

Chapter 3. Reinforcement Learning in RL for Adaptive Dialogue Systems, V. Rieser & O. Lemon

Course: Autonomous Machine Learning

Patrick Emaase

Biointelligence Laboratory School of Computer Science and Engineering Seoul National University

http://bi.snu.ac.kr

How can we develop an Autonomous Learning Dialogue Systems?

What concepts, behavior representation do we need to consider?

Summary

Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent's ability to behave optimally in the future to achieve the goal

Reinforcement Learning – Achieve goal successfully

- Learn how to behave successfully to achieve a goal while interacting with external environment, Learn via experience
 - Game playing know when its win or loss
- Well suited for dialogue strategy development as dialogue is learned by evaluative feedback with delayed rewards and exploration

Summary

Scope:

- RL in dialogue development Skills {1, ↓}
- Empirical Justification Why, Hence..
- Dialogue Simulation How to generalize

Peter Rabbit – Rewards known

- Mischievous and disobedient Exploratory
- Chased, escapes, rests, regrets
- Obedience: Sumptuous meal, mother's love
- Disobedience: Losses clothes, stomach ache

Peter Rabbit: An agent receiving rewards

RL: Objectives

- Model dialogue as a sequence of action (in global point-wise estimates)
- Mimic behaviour observed in non-stationary corpus and explore new strategies

Contents

Nature of Dialogue Interactions

- Dialogue is Temporal
- Dialogue is Dynamic
- Reinforcement Learning Based Dialogue Strategy Learning
 - Dialogue as a Markov Decision Process
 - Reinforcement in Learning Problem
 - Model based vs Simulation based Strategy Learning

Dialogue Simulation

- Wizard-of-Oz Studies
- Computer-based Simulations
- Discussion
- Application Domains
- Conclusion

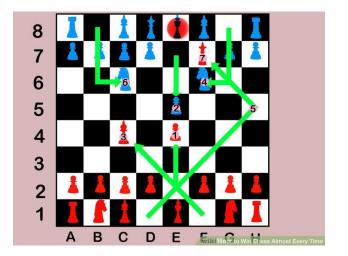
Nature of Dialogue Interaction

Dialogue is Temporal

- Goodness of action depends on dialogue progress; planning nec.
 - Actions affects the state, options and opportunities
- SL not suitable for dialogue strategy; potential for "multi-expert" learning

- RL Sequential decisions process
 - Based on delayed rewards (benefits apparent at the end of the dialogue; avoids local minima

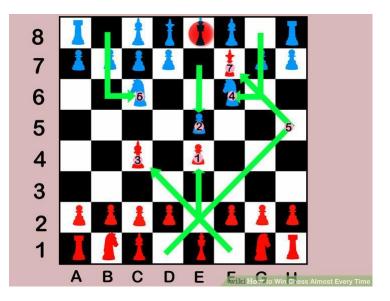
 RL – Chess player may sacrifice prawn for promising strategy at the long-run



Nature of Dialogue Interaction

Dialogue is Dynamic

- Interaction in stochastic environment Dynamic {conditions change, differential reaction by agents unpredictable}. Need robust strategy
- .: chess players strategize think ahead {sequence of action choices}
 - Good player dynamically explores; winning – rewarded; loosing – punished
 - Language Learners improve communicative skills over time {encouragement, correction}



In conclusion

Reinforcement Learning:

- Learns by exploration learning robust strategies, appropriate for unseen states
- Learns by experience
- Simulation Based RL Ensures enough exploration
- Explores most strategies at low cost

