unsteady Shear Flow

g
T = tidal period ~12 hrs
T. = cross-sectional mixing time = W?*/ ¢,
K, = dispersion coefficient if T >>T,

* For wide and shallow cross section with no density effects, from Eq. (4.47)
2

—h" =
KO:IUZE:|UZTC (4.62)

where | = dimensionless triple integral ~ 0.1 (Table 4.1)

Combine Eq. (4.61) and Eq. (4.62)

K = 0. 2T (LT f (T’)j) (4.63)
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4.3 Dispersion in Unsteady Shear Flow

é
Function [ (1/T') f (T") | is plotted in Fig. 4.19 (Fig. 7.4)

) T. is small (wide estuary)

T’:l>>1 > K is small

C

i) T. is very large (narrow estuary)

T = l <<1- K is smallest

Te

oo, T N f (T
iy T :?Cz1.4:>[(1/T)f(T )|~0.8

~K_ =0.08u”T
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4.3 Dispersion in Unsteady Shear Flow

Max = 0.8

(/T £(T")

D,ﬂr I T . 'l i II.IlJll i 1 Ijllill i
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4.3 Dispersion in Unsteady Shear Flow

#

[Ex] T=125hrs, T=0.3m/s, u'?=0.20>

ﬁ Ch. 5
K =0.08x0.2(0.3)? x (12.5x3600) ~60 m?/s
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4.4 Dispersion in Two Dimensions

g

In many environmental flows velocity vector rotates with depth

—

Gziu(z)+]v(z)

where U = component of velocity a In the x direction

V = component of velocity G In the y direction

 Taylor’s analysis applied to a skewed shear flow with velocity profiles in

two directions
The 2-D form of Eq. (4.10) for turbulent flow is

.0C V.aé_a gac'
OX oy 07\ o0z

(4.64)




. 100/155
4.4 Dispersion in Two Dimensions

y o vz

Y
Z
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4.4 Dispersion in Two Dimensions

é
88£ =0 at z=0,h (water surface & bottom)
VA

Integrate (4.64) w.r.t. z twice

jo g_[ (u —+V —_jdzdz (4.65)

Bulk dispersion tensor can be defined by

oC oC j
(4.66a)

M :j“u'c'dz=—h FK, &
»Jo “ox Yoy

My:jhv'C'dz:—h[K K @J (4.66b)
0

OX Y oy




4.4 Dispersion in Two Dimensions

102/155

é

Substitute (4.65) into (4.66)

(4.66a): j jogj (u—+v—_jdzdzdz— h[

K, = —%johu'j:%j:u'dzdzdz

Ky = —%johu'joz %joz v dzdzdz

depend on the interaction of
the x and y velocity profiles

K—+K£
0 * oy

(4.67a)

(4.67b)
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4.4 Dispersion in Two Dimensions

g

(4.66b): j jogj( —+V—_]dzdzd h[K aa—gm %}

K = —% '[Ohv' joz %joz u dzdzdz (4.67¢)

K,, = —%_"Ohv' joz %J‘:v'dzdzdz (4.67d)

The velocity gradient in the x direction can produce mass transport in the

y direction and vice versa.

ny = x-dispersion coefficient due to velocity gradient in the y direction

K,x = y-dispersion coefficient due to velocity gradient in the x direction




104/155

4.4 Dispersion in Two Dimensions
— e ;S

Thus, 2D depth-averaged advection-dispersion equation is

€ 7€ yoC¢_0 KXX£+KXy§ + 2 KyX§+KW$ (4.69)
OX oy OX oy

If x-axis is coincident with the flow direction, K,, and K, can be neglected.

Then, 2-D depth-averaged transport equation becomes

oC _oC _oC o oC) 0 oC
T4V 2= K, +—| K, — (4.70)
ot OX oy OX ox ) oy oy

XX 1

where K, =K ;K; = Kyy
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4.5 Unified View of Diffusion and Dispersion

g

= Taylor's model
- Lagrangian (statistical) approach for turbulent diffusion

- Eulerian (analytical) approach for shear flow dispersion

» Gradient model (Holley, 1969)
- Similarities among the various types of diffusion and dispersion

- Advective transport due to fluctuating motion is named the diffusion and

the dispersion.

- Transport by fluctuating motion is assumed to be proportional to
concentration gradient.

