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How can we develop an Autonomous 

Learning Dialogue Systems?

What concepts, behavior representation do we 

need to consider?

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Summary

 Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent’s ability to 

behave optimally in the future to achieve the goal

 Reinforcement Learning – Achieve goal successfully
 Learn how to behave successfully to achieve a goal while interacting with 

external environment, Learn via experience

 Game playing – know when  its win  or loss

 Well suited for dialogue strategy development – as dialogue is learned by 

evaluative feedback with delayed rewards and exploration
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Summary

 Scope: 
 RL in dialogue development – Skills {↑, ↓}

 Empirical Justification – Why, Hence..

 Dialogue Simulation – How to generalize

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

Peter Rabbit: An agent receiving rewards

 Peter Rabbit – Rewards known
 Mischievous and disobedient - Exploratory

 Chased, escapes, rests, regrets

 Obedience: Sumptuous meal, mother’s love

 Disobedience: Losses clothes, stomach ache

 RL: Objectives

 Model dialogue as a sequence of action (in global point-wise estimates)

 Mimic behaviour observed in non-stationary corpus and explore new strategies
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Nature of Dialogue Interaction

 Dialogue is Temporal

 Goodness of action – depends on dialogue 
progress; planning nec.

 Actions affects the state, options and 
opportunities

 ∴ SL not suitable for dialogue strategy; 
potential for “multi-expert” learning
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 RL – Sequential decisions process
 Based on delayed rewards (benefits apparent 

at the end of the dialogue; avoids local minima

 RL – Chess player may sacrifice prawn 
for promising strategy at the long-run



Nature of Dialogue Interaction
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 Dialogue is Dynamic

 Interaction in stochastic environment –

Dynamic {conditions change, 

differential reaction by agents -

unpredictable}. Need robust strategy

 ∴ chess players strategize – think 

ahead {sequence of action choices}

 Good player dynamically explores; 

winning – rewarded; loosing – punished

 Language Learners – improve 

communicative skills over time 

{encouragement, correction}



In conclusion

 Reinforcement Learning:

 Learns by exploration – learning robust strategies, appropriate for unseen 

states

 Learns by experience

 Simulation Based RL – Ensures enough exploration

 Explores most strategies at low cost
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RL – based Dialogue Strategy Learning

 Dialogue as a Markov Decision Process
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Fig. 3.2 RL with Markov Decision Process (MDP): The learning agent travels 
through a network of interconnected states. At time 𝑡, the agent is in state 𝑠𝑡 , takes 
an action 𝑎𝑡, transitions into state 𝑠𝑡+1 according to the transition probability 
𝑝(𝑠𝑡+1|𝑠𝑡 . 𝑎𝑡), and receives rewards 𝑟𝑡+1

An MDP is 𝑓(𝑆, 𝐴,𝒫, ℛ) {state, ac

tion, transitions, rewards}

Dialogue strategy learner – is an agent 

travelling through a network

Initial 

state

collects rewards

actions terminal

terminal

collects rewards

actions
𝒫 – transition probabilities {none de

terministic – stochastic, dynamic



RL – based Dialogue Strategy Learning

 Specialized MDP – accounts temporal nature of dialogue

 Markov Property requires that the state and reward at time 𝑡 + 1 only depends 
on the state and action at time 𝑡.

 State at step 𝑡 information available to agent about its environment; Summarize 
past sensations, retains all “essential” info

 Markov Property:

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

Fig. 3.2 The agent interacting with a stochastic 
environment and actively influencing its behavior 
by taking action 𝑎𝑡 in state 𝑠𝑡 , The changes in the 
environment are observed (𝑜𝑡+1) and a reward is 
received 𝑟𝑡+1



Dialogue as a MDP

 State space (𝑆) – reachable states for agent

 Action set (𝐴) – All actions available to agent

 State transition function (𝒫) – dynamics of environment
 Next state 𝑠′ ∈ 𝑆 is likely to follow when taking action 𝑎 ∈ 𝐴 in states 𝑠 ∈ 𝑆.