RL – based Dialogue Strategy Learning

Dialogue as a Markov Decision Process

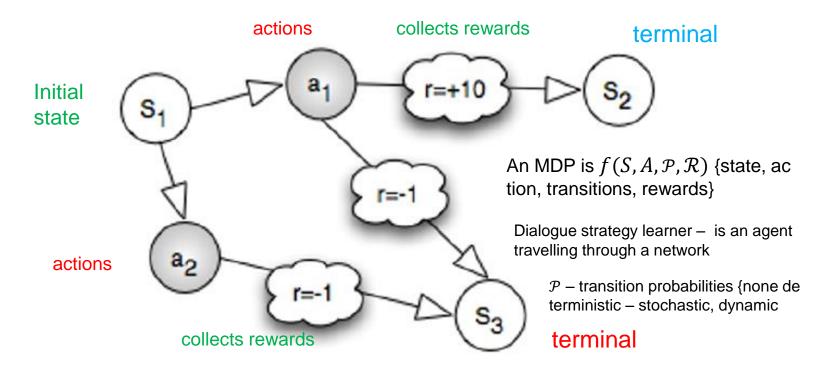


Fig. 3.2 RL with Markov Decision Process (MDP): The learning agent travels through a network of interconnected states. At time *t*, the agent is in state s_t , takes an action a_t , transitions into state s_{t+1} according to the transition probability $p(s_{t+1}|s_t.a_t)$, and receives rewards r_{t+1}

RL – based Dialogue Strategy Learning

Specialized MDP – accounts temporal nature of dialogue

- Markov Property requires that the state and reward at time t + 1 only depends on the state and action at time t.
 - State at step t information available to agent about its environment; Summarize past sensations, retains all "essential" info
- Markov Property:

$$P(s_{t+1}, r_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, r_{t-1}, \dots, s_0, a_0) \approx P(s_{t+1}, r_{t+1}|s_t, a_t)$$
(3.1)

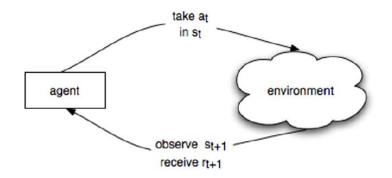


Fig. 3.2 The agent interacting with a stochastic environment and actively influencing its behavior by taking action a_t in state s_t , The changes in the environment are observed (o_{t+1}) and a reward is received r_{t+1}

Dialogue as a MDP

- State space (S) reachable states for agent
- Action set (A) All actions available to agent
- State transition function $(\mathcal{P}) dynamics$ of environment
 - Next state $s' \in S$ is likely to follow when taking action $a \in A$ in states $s \in S$. \mathcal{P} is defined over $\mathcal{P}: S \times A \times S \longrightarrow [0,1]$ where:

$$\mathscr{T}^{a}_{ss'} = P(s_{t+1} = s' | a_t = a, s_t = s);$$
(3.2)

- Reward function Value for a decision
 - For state s_t and action a_t expected reward value:

$$\mathscr{R}^{a}_{ss'} = E(r_{t+1}|s_t = s, a_t = a, s_{t+1} = s);$$
(3.3)

Reward critical for learning

Dialogue as a MDP

■ State space (*S*) − reachable states for agent

- Dialogue features knowledge about dialogue history (\check{s}_d) , user input action (\check{a}_u) [e.g. confidence values], and task level features (\check{s}_u)
- Action set (A) All actions available to agent
 - Dialogue actions to be learned represented as abstract semantic Speech Acts on the intentional level

State transition function (\mathcal{P}) – dynamics of environment

■ Next state $s' \in S$ is likely to follow when taking action $a \in A$ in states $s \in S$. \mathcal{P} is defined over $\mathcal{P}: S \times A \times S \longrightarrow [0,1]$ where:

$$\mathscr{T}^{a}_{ss'} = P(s_{t+1} = s' | a_t = a, s_t = s);$$
(3.2)

Reward function – Reward for a decision

• For state s_t and action a_t expected reward value:

$$\mathscr{R}^{a}_{ss'} = E(r_{t+1}|s_t = s, a_t = a, s_{t+1} = s);$$
(3.3)

Partially Observable MDP (POMDP)

History and State

History – Sequence of observations, actions, rewards

- $H_t = O_1, R_1, A_1, \dots, O_{t-1}, R_t, A_t$ {all observable variables up to time t}
- State information used to determine what happens next $S_t = f(H_t)$

Information state – (Markov state) contains useful info

- Environment State S_t^e Environment's private representation
 - Data for picking next observation/reward
- Agent State S_t^a agent's internal representation
 - Info agent uses to pick next action, used by RL algorithm
- Can be any function of history

$$S_t^a = f(H_t)$$

Partially Observable MDP (POMDP)