- *Holley, E.R. (1969). “Unified View of Diffusion and Dispersion,” ASCE

JHD, 95(2), 621-632.

o =
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4.5 Unified View of Diffusion and Dispersion

Taylor’s approach ‘

é

Molecular Diffusi

. oC
Fick’'s law: G < ox

Conservation of
mass

Diffusion Equation

. e

’ Taylor’s approach

2(x*)=2(u?)T,

Normality of random
variable X

C’(y) l@CJ‘ J‘ o’ dydy

- o~ oC
M :J.OUC dyoca
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4.5 Unified View of Diffusion and Dispersion

é

4.5. 1 Molecular Diffusion

= Molecular approach

To write the mass balance equation, we need to know how many fluid

molecules and how many tracer molecules pass through and the direction

and spread of each molecule - statistical manner

z R dA
R
SRN
u AR {38 XReY
> o HERER dy
i SR
e R
N N e dx Y
= RS SERsy
~—— 3

_____ : >
u, /7 | Average velocity
A of molecules
L -
O fluid
@ tracer
B

Concentration Velocity
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4.5 Unified View of Diffusion and Dispersion

g
= Continuum approach

- Assume fluid carries tracer through at a rate depending on the

concentration, ¢, and the fluid velocity, u.

- However, the fluid u, cannot completely represent the tracer movement

because the velocity, u, does not account for the movement of the

molecules, u,,, which have directions and speeds different from u.

- Thus, molecular diffusion accounts for the difference between the true

molecular motion and the manner chosen to represent the motion.

llllll loud




109/155
4.5 Unified View of Diffusion and Dispersion

é

Thus, mass flux by this velocity difference is

J=Auc

Now, apply Fick' law

- transport called molecular diffusion is proportional to the concentration

gradient.
), =AuCoc @
OX
OC
Jm =-D, — (a)




110/155
4.5 Unified View of Diffusion and Dispersion

é

D,, = constant of proportionality = molecular diffusivity

Now, consider advection by mean motion

oC
J—CU D & (a)
j,=-D % (b)

Then, substituting (a) and (b) into 2D mass conservation equation yields

2D advection-diffusion equation as

2 2
@ +Uu @ — D a_ +D 6_2 (4.71)
ot ox "oxd Moy
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4.5 Unified View of Diffusion and Dispersion
—eeeeeeeeeeennnnoooeoeoeeee AN

@ E = time rate of change of concentration at a point

By mean
motion ‘\ C
@ U & = advection of tracer with the fluid

azc (92C / By velocity fluctuation

D. pvl D,, — = molecular diffusion

2
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4.5 Unified View of Diffusion and Dispersion

g

4.5.2 Turbulent Diffusion

Decompose velocity and concentration into mean and fluctuation

Uu=u-+u
c=C+¢C' (b)
V=V (assume only fluctuation in y-direction)

U, C =time-averaged values of uand c
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4.5 Unified View of Diffusion and Dispersion

Concentration Velocity
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4.5 Unified View of Diffusion and Dispersion
— e AN |

where T = averaging time interval
10° ~10%sec for open channel flow
[ 10" ~10°sec for pipe flow
For 2D flow, the advection-diffusion equation is

oc oOuc ove o°c o%c
+ + = Dm —2 —+ Dm —2 (472)
ot ox oy OX oy

Conservative form
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4.5 Unified View of Diffusion and Dispersion
— e AN |

Substitute (b) into (4.72), then it becomes

o(C+c") N o(T+u")(T+c) N ov'(T+c') o°(CT+c') D o°(CT+c')

:Dm 2 m 2
ot OX oy OX oy
— 2 2
T %gc=p,2C4p, ¢
ot oXx " OX* "oy’

o' 0, .~ O0,.,.. O0,,~ O0,. .. 0,, .,

————({Uc)——(@Wu'c)——(u'c) —(vT)——(v'c

p ax()ax()ax( )ay() (vic)
2| 2|

+D8 +Da

" OX° oy’
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4.5 Unified View of Diffusion and Dispersion

Integrate (average) w.r.t. time, and apply Reynolds rule

a_6+a(ﬁf) 0%C o*c

:Dm_2+ Dm_2
ot OX OX oy
_¥+ oTe§ o(WE] auc wE e
ot OX ﬂ?x OX /By oy

2 AN 2.4
+BV%+D82
OX oy




117/155

4.5 Unified View of Diffusion and Dispersion
—eeeeeeeeeeennnnoooeoeoeeee AN

[Re] Reynolds rules of averages (Schlichting; p. 460, 371)

f=f

f+g=f+7Q

_|_

fg=fgQ

|
I

of of

os o5

jﬁﬁzjﬁs
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4.5 Unified View of Diffusion and Dispersion

g

Drop all zero terms using Reynolds rules of averages

— — 2— 2= ' IRVAR.S
a—C+Ua—C=Dma—2+Dmac2:+a( : c)+8( ve)
ot OX OX oy OX oy

~
advective transport
due tou',v',and c'

It is assumed and confirmed experimentally that transport associated with the

turbulent fluctuations is proportional to the gradient of average concentration.

