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Background

. Why do we need power spectrum sensing? carce Spectrum Proble

= Goal:

1. Use of vacant bandwidth

2. Sharing of bandwidth with adaption
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Power Spectrum Sensing

. Three essential dimensions of sensing:

Frequency o To identify location of spectrum holes along the frequency axis

Space * To “sniff” the RF environment along different directions

Time » To describe the process whether stationary or non-stationary

Stationary Time Series Non-stationary Time Series
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Recap (Perception-Action cycle)

Radio environment ,?

Transmit signal Spectrum sensing

Action to illuminate Perception of
the environment the environment
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Spectrum decision
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Transmitter Receiver

Figure. Role of power spectrum sensing in cognitive radio networks
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Time-Frequency Analysis

. Three typical theories of sensing:

Power Spectrum in Use
. Stationary > Wiener-Kolmogorov theory | ie sy
" Non-stationary - Loéve theory
. Cyclostationary - Fourier theory
White Spaces > Freaeney
. Overview of the theories:
Wiener- « Compute a statistical estimate of underlying process using a related signal as

Kolmogorov an input

Model the underlying process in probabilistic approach

Fourier Model the underlying process in either probabilistic or deterministic approach
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Traditional Loeve Theorm

. For a complex continuous stochastic process which is harmonizable, we can

write the sample function as:

e
x(t) = 1/2 QX( ~ frequency variable

polynomial for transfer function

correlation between two samples: x(t,), X(t,) complex conjugation [ &
Re time domadn is defined as:

= Covariance function 1
I (t1,tp) =

=y

| | erontn) y i p dfiar,

— 00 — 00

. Loeve spectrum for two frequencies in a non-stationary process is defined as:

v.(f1, f2) dfidf, = E[dX(f1)dX™(f2)]
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Continuity Problem

. Both the spectrum y; (f;, f») and covariance function I3 (t;,t,) may include

discontinuities:

Signal versus Time
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Dealing with the Continuity Problem (1/2)

. Solution — Rotate both the time and frequency coordinates by 45°,

@  Define new time coordinates as center t, and delay t
t,+t,=2ty, > t,=t,+7/2

@  Define new frequency coordinates as center f and delay g
ff+f,=2f =2 f,=f,+g/2

= Now, the covariance function of the time domain can be redefined.

I, (ty,ty) = f Jejzn(tlfl_tzfz)h(fl:fz)dfldfz

— 00 — 00

I, (to,7) = f {f ejzn(t"g_rf)}n(f,g)dfdg

(0.0)
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Dealing with the Continuity Problem (2/2)

. So far so good?

. Covariance function 1;, (tq, t): Solved with the shiftings! ©

. Spectrum y; (f, g): Discontinuity problem at g = 0 still remains! ®

. Solution:
. Transform rapid variations expected around g = 0 into a slowly varying function t,.
. Instead of generalized spectral density ‘y’, use dynamic spectrum by applying the

inverse Fourier transform to y(f,g).

(0]

D (to, 1) = j el?m™9 y, (f, ) dg

— 0O
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Spectral coherences of non-stationary processes

Details:

0.00 0.01 0.02 0.03 0.04

Let X, (f;) and X,(f,) denotes the multitaperfourier transforms of the

sample function x(t), where(k = k" Slepian taper,

Apply on traditional Loéve theorem: complex conjugation

K-1
1
n(hf) =7 ; Xe () Xil ()

Problem — Insufficient for a complete second-order description!
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Second-order statistics of Loeve spectrum

. Key ldea:
. Use “inner” and “outer” subscripts to distinguish between spectral correlations
A YLinner = L0Oeve spectrum of the 1%t kind

II. Y outer = LOeve spectrum of the 2" kind (get rid of complex conjugation)

. Redefine the estimate of Loeve spectral correlation:
complex conjugation

K—-1
1
VL,inner(fl: fz) = E Z Xk(fl) Xlt(fz)

no complex conjugation

k=0
K-1
1
VL,outer(flifz) = E ; Xk(fl) Xk(fz)
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Framework for Loeve spectral correlation

exp(—j2mfit)

Time series

x(1)

T

exp(—j2mfst)

uuuuuu

Slepian taper
vi(1)
Multitaper  |[Xx(/1)
method Cross-
correlator
with
e
over
the set of
Multitaper K Slepian tapers
method Xi(f5)
Slepian taper o
g 10°
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YL(f1. f2)

Cross- Function
correlation used
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Cyclostationarity

. A non-stationary process that does not include a trend-like behavior.