Definition

• A state S_t is Markov if and only if

 $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, \dots, S_t]$

"The future is independent of the past given the present"

- Once the state is known, the history may be thrown away The state is a sufficient statistic of the future
- The environment state S_t^e is Markov, the history H_t is Markov

Rat Example

Partially Observable MDP (POMDP)

MDP – entire space is fully observable

- Uncertainty represented as state feature encoding [low, high; or confirmed or unconfirmed
- Fully observability: Agent directly observes the environment state; $O_t = S_t^a = S_t^e$; Agent state = environment state = information state
- Partial Observability: agent indirectly observes environment
 - Observes current state, agent state ≠ environment state

• In POMDP - Agent constructs its own state representation S_t^a providing

- Complete History: $S_t^a = H_t$
- Beliefs of environment state: $S_t^a = (\mathbb{P}[S_t^e = s^1], ..., \mathbb{P}[S_t^t = s^n])$
- Recurrent neural network: $S_t^a = \sigma(S_{t+1}^a W_s + O_t W_0)$

POMDP – Belief Monitory

Belief Monitoring –

- POMDP encodes uncertainty by representing current dialogue state s as a belief state b(s) distribution of the possible states
- Belief Monitoring Update belief state based current observation o
- Belief state update:

$$b'(s') = P(s'|o', a, b(s)) = k \times P(o'|s', a_s) \sum_{s \in S} P(s'|a, s) b(s);$$
(3.4)

- b'(s') = estimated belief state, P(s'|o', a, b) = probability of being in a state s' given observation o', the user action a and the current belief state b(s).
- Re-written as probability of observing o' in state s' and given a system action a_s , given transition probability for current belief state to the new state s, k is normalization constant
- POMDP: Can track multiple hypotheses simultaneously; fast backtrack and correct errors; User's goal info accumulates over dialogue turns; scaling up problem – computationally very expensive and intractable for dialogue system
- MDP Looses alternative hypothesis info; complex in error discovery and correction
 - Approximation possible

Reinforcement Learning problem

- MDP allows dialogue management strategy (policy) {agent's behavior} to map state to action $\pi: S \rightarrow A$
- Elements of RL {Policy, action, Reward, discount factor}
 - Policy π Selections action of highest rewards during a dialogue
 - Deterministic policy $a = \pi(s)$
 - Stochastic policy $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$
 - The final Reward *R* total discounted return received from time *t*. Discount factor *γ* weights rewards (immediate rewards 0; further future -1); *γ*=0 RL maximizes the immediate utility; *γ*=1 takes into consideration future rewards.

$$\mathscr{R}_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \ldots = \sum_{k=0}^{I} \gamma^{k} r_{t+k+1}$$
(3.5)

Reward \mathcal{R}_t - intrinsic desirability of a state or action; policy discovered via trial-anderror search through interaction btw. learning agent and its dynamic environment

Reinforcement Learning problem

• Value Function $V^{\pi}(s)$

- Long term desirability of a state considering all likely subsequent states
- V value of a state; is future expected reward for visiting states s following policy π subsequently

$$V^{\pi}(s) = E_{\pi}(\mathscr{R}|s_t = s) \tag{3.6}$$

 Value function V is a prediction of future reward; evaluates goodness/badness of a state; selects actions

• Q-function $Q^{\pi}(s, a)$ - Expected return

• The value function can be re-written as the Q-function $Q^{\pi}(s, a)$ - is expected return for taking action a in a given state a and following policy π thereafter

$$Q^{\pi}(s,a) = E_{\pi}(\mathscr{R}|s_t = s, a_t = a)$$
(3.7)

• $V^{\pi}(s)$ and $Q^{\pi}(s, a)$ can be formulated recursively using Bellman equations