𝒫 is defined over 𝒫: 𝑆 × 𝐴 × 𝑆 ⟶ [0,1] where:

 Reward function – Value for a decision

 For state 𝑠𝑡 and action 𝑎𝑡 expected reward value:

 Reward critical for learning
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Dialogue as a MDP

 State space (𝑆) – reachable states for agent
 Dialogue features – knowledge about dialogue history (  𝑠𝑑), user input 

action (  𝑎𝑢) [e.g. confidence values], and task level features (  𝑠𝑢)

 Action set (𝐴) – All actions available to agent
 Dialogue actions to be learned represented as abstract semantic Speech 

Acts on the intentional level

 State transition function (𝒫) – dynamics of environment
 Next state 𝑠′ ∈ 𝑆 is likely to follow when taking action 𝑎 ∈ 𝐴 in states 𝑠 ∈ 𝑆.

𝒫 is defined over 𝒫: 𝑆 × 𝐴 × 𝑆 ⟶ [0,1] where:

 Reward function – Reward for a decision

 For state 𝑠𝑡 and action 𝑎𝑡 expected reward value:
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Partially Observable MDP (POMDP)

 History and State

 History – Sequence of observations, actions, rewards

 𝐻𝑡 = 𝑂1, 𝑅1, 𝐴1, … , 𝑂𝑡−1, 𝑅𝑡, 𝐴𝑡 {all observable variables up to time t}

 State – information used to determine what happens next
𝑆𝑡 = 𝑓(𝐻𝑡)

 Information state – (Markov state) contains useful info

 Environment State 𝑆𝑡
𝑒– Environment’s private representation

 Data for picking next observation/reward

 Agent State 𝑆𝑡
𝑎 - agent’s internal representation

 Info agent uses to pick next action, used by RL algorithm

 Can be any function of history

𝑆𝑡
𝑎 = 𝑓(𝐻𝑡)
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Partially Observable MDP (POMDP)

 Definition

 A state 𝑆𝑡 is Markov if and only if

ℙ 𝑆𝑡+1 𝑆𝑡 = ℙ[𝑆𝑡+1|𝑆1, … , 𝑆𝑡]

“The future is independent of the past given the present”

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

 Once the state is known, the history may be thrown away – The state is 
a sufficient statistic of the future

 The environment state 𝑆𝑡
𝑒 is Markov, the history 𝐻𝑡 is Markov 



Rat Example
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Partially Observable MDP (POMDP)

 MDP – entire space is fully observable 

 Uncertainty represented as state feature encoding [low, high;  or confirmed or unconfirmed

 Fully observability: Agent directly observes the environment state; 𝑂𝑡 =
𝑆𝑡
𝑎 = 𝑆𝑡

𝑒; Agent state = environment state = information state
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 Partial Observability: agent indirectly observes environment

 Observes current state, agent state ≠ environment state

 In POMDP - Agent constructs its own state representation 𝑆𝑡
𝑎 providing

 Complete History: 𝑆𝑡
𝑎 = 𝐻𝑡

 Beliefs of environment state: 𝑆𝑡
𝑎 = (ℙ 𝑆𝑡

𝑒 = 𝑠1 , … , ℙ 𝑆𝑡
𝑡 = 𝑠𝑛 )

 Recurrent neural network: 𝑆𝑡
𝑎 = 𝜎(𝑆𝑡+1

𝑎 𝑊𝑠 + 𝑂𝑡𝑊0)



POMDP – Belief Monitory

 Belief Monitoring –

 POMDP encodes uncertainty by representing current dialogue state s as a 
belief state b(s) – distribution of the possible states

 Belief Monitoring - Update belief state based current observation o

 Belief state update:

 𝑏′ 𝑠′ = estimated belief state, 𝑃 𝑠′|𝑜′, 𝑎, 𝑏 = probability of being in a state 𝑠′ given 
observation 𝑜′, the user action a and the current belief state b(s).