- ~ = |
u'c's G_C_) u'c'=-—¢, 8_C : « Boussinesq’s eddy viscosity model
OX OX : L -
— & : u'v'=—g,—
V| 1 — _g et : ay
|
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4.5 Unified View of Diffusion and Dispersion

é

€y, &, =turbulent diffusion coefficient

0 — O &t
(e )—a—x(“"x &j

0( ==\ O oc
Lo)-2{a g
oy oy\ ° oy

Assuming that &, and Ey are constant, the mass balance equation for

turbulent flow is given as

& e 0°c 0°C
__|_u_:(Dm +8X)W+(Dm +8y)y (4.73)

ot OX
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4.5 Unified View of Diffusion and Dispersion

é

Drop overbars, and neglect molecular diffusion terms

—tu—==¢,—+&,— (4.74)

For 3-D flow:
oc ot oOcC oC oC
— 4+ U—+V—+W— = (g —)+—( ) —(g —) (4.79)
ot ox oy oz ox" oy ‘eoy oz ‘oz
oc oc OcC _
% Remember, & —,&,—,&,— and are actually advective transport.

ox oy ‘oz
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4.5 Unified View of Diffusion and Dispersion

é
4.5.3 Longitudinal Dispersion

After the tracer is essentially completely mixed both vertically and laterally,

the primary variation of concentration is in just longitudinal direction.
— one-dimensional equation \

Far-field
mixing
Decompose velocity and concentration into cross-sectional mean and

deviation (fluctuation)

T=U+u" -0 (©)
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4.5 Unified View of Diffusion and Dispersion
— e AN |

where U, C = cross-sectional average of the velocity and concentration

After substituting (c) into (4.74), averaging it over the cross-sectional area

yields
n n 2 n
o(C+c )+(U +u")8(C+c ):(Dm+gx)a (CJZrC )+(D v o°(C+c")
ot OX OX oy’
By Reynolds rule
2 v oo
£+U§—(D +5)8C+(D +é&,) oc (4.76)

ot OX oy’ OX
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4.5 Unified View of Diffusion and Dispersion

é

2

Then neglect ——- because after lateral mixing is completed,

€ o cog

0; C=C=f(y

> (v)

Then, Eq. (4.76) becomes
oC . oC g2c 9 (‘“ C)
—+U—=(D, +5,)—+ (4.77)
ot OX OX OX

Taylor (1953, 1954) show that the advective transport associated with U is

proportional to the longitudinal gradient of C.

= O0C
m_
OX

—u C
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4.5 Unified View of Diffusion and Dispersion
— e AN |

—u"C":K%
OX
o — 0 oC
—|—-u"c"|=—] K— | - longitudinal dispersion
ax( ) ax( 8xj | P (4.78)

K = longitudinal dispersion coefficient
Substituting Eq. (4.78) into Eq. (4.77) yields

2
§+U@:(Dm+5X+K)a CZ:
ot OX OX

(D, + gx)§ << -u"c
OX
1% 99%
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4.5 Unified View of Diffusion and Dispersion
— e AN |

2
X, %L _goc
ot OX OX

(4.79)

— 1-D Dispersion Equation

Because the velocity distribution influences u  and the lateral diffusion
plays a large role in determining the distribution of c

— both velocity distribution and lateral diffusion contribute to longitudinal

dispersion.
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4.5 Unified View of Diffusion and Dispersion
— e AN |

4.5.4 Summary

To investigate the relative importance of dispersion, use dimensionless

term as
oC

-y _ dispersion rate _ Ka_x ~K1oC Ka(InC)
advectiverate UC UCox U 0X

If H<H_~0.01- dispersive transport may be neglected

1) Diffusion

= transport associated with fluctuating components of molecular action and

with turbulent action
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4.5 Unified View of Diffusion and Dispersion
— e AN |

= transport in a given direction at a point in the flow due to the differences

between the true advection in that direction and the time average of the

advection in that direction

2) Dispersion

= transport associated with the deviations (variations) of the velocity across
the flow section

= transport in a given direction due to the difference between the true

advection in that direction and the spatial average of the advection in that

direction
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4.5 Unified View of Diffusion and Dispersion

#

107 -
107 - Molecular Diffusion in Water
107 -
107 -
107 -
107 - Molecular Diffusion Gases

Dj:cmz.-"sec 10° -
Eddy Diffusion — Pipes
10" -

107 - Eddy Diffusion — Streams
10° -
10* -

10° - Longitudinal Dispersion — Streams (0.1~1,500 m?/s)

10° - Longitudinal Tidal Dispersion - Estuaries¢

10" - Eddy Diffusion — Atmosphere
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4.6 Non-Fickian Approaches
—_—_— A

4.6.1 Concentration moment method

1) Aris
Aris (1956) proposed concentration moment method without stipulating the

feature of the concentration distribution.