Bellman Equations

Using equation 3.2 and 3.3 the resulting equations are Bellman's equations

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} \mathscr{T}^{a}_{ss'} [\mathscr{R}^{a}_{ss'} + \gamma V^{\pi}(s')]$$
(3.8)

$$Q^{\pi}(s,a) = \sum_{s'} \mathscr{T}^a_{ss'} [\mathscr{R}^a_{ss'} + \gamma V^{\pi}(s')]$$
(3.9)

 Bellman equations describe the expected reward for taking action prescribed by policy π. The equations for the optimal policy π* are referred to as Bellman optimality equations:

$$V^{*}(s) = \max_{a} \sum_{s'} \mathscr{T}^{a}_{ss'} [\mathscr{R}^{a}_{ss'} + \gamma V^{*}(s')]$$
(3.10)

$$Q^{*}(s,a) = \sum_{s'} \mathscr{T}^{a}_{ss'} [\mathscr{R}^{a}_{ss'} + \gamma \max_{a} Q^{*}(s',a')]$$
(3.11)

 Finding an optimal policy by solving the Bellman Optimality Equations requires accurate knowledge of the environment dynamics, time and space

Summary

The value of a state is the expected return starting from that state; depends on the agent's policy:

State-value function for policy π :

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s \right\}$$

• The value of taking an action in a state under policy π is the expected return starting from that state, taking that action, and thereafter following π :

Action - value function for policy
$$\pi$$
:
 $Q^{\pi}(s, a) = E_{\pi} \left\{ R_t \mid s_t = s, a_t = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}$

Bellman Equation for a Policy π

The basic idea:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \cdots$$
$$= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \cdots \right)$$
$$= r_{t+1} + \gamma R_{t+1}$$

So:

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \mid s_{t} = s \right\}$$
$$= E_{\pi} \left\{ r_{t+1} + \gamma V(s_{t+1}) \mid s_{t} = s \right\}$$

Or, without the expectation operator:

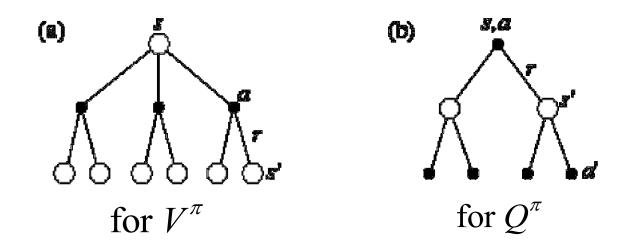
$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

More on the Bellman Equation

$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \left[R^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

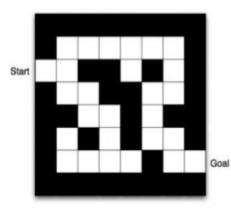
This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

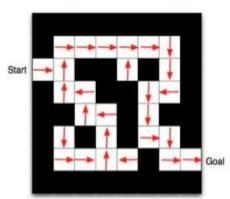
Backup diagrams:



RL Algorithms

Maze example: r = -1 per time-step and policy





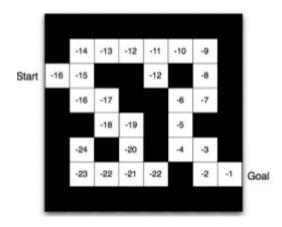
Actions: N, E, S, W; States: Agents location; Arrows: policy $\pi(s)$ for each state *s*.

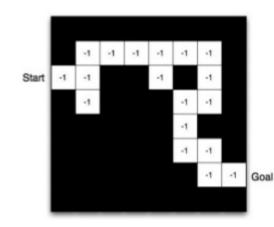
- A Model predicts what the environment will do next
- *P* predicts the next states
- *R* predicts the next (intermediate) rewards
 - Agent may have an internal model of the environment
 - Dynamics: how actions change the state
 - Rewards: How much reward from each state

- Categorizing RL agents
 - Value Based
 - No policy (implicit)
 - Value function
 - Policy Based
 - Policy
 - No Value Function
 - Actor Critic model
 - Policy
 - Value Function

RL Algorithms

Maze example: Value function and Model





- Grid layout represents the transition model P^a_{ss},
- Numbers represents immediate reward *R*^a_s