. The statistics of a stochastic process vary cyclically with time.

= Detalils:

[L (to, T)

. Let T, = the period of x(t).
- Autocorrelation = correlatiof of a signal with itself at different points of time

. Cyclostationary Process

<The autocorrelation sequence R (.) is periodic with the same period T:

R, (t+Tyg+Y,,t+Ty—1Y,) =R, (t+Y,,t —1/,)

< Mean is also periodic with the same period T,,.
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An example of a Cyclostationary Process

=  Acyclostationary process can be viewed as multiple interleaved

stationary processes.

Conjugate Cyclic Autocorrelation

-15 o (MHz)
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Fourier framework of cyclic statistics

. Define the inner and outer cyclic power spectrums using Fourier theory.

. Details:
. a = n/T, Is infinite set of frequencies where T, = period,n=0, 1, 2,....

i polynomial for transfer function
. Cyclic power spectrums:

Sunner ) = > Coner OTD | Syt = Z

. Fourier coefficients for varying a: complex conjugation

st o or(f) = lim lim — —{Xr(t,f +a) X7(t,f —a)} dt
mer T—o0 At—0 At J—At/z r ! no complex conjugation

1 r-At/Z 1 /
Souter(f) = lim lim — “Xr@t f+a) Xt f —a)} dt

T—oo At—0 At J—At/z T
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Framework for Fourier spectral correlation

: = 2
Midband frequency h . f+af
L f fo=f—-a/2
exp(—jmat) L
XF(f+ al2)
_ —> Nar%ol-?élsand p| Cross-
Cyclostationary correlator
signal with Estimate of
x(2): averaging Fourier
. —PT—' performed » spectral
<< —= over correlation
2 2 time S (1)
Narrowband |X7° (/' = @/2) 1]1r1terval
filter > ﬂ

_T T Cross- Function
exp(Jm aq Midband frequency correlation used
s

1st kind ST
a = n/T, (infinite set of frequencies) ond kind

Sguter (f)
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Fourier Vs Loeve Framework

_oeve

Fourier

Type of process

Non-stationary

Cyclostationary

Multiplying factor

e—janlt
e—]ZT[fzt

ejZnat

e—jZnat

Power Spectrum Estimation
Method

Multi Taper Method (MTM)

Narrowband filter

Cross-correlator input ))g" 8:1% ?8; T Zﬁg
k\J2 T -
Cross-correlator output v (fi, f2) s (f) {fl =f+ a/2

fo=f-a/2
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Fourier Vs Loéeve Framework (2/2)

Slepian taper

exp(—j2rf;) Vi)
) Multitaper | Xx(f1)
method Cross-
Time series ;cr:ﬁlelatcr
X | averaging Efgt]imate
performed of Loeve
; spectral
?t::get of correlation
i : Multitaper K Slepian tapers (s f)
? method Xk(fl]
exp(—j2n 1) Slepian taper
vil f)
Midband frequency
exp(—jrar) i
band | XF (F+ @2)
| : Nar%olg ?and Cross-
Cyclostationary correlator
signal with Estimate of
x(1): ave;agingd Fourier
I performed Ly, spectral
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Summary

. Spectrum becomes a scarce resource due to the rapid growth of demand

In wireless communication.

- Cognitive radio introduces an efficient use of the unlicensed bands by
sensing the spectrum holes.

= This chapter introduced two theories for sensing the environment:

. Loéve — Any non-stationary process

. Fourier — Cyclostationary process
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Thanks for your attention ©
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