Begin with 2-D advection-diffusion equation in the moving coordinate system
8C 8C 0°C 0°C
=D 7 T2
81‘ ag 0E* oy
(1) (2) 3) (4

Now, define the Py moments of the concentration distribution

(4.49)

= [ erc(ey)de (4.50)
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4.6 Non-Fickian Approaches
—_—_— A

Take the moment of Eq. (4.49) by applying the operator j_ fp ( )d§

oC,
1) = j EP —d§ _—j EPCAE=—"  Leibnitzrule (4.52)
ot o ot
[Re] Leibnitz formula: —dx —i fdx

U Ocx dex 7uo

u X v’
(2)=| &Pu —d§ = EP —dcf « integral by parts

I 0g I og

C‘Zi =0, T——

T[T [ e
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4.6 Non-Fickian Approaches

=—pu | &'Cdg=-puC,,

u X /LY
(3) = j EP Da;df— j gpﬁé(acjdg « integral by parts

o¢
0 0 ’ _ w% p-1
_D{{gy aéL |3 P dg}
- -Dp[ £ e

—-Dp{[¢ /:j -J" cp-nerdg|

=Dp(p-1)| £°*Cds=Dp(p-1C,
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4.6 Non-Fickian Approaches
—_—_— A

0’ 82C
-]

Applying these terms to Eq. (4.49) yields

8C 0°C
—2—-puC,_, = D{p(p -1)C , + ayzp } (4.53)

S

B.C. gives (impermeable boundary)

h 1; »)u(y)
aCF’=0aty=o,h =




4.6 Non-Fickian Approaches

133/155

To have dispersion effect, take cross-sectional average of Eq. (4.53)

£— uC , =Dep(p-1C,_,
ot P PP~ 0°C,

oG,

oy

a(acfp]:
oy \ oy

8)/2
dM |

=p(p-1)DM

M, =C, =crosssectional averageof C

(4.54)

Aris’ analysis is more general than Taylor’s analysis in that it applies for

low values of time.

Eq. (4.54) can be solved sequentially forp=0, 1, 2, ...
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Equation Consequences as [ —> 0

p=0 dM,/dr=0 Mass is conserved.

A o= [ caza

oc, _&°C,
(4.53) — =D—
cT cy
dM, ——
p=1 d.tl =uC, M, — consant
oc, &'c
453) —| —L —u'C, =D—}
N O’
dM . o do’
p=2 2 ~24/C, +2DC, ° _2k+2D
dt dt

— molecular diffusion and shear flow dispersion are additive
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2) Edgeworth series (Chatwin, 1980)

C(XO,t)=\/Lzexp(—é){l+%H3(1)+%H4(r)+%H6(r)}

3) Pearson Type lll (Tso, 1982; Schmid, 1995)

b,-1
_ t—g t—
C(t)= & ( gp] EXP(— gpj 600
a,r(b, )\ a, a, — Chatwin (1980)

450 - o X=25m o Schmid (1995)

0 25 50 75 100
t (sec)
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é
4.6.2 Step-by-step calculation models
1) Step-by-step calculation of longitudinal dispersion (Fischer, 1968)

Advectivepart:  C(x,y,t+At)=C(x, y,t)+HV(U)U[C(x—-AX,y,t)-C(x, y.t)]

+HV (-U)U[C(X, y,t)-C(x+AxX, y,t) ]

Transverse mixing: C(x, y,t+At)=C(x,y,t+At)+k(X, y+Ay)[C(x, y+AYy, t+At)-C(x, y,t +At1)]

+k(x, y—Ay)[C(X, y— Ay, t+At)-C(x, y,t+At1):|

U(y)=

<

(y)% : units of mesh points per time step k(x,y) :Mixing coefficient

\X

Stream tube
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g
2) Sequential Mixing Model (Seo and Jung, 2013; Seo and Park, 2017)

Consider mixing in a hypothetical river

| T
200:mgll : — 0.2 m/s

I

I

I

I I I

| 200mgA | —> 0.4m/s 30 m
| | |

I

I

1

| |
200mg/l | —* 0.2 m/s
:_ ]

Fi
-2m I +2 m
0

Assumption:
1) A hypothetical river with 3 lanes of different velocities

2) Every t_ seconds complete mixing occurs across the cross section of

the river (but not longitudinally) occurs, after shear advection is completed.