Categorizing RL agents

- Model Free
 - Policy and/or Value Function; No model; Example: Dynamic Programming (DP)
- Model Based
 - Policy and or Value Function; Model; ex. Temporal Difference and Monte Carlo

Algorithms for RL

Dynamic Programming

Model based approach;

Temporal Difference and Monte Carlos

Model-free (simulation) – explicitly models the dynamics of the environment

Mechanisms of RL algorithms

- Learn by incrementally updating the expected Q-values for each action pairs, estimating the Bellman optimality equation
 - Initialize Q-values to arbitrary value
 - Visualize process as a matrix of states vs actions
 - Update state-action pair Q_k for each iteration k
- Equation form

$NewEstimate \leftarrow OldEstimate + StepSize[Target - OldEstimate]$ (3.12)

Where Step-size – Learning rate (α); [*Target* – *OldEstimate*] – error to achieve Q^*

Algorithms for RL

	<i>s</i> 1	<i>s</i> ₂	<i>s</i> 3	<i>S</i> 4
a_1	0.0	0.0	0.0	0.0
a_2	0.0	0.0	0.0	0.0 0.0
<i>a</i> 3	0.0	0.0	0.0	0.0

Initialized state

Optimal policy selects *a* with highest expecte d value in each state *s*

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄
a_1	2.40	1.80	4.05	0.46
a_2	3.67	1.38	2.01	2.78
a_3	0.9	2.90	2.52	1.24

Terminal state

■ Stopping criterion: Q-value convergence [difference ≤ some threshold

DP vs TD – Differences

DP - Difference based on update of Q-values

- Updates Q-value off-line for every possible state action pair in a single iteration
- Requires explicitly model of the dynamics of the environment
 - Transition function fully defines the probability of moving from state $s \rightarrow s'$
 - Given transition probability and reward functions: P(s'|s, a); R(s, a) we can:

$$Q_t(s,a) \leftarrow R(s,a) + \sum_{s'} P(s'|s,a) \max_a Q_t(s',a')$$
 (3.13)

TP – Model-free

- No need for full model of the transition function
- Requires some sample episodes of state transitions; not all
 - Requires online exploration of large state-action pairs
 - Only sampled transitions contribute to improved Q*; requires online exploration

$$Q_t(s,a) \leftarrow Q_t(s,a) + \alpha \underbrace{[R(s,a) + Q_t(s',a')]}_{Target} - \underbrace{Q_t(s,a)}_{OldEstimate}]$$
(3.14)

Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome
 - From incomplete sequences
- Both MC and TD converge (under certain assumptions), but which is faster?

SARSA Algorithm

- Commonly used is SARSA (λ). λ eligibility trace factors to ensure rapid converge
- Reflects updating Q-values based on $(a_t, s_t, r_{t+1}a_{t+1}, s_{t+1})$.
- Is a greedy method updating the policy be greedy w.r.t current estimate

Algorithm 1 SARSA

- 1: $Q(s,a) \Leftarrow$ arbitrarily
- 2: repeat {for each episode:}
- 3: Initialise s
- Choose a from s using policy derived from Q (e.g. ε-greedy)
- 5: for all steps in the episode do
- 6: Take action a, observe r, s'
- Choose a' from s' using policy derived from Q (e.g. ε-greedy)
- 8: $Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma Q(s',a') Q(s,a)]$
- 9: $s \leftarrow s'; a \leftarrow a';$
- 10: end for
- until s is terminal

Basic facts – So far

What are do these exploration and exploitation strategies mean?

- Offline Data is fixed, agent learns from previous interaction
- Online agents interacts with environment including previously explored states
- On-policy Learns about policy currently executing
- Exploration Find more information about the environment
- Exploitation maximize/exploit know information to maximize reward
- Prediction: Evaluates the future for a given policy
- Control: Optimize the future, finding the best policy
- Learning: Using the history, predict (determine future) state while exploring the best policy [What, how, why, where]

Curse of Dimensionality

Is exponential growth of policies with state and action spaces

- Four binary features and 3 action states = $3^{2^4} \rightarrow 43,046,721$ policies
- To reduce state space for learning proposed [many approaches]
 - Feature reduction; Reduction of possible state-action combinations; Summarizing similar states

