

Chapter 3. Power-spectrum estimation for sensing the environment

in Cognitive Dynamic Systems, S. Haykin

Course: Autonomous Machine Learning

Kay Khine Network Convergence & Security Lab School of Computer Science and Engineering Seoul National University http://mmlab.snu.ac.kr

Outline

- Overview
 - Power Spectrum Sensing
- Time-Frequency Analysis
 - Loève spectral correlation framework
 - Fourier spectral correlation framework
- Loève Vs Fourier framework
- Summary

Background

- Why do we need **power spectrum sensing**? Scarce Spectrum Problem
- Goal:
 - 1. Use of vacant bandwidth
 - Sharing of bandwidth with adaption 2.
 - Device old path new path Cognitive Radio Generic Tx/Rx Any Available Spectrum

Power Spectrum Sensing

• Three essential dimensions of sensing:

Frequency	• To identify location of spectrum holes along the frequency axis
Space	• To "sniff" the RF environment along different directions
Time	• To describe the process whether stationary or non-stationary

Recap (Perception-Action cycle)

Figure. Role of power spectrum sensing in cognitive radio networks

Time-Frequency Analysis

- Three typical theories of sensing:
 - Stationary \rightarrow Wiener-Kolmogorov theory
 - Non-stationary \rightarrow Loève theory
 - Cyclostationary \rightarrow Fourier theory

• Overview of the theories:

Wiener- Kolmogorov	• Compute a statistical estimate of underlying process using a related signal as an input
Loève	• Model the underlying process in probabilistic approach
Fourier	• Model the underlying process in either probabilistic or deterministic approach

Traditional Loève Theorm

• For a *complex continuous stochastic* process which is *harmonizable*, we can

write the **sample function** as:

$$x(t) = \int_{-1/2}^{1/2} e^{j2\pi vt} dX(v)$$
 frequency variable
polynomial for transfer function
correlation between two samples: $x(t_1), x(t_2)$ complex conjugation
Covariance function in the time domain is defined as:
$$\Gamma_L(t_1, t_2) = E[x(t_1)x^*(t_2)]$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j2\pi(t_1f_1 - t_2f_2)} \gamma_L(f_1, f_2) df_1 df_2$$

• Loève spectrum for two frequencies in a non-stationary process is defined as:

 $\gamma_L(f_1, f_2) df_1 df_2 = E[dX(f_1) dX^*(f_2)]$

Continuity Problem

• Both the spectrum $\gamma_L(f_1, f_2)$ and covariance function $\Gamma_L(t_1, t_2)$ may include discontinuities:

Dealing with the Continuity Problem (1/2)

Solution – Rotate both the time and frequency coordinates by 45°.

1 Define new time coordinates as center t_0 and delay τ

$$t_1 + t_2 = 2t_0 \quad \not \rightarrow \quad t_1 = t_0 + \tau/2$$

$$t_1 - t_2 = \tau \quad \not \rightarrow \quad t_2 = t_0 - \tau/2$$

(2) Define new frequency coordinates as center **f** and delay **g**

$$f_1 + f_2 = 2f \qquad \Rightarrow \qquad f_1 = f_0 + g/2$$

$$f_1 - f_2 = g \qquad \Rightarrow \qquad f_2 = f_0 - g/2$$

• Now, the **covariance function** of the time domain can be redefined.

$$\Gamma_{L}(t_{1},t_{2}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j2\pi(t_{1f_{1}}-t_{2f_{2}})} \gamma_{L}(f_{1},f_{2}) df_{1} df_{2}$$
$$\Gamma_{L}(t_{0},\tau) = \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} e^{j2\pi(t_{0}g-\tau f)} \right\} \gamma_{L}(f,g) df dg$$

Dealing with the Continuity Problem (2/2)

- So far so good?
 - Covariance function $\Gamma_L(t_0, \tau)$: **Solved** with the shiftings! \bigcirc
 - Spectrum $\gamma_L(f, g)$: Discontinuity **problem at g = 0** still remains! \otimes

- Solution:
 - Transform rapid variations expected around g = 0 into a slowly varying function t_0 .
 - Instead of generalized spectral density 'γ', use dynamic spectrum by applying the inverse Fourier transform to γ(f,g).

$$D(t_0, \mathbf{f}) = \int_{-\infty}^{\infty} e^{j2\pi t_0 g} \gamma_L(f, g) dg$$

Spectral coherences of non-stationary processes

Problem – Insufficient for a complete second-order description!