— sequential mixing process




138/155

4.6 Non-Fickian Approaches
—_—_— A

Actually, time needed for complete cross-sectional mixing is very large

which is given as

Now solve for an instantaneous injection of a line source at x =0

t,=10s; u,=0.2m/s; Ax=2m
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2,000

—2D NFM

1,500 -

1,000 -

C (ppm)

500 -
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= Longitudinal dispersion in two-lane river

, s i
U+ Au 4
Fast > l-a
| ¥
I Fy
7
Slow —» o
Ug =u 7 ——
U- =u+Au
U = cross-sectional mean velocity
=au+(1-a)(u+Au) (a)

o = area fraction of river occupied by slow lane, 0<a <1
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Consider velocity deviations:

Ul =Ug —U=U—au—(1-a)(u+Au)

=U—au—U—-Au+au+aAu=—(1-a)Au

4

U =U; —U=U+AU-U=U+AU-aU—(1-a)(u+Au)
= oAU

AX=AuU-1_
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(i) Before any processes

¥
F C, C, -«
z
S C, C, a
v
- ,-'11' > Ax >
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(ii) Just before mixing (JBM) .... after advection only
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Now, concentration deviations are

C;=C,-C=C,-aC, —(1-a)C,

=(1-a)(C, -C,)
C;=C,-C=C,-aC,-(1-a)C,
=—a(C, -C,)

(iii) Just after mixing (JAM) F

C=C,
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0T == [ uC'dA
AJA

1
=2
1
2
1
2
1
2

C‘
S
n

<uc>JBM+mM}
C), +(1-a)(uC’), }

~(1-a)Au][(1-a)(Cy - C,) J+(1-a)[eau][(-a)(C, -C,) ]}

— —— —— —_——
N N
no |_| /‘\

Q

~a)Au(Cy -C,)
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Now, introduce the gradient model

u'C’ = Kg

OX

Then, the concentration gradient is
oC C,-C,
oX  Aut_
1
% urCr E(a —aZ)Au(Cd _Cu)
- @ B (Cd _Cu)
OX Aut_

K =%(a —az)(Au)Ztm (b)
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[Example] A three-lane river

,» Au=0.2; t =10sec

2
K=1 E—GJ (0.2)°t, =0.0044t,
2|3 3

t =5 10 20 30
K=00222  0.0444 0.0889 0.1333

w|lN
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[Re] Taylor Model vs. Non-Fickian Model for Couette flow

U2h?
" 120D (1)

1 5 2
K ZE(OK—OC )(AU) tm (2)

Compare (1) and (2)

a=05Au=U

212
Ly U
8 120D

2 2
¢ = _ o067

15D D
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Homework Assignment No. 4-1

Due: Two weeks from today

A hypothetical river is 30 m wide and consists of three "lanes", each 10 m in

width. The two outside lanes move at 0.2 m/sec and the middle lane at
0.4m/sec. Every t., seconds complete mixing across the cross section of the

river (but not longitudinally) occurs, after the shear advection is completed.

An instantaneous line injection of a conservative tracer results in a uniform

of 100mg/¢ in the water 2 m upstream and downstream of the injection point.

The concentration is initially zero elsewhere.
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g

As the tracer is carried downstream and is mixed across the cross-section

of the stream, it also becomes mixed longitudinally, due to the velocity

difference between lanes, even though there is no longitudinal diffusion

within lanes. We call this type of mixing "dispersion".

1) Mathematically simulate the tracer concentration profile
(concentration vs. longitudinal distance) as a function of time for
several (at least four) values of t_ including 10 sec.

2) Compare the profiles and decide whether you think the effective

longitudinal mixing increases or decrease as t_ increases.
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This "scenario" represents the one-dimensional unsteady-state advection

and, based on Taylor’s theory, longitudinal dispersion of an instantaneous

impulse of tracer for which the concentration profile follow the Gaussian

M (x —Ut)2
exp- —
47Kt 4Kt

in which x = distance downstream of the injection point, M = mass injected

plume equation

C(x,t)=

width of the stream, K = longitudinal dispersion coefficient, U = bulk

velocity of the stream (flowrate/cross-sectional area), t = elapsed time

since injection.
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3) Using your best guess of a value for U, find a best-fit value for K for
each and for which you calculated a concentration profile. Tabulate of plot

the effective K as a function t, of and make a guess of what you think the

functional form is.

100 mg/I —> 0.2 m/s
100 mg/I —p 0.4 m/s
100 mg/I - 0.2 m/s

-2m +2m
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