Dialogue - application

- Dialogue is represented as vector of real valued features f(s) learns function approximation; f(s) is mapped to vector of estimate Q(s, a)
- Given the weight weights trained on data, Q-function is re-written as the inner product of state vector f(s) and weighted vector w_a :

$$Q^{\pi}(s,a) = f(s)^T w_a = \sum_t f(s) w_{ai}$$
(3.15)

- Two are treated as similar if they share features affected in training
- Similarity measure is called Linear Kernel
- Simulation-based RL offers cheap learning by training the policy

So far

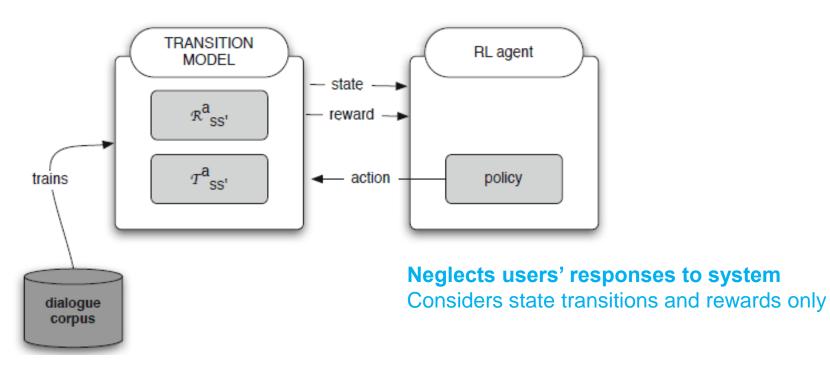
Agent-environment interaction

- States
- Actions
- Rewards
- Policy: stochastic rule for selecting actions
- Return: the function of future rewards the agent tries to maximize
- Episodic and continuing tasks
- Markov Property

Markov Decision Process

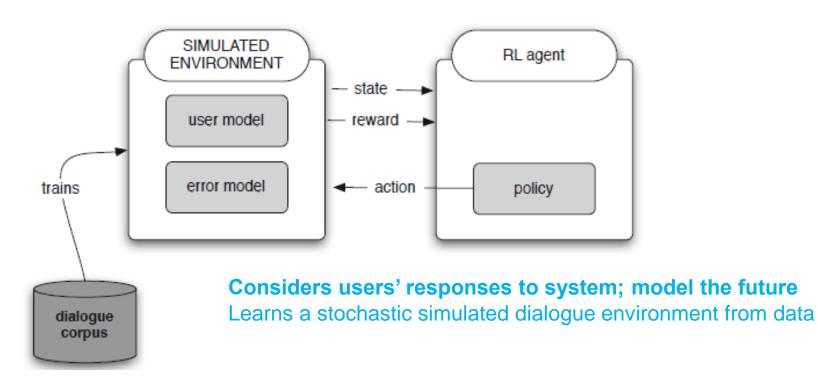
- Transition probabilities
- Expected rewards
- Value functions
 - State-value function for a policy
 - Action-value function for a policy
 - Optimal state-value function
 - Optimal action-value function
- Optimal value functions
- Optimal policies
- Bellman Equations
- The need for approximation

Model-based RL



- Approaches explicitly models dynamics of environment; learning via offline [limited agent-environment interaction]
- Limitation: Corpora not large enough all transition probabilities; learning limited to explored a-s combinations [inflexibility]; learning from fixed data – working systems already exist – What system do we need?