Second-order statistics of Loève spectrum

- Key Idea:
 - Use "inner" and "outer" subscripts to distinguish between spectral correlations

I.
$$\gamma_{L,inner}$$
 = Loeve spectrum of the 1st kind

- *II.* $\gamma_{L,outer}$ = Loeve spectrum of the 2nd kind (get rid of complex conjugation)
- Redefine the estimate of Loève spectral correlation:

$$\gamma_{L,inner}(f_1, f_2) = \frac{1}{K} \sum_{k=0}^{K-1} X_k(f_1) X_k^*(f_2)$$

$$\gamma_{L,outer}(f_1, f_2) = \frac{1}{K} \sum_{k=0}^{K-1} X_k(f_1) X_k(f_2)$$

Framework for Loève spectral correlation

Cyclostationarity

- A **non-stationary** process that does *not* include a **trend-like** behavior.
- The **statistics** of a stochastic process **vary** *cyclically* **with time**.
- Details:

Let
$$T_0$$
 = the period of $x(t)$.

Cyclostationary Process

 \Leftrightarrow The **autocorrelation** sequence $\mathbf{R}_{\mathbf{x}}(.)$ is periodic with the same period \mathbf{T}_0 :

$$R_{\chi}(t + T_0 + \tau/2, t + T_0 - \tau/2) = R_{\chi}(t + \tau/2, t - \tau/2)$$

 $\Gamma_L(t_0,\tau)$

 \Leftrightarrow Mean is also periodic with the same period T₀.

An example of a Cyclostationary Process

 A cyclostationary process can be viewed as multiple interleaved stationary processes.

Fourier framework of cyclic statistics

- Define the *inner* and *outer* cyclic power spectrums using Fourier theory.
- Details:

• $\alpha = n/T_0$ is infinite set of frequencies where $T_0 =$ period, n = 0, 1, 2, ...

• Cyclic power spectrums:

$$S_{inner}(t,f) = \sum_{\alpha} s_{inner}^{\alpha}(f) e^{j2\pi\alpha t}, \quad S_{outer}(t,f) = \sum_{\alpha} s_{outer}^{\alpha}(f) e^{j2\pi\alpha t}$$

• Fourier coefficients for varying
$$\alpha$$
:

$$s_{inner}^{\alpha}(f) = \lim_{T \to \infty} \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \frac{1}{T} \{X_T(t, f + \alpha) X_T^*(t, f - \alpha)\} dt$$
no complex conjugation

$$s_{outer}^{\alpha}(f) = \lim_{T \to \infty} \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{-\Delta t/2}^{\Delta t/2} \frac{1}{T} \{X_T(t, f + \alpha) X_T^*(t, f - \alpha)\} dt$$

Framework for Fourier spectral correlation

Fourier Vs Loève Framework

	Loève	Fourier
Type of process	Non-stationary	Cyclostationary
Multiplying factor	$e^{-j2\pi f_1t} e^{-j2\pi f_2t}$	$e^{j2\pilpha t} e^{-j2\pilpha t}$
Power Spectrum Estimation Method	Multi Taper Method (MTM)	Narrowband filter
Cross-correlator input	$X_k(f_1) \\ X_k(f_2)$	$X_T(f + \alpha/2) X_T(f - \alpha/2)$
Cross-correlator output	$\gamma_L(f_1, f_2)$	$s^{\alpha}(f) \begin{cases} f_1 = f + \alpha/2\\ f_2 = f - \alpha/2 \end{cases}$

Fourier Vs Loève Framework (2/2)

Summary

- Spectrum becomes a scarce resource due to the rapid growth of demand in wireless communication.
- Cognitive radio introduces an efficient use of the unlicensed bands by sensing the spectrum holes.
- This chapter introduced **two theories** for sensing the environment:
 - Loève Any non-stationary process
 - Fourier Cyclostationary process

Thanks for your attention \bigcirc