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EKF, a reliable solution? S

0 Linearized transformations’ limitations
= Only reliable if the error propagation can be well approximated by a linear function;
> At best, undermines the performance
» At worst, causes its estimates to diverge.
= Feasible only if the Jacobian matrix exists;
> Jump-linear process models
> Highly quantized sensor measurements

= Calculating Jacobian matrices can be a very difficult and error-prone process.

Nonlinear transformation effects SR

0 A random variable x
= mean [,
= covariance Z,.
0 A second random variable, z
z = h[x]
0 How is the statistics of z characterized?

» mean {,

= covariance Z,




Polar to Cartesian Coordinate Transformations (1) '
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Polar to Cartesian Coordinate Transformations (2) '
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Unscented Transformation advantages

0 Black box filtering library

0 The same computational cost as the EKF

0 Not sensitive to the choice of sigma points

0 Can be used with discontinuous transformations

0 pth-order nonlinearity captured = the first pth-order moments captured

Background

Q Under the Gaussian assumption, we wish to compute multidimensional integrals

of a special form

f (nonlinear function) X (Gaussian function)dx

h(f) = L f(x) exp(—xTx) dx

0 How can we efficiently approximate this integral?

Converting to spherical-radial integration
0 Change of variables from the Cartesian coordinates to spherical-radial ones
r(f) = f f frz)rMtexp(-r?)do dr
0 Juy

0wy, is the region defined by wy, = {z; 27z = 1}
0 o(.) is a spherical surface measure on 4y,

S@) = [ FOD0@)| iy spcrice

a The integral is converted to
o

h(f) = J S(T‘)TM_I exp(—rz) dr|m=) Gaussian quadrature!
0
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l Properties

Spherical Rule S\

0 Third-degree spherical rule taking the form

2M
f@do@ ~w ) flul;
i=1

um

0 The cubature points: at the intersection of an M-
dimensional hypersphere and its axes.

0 Solving for monomials f(z) = 1 and f(z) = z?
yields




Radial Rule a Properties

0 Gaussian quadrature (most efficient numerical method to compute an integral in a single dimension) L . . .
M a Derivative-free = Noise-smoothing capability

[remweax =y wmreo

D = 0 Regularization
0 Where

i 0 Inherits well-known properties of the linear Kalman Filter
) 1 e M
J; F)xMtexp(—x?) dx = 3 A F(VE)EZ exp(—t) dt = Square-root filtering
o first-degree generalized Gauss—LA;guerre rule! a Complexi ty
| [ A=t exp(—a) de = wafix) , , A
0 = Linear in the number of function evaluation
1 (M M .
wy =37 (?), X = j; « Complexity grows as M3

= Eases the curse of dimensionality

Spherical-radial rule (1) o

Proposition 1: Let the radial integral be computed numerically by an m,-point Gaussian

quadrature rule
my

“ M-1 ) dr = F(r
Lf(‘r)r exp(—r?)dr ;a,f(rl)

Let the spherical integral be computed numerically by an mg-point spherical rule
ms
f Frs)o(s) = Y bf(rs))
um j=1

g:ﬁeasn ungz;t;; ;n,)-point spherical-radial cubature rule is approximately given by the ' UKF vs. ?KF The curse of
(1 dimensionality

ms my

fRMI (r)rM-1exp(—xTx) dx = Z Z aib;f(ris;)

==
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Spherical-radial rule (2) o UKF vs. CKF (1) A\

o We can now numerically compute the standard Gaussian weighted

A sigma point-set for the UKF cubature point-set for the CKF
integral
2M
() = ) wif &)
i=1
where the cubature-point set is
1 \2M
{fi =eVM,w; = m}i=l

where e; is the canonical unit vector.