Model-based RL



Involves two phases: Simulated environment and RL agent (DS)

- SE including components trained via SL; includes user and error model [Dual architecture, CLS -> differential training];
- Dialogue strategy training trained by simulated MC or TD for systematic exploration, near optimal solution exploration; generalize unseen dialogue states

Simulation-Based RL

Model-free approach that directly approximates value function via online interaction;

Advantages

- Large training episodes generated exhaustive strategies exploration
- Exploration of strategies not in the training data [Unseen strategies exploration]
- No prior fixing of state space and actions dynamic scaling & modeling of dialogue

Challenges

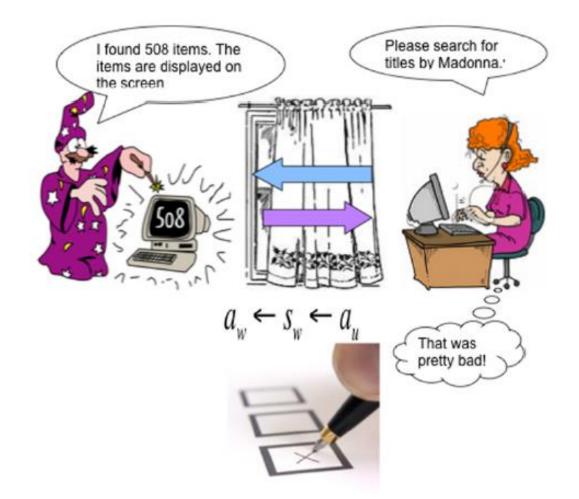
- Quality of learned strategy depends on quality of simulated environment
- Reward signal not readable from data; yet reward function must explicitly constructed
- Simulation results inability to replicate real user-dialogue performance
- Simulated components need in-domain data training expensive to collect & train

Hence generalizability and automatic dialogue learning feasible

Dialogue Simulation – WOZ

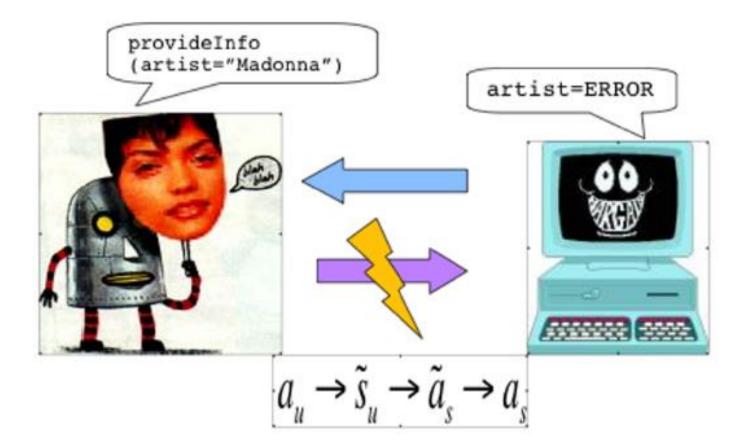
- Goal of Wizard-of- Oz: Characterize human behavior and user preferences; develop a language model and/or acoustic model for prototype system
- Procedure: Simulate, evaluate, generalize development system
 - Hidden operator (wizard) simulates some aspects of human behavior in dialogue [ensure real HCI illusion considering human dynamics in communication]
 - Subjects evaluate by filling out questionnaires
 - Generalize human behavior, develop models
- Dialogue simulation need to be able to approximate real HCI in order to facilitate dialogue system development and testing

Wizard of Oz simulation



Wizard simulates dialogue behavior; user interacts in they are talking to the belief that they are talking to a machine, rates a machine and rates the dialogue behavior

DS: Computer Based Simulation



Dialogue manager interacts with a simulated user over a noisy channel

DS: Computer-based Simulation

- Goals: Testing and debugging prototype systems; automatic strategy development [RL, SL]
- Error model: Simulates error prone ASR;
- Variation from real HCI due to:
 - Quality of simulated components
 - Simulated users cannot rate the system according to their preferences
- Discussion: Learnt Framework
 - Simulated Environment for RL from data collected in WOZ experiment
 - Enables automatic strategy learning

Application Domains

- Information-Seeking Dialogue Systems
- Multimodal Output Planning and Information Presentation
- Multimodal Dialogue Systems for In-car digital Music Player

Conclusion

Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent's ability to behave optimally in the future to achieve the goal

Reinforcement Learning – Achieve goal successfully

- Learn how to behave successfully to achieve a goal while interacting with external environment, Learn via experience
 - Game playing know when its win or loss
- Well suited for dialogue strategy development as dialogue is learned by evaluative feedback with delayed rewards and exploration