UKF vs. CKF (2) S\ Section 5

UKF CKF
0 Heuristic 0 Mathematically rigorous
= Scaling parameter k = No scaling parameter
» %= 0 comesponds to the cubsture point-set 0 2M cubature points e
a (2M + 1) sigma points = Symmetrically distributed on the surface of a I perceptrons
= One point at the origin and the rest 2M-dimensional ellipsoid
symmetrically distributed on the surface of 2 o Curse of dimensionality problem Stale-space o g :
2M-dimensional ellipsoid . . | ' T Supervised Accommodative
= Even set of weighted cubature points Review of RMHP i traming of an Decoupled EKF Learning” or
= The presence of a weighted sigma-point at RMLP using EKF

fraining “Meta LeaminP"

the origin weakens its approximating power
0 Curse of dimensionality problem
= Odd set of weighted sigma-points

The curse of dimensionality o Review of RMLP o

0 Computational complexity of the state-estimation problem grows Bank of
unit-time delays

exponentially with increasing dimensionality of the state-space model.

0 Stochastic differential equation

d Xin Fifst Second Output o1
—x(t) = a(x(t — 1)) + w(t) ; mgdl hidden utp Output
dt Input layer layer ayer vector
vector Mg '
. . e . . X |
0 When discretizing the problem, we should assign a certain number of L L Xiptl

. . : : Multilayer perceptron with
| Yer percep)
quantlzatlon levels to each dimension! multiple hidden layers

State-space model of an RMLP undergoing training (2) ~
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State-space model of an RMLP undergoing training (1) A

0 Let the vector w,, denote the synaptic weights
0 State-space model of the network

= System equation

W, =w, +w,
= Measurement equation
dy = bWy, vy, uy) + vy

0 where

= The dynamic noise w, is of covariance matrix Q.

> To anneal the supervised training

= The measurement noise v, is of diagonal covariance matrix R,,.

= d, is the observable.

= u, denotes the input signal.

= v, represents the recurrent node activities inside the network.

Supervised training of an RMLP using EKF (1) '

Q Training sample: {u,, d,}N_,
0 The weight update

Wnln = Wnln—l + G (dn — b(Wp_q, vy, uy))
0 nonlinear RMLP = nonlinear sequential state-estimator.

yer perceptron (RMLP): Output vector

Supervised training of an RMLP using EXF (3) /'

Traditional applications of the Kalman filter

Supervised training of a recurrent NN

Kalman Filter

Predictor J
Corrector ‘

Recurrent Neural Network

Extended Kalman Filter

Corrector ‘

Decoupled EKF o

0 How to reduce the complexity of EKF?

0 Ignore the interactions between the estimates of certain weights in the
recurrent neural network by partitioning them into g disjoint weight groups

0 Mutually exclusive weight groups = block diagonal covariance matrix
Q p output nodes and W weights
0 Complexity of EKF
» Computational complexity: 0(pW?)
+ Storage requirements: 0 (W?2)
0 Complexity of DEKF
» Computational complexity: 0(pW? + p T5_, W?)
« Storage requirements: 0(X2_, W?)

A
i

“Accommodative Learning” or “Meta Learning” '

0 Consider a recurrent neural network embedded in a stochastic environment
with relatively small variability in its statistical behavior. Provided that the
underlying probability distribution of the environment is fully represented
in the supervised-training sample supplied to the network, it is possible for
the network to adapt to the relatively small statistical variations in the
environment without any further on-line adjustments being made to the
synaptic weights of the network.

0 Only valid for recurrent networks because dynamic state of a recurrent
network actually acts as a “short-term memory” that carries an estimate or

statistic of the uncertain environment for adaptation in which the network is

embodied.

Conclusion - &

0 Linearization in the EKF causes the estimate to be biased and inaccurate;

0 UKF and CKF improve the accuracy of nonlinear estimation using a set of points
= Derivation of CKF is mathematically rigorous while that of UKF is heuristic;
= UKEF uses an odd set of points whereas CKF uses an even set of points;
= UKF has a scaling parameter that needs to be set whereas CKF does not;

0 CKF is better than UKF in terms of accuracy and complexity!

0 Recurrent Neural Networks can be trained using a nonlinear state estimator

0 RMLPs can adapt to small changes in the environment provided that the

statistics of the environment has been given to the network while training.



The End

Thank you!
Any questions?