 Re-written as probability of observing 𝑜′ in state 𝑠′ and given a system action 𝑎𝑠, given 
transition probability for current belief state to the new state 𝑠, 𝑘 is  normalization constant

 POMDP: Can track multiple hypotheses simultaneously; fast backtrack and correct
errors; User’s goal info accumulates over dialogue turns; scaling up problem –
computationally very expensive and intractable for dialogue system

 MDP – Looses alternative hypothesis info; complex in error discovery and correction

 Approximation possible

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Reinforcement Learning problem

 MDP – allows dialogue management strategy (policy) {agent’s 

behavior} to map state to action 𝜋: 𝑆 ⟶ 𝐴

 Elements of RL – {Policy, action, Reward, discount factor}

 Policy 𝜋 – Selections action of highest rewards during a dialogue

 Deterministic policy - 𝑎 = 𝜋 𝑠

 Stochastic policy - 𝜋 𝑎 𝑠 = ℙ[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

 The final Reward ℛ - total discounted return received from time 𝑡. Discount factor 𝛾 –

weights rewards {immediate rewards 0; further future -1}; 𝛾=0 RL maximizes the 

immediate utility; 𝛾=1 takes into consideration future rewards.

 Reward ℛ𝑡 - intrinsic desirability of a state or action; policy discovered via trial-and-

error search through interaction btw. learning agent and its dynamic environment
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Reinforcement Learning problem

 Value Function 𝑉𝜋 𝑠
 Long term desirability of a state considering all likely subsequent states

 𝑉 – value of a state; is future expected reward for visiting states s following policy 𝜋
subsequently

 Value function 𝑉 is a prediction of future reward; evaluates goodness/badness of a 

state; selects actions
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 Q-function 𝑄𝜋 𝑠, 𝑎 - Expected return

 The value function can be re-written as the Q-function 𝑄𝜋 𝑠, 𝑎 - is expected return 

for taking action 𝑎 in a given state 𝑎 and following policy 𝜋 thereafter

 𝑉𝜋 𝑠 and 𝑄𝜋 𝑠, 𝑎 can be formulated recursively using Bellman equations



Bellman Equations

 Using equation 3.2 and 3.3 the resulting equations are Bellman’s 

equations

 Bellman equations describe the expected reward for taking action 

prescribed by policy 𝜋. The equations for the optimal policy 𝜋∗ are 

referred to as Bellman optimality equations:

 Finding an optimal policy by solving the Bellman Optimality Equations requires 

accurate knowledge of the environment dynamics, time and space
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Summary

State- value function for policy  :

V

(s) E Rt st  s  E 

k
rtk 1 st  s

k 0












Action - value function for policy  :

Q

(s, a)  E Rt st  s, at  a  E 

k
rt k1 st  s,at  a

k 0












 The value of a state is the expected return starting from that state; 

depends on the agent’s policy:

 The value of taking an action in a state under policy  is the 

expected return starting from that state, taking that action, and 

thereafter following  :
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Bellman Equation for a Policy 

Rt  rt1   rt2 
2rt 3 

3rt 4

 rt1   rt2   rt3  
2
rt 4 

 rt1   Rt1

The basic idea: 

So: V

(s) E Rt st  s 

 E rt1  V st1  st  s 

Or, without the expectation operator: 

V

(s) (s,a) Ps s 

a
Rs s 

a
 V


( s ) 

s 


a


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More on the Bellman Equation

V

(s) (s,a) Ps s 

a
Rs s 

a
 V


( s ) 

s 


a



This is a set of equations (in fact, linear), one for each state.

The value function for  is its unique solution.

Backup diagrams:

for V
 for Q



© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



RL Algorithms

 A Model – predicts what the environment 
will do next

 𝒫 predicts the next states

 ℛ predicts the next (intermediate) 
rewards
 Agent may have an internal model of the 

environment

 Dynamics: how actions change the state

 Rewards: How much reward from each state
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 Categorizing RL agents

 Value Based

 No policy (implicit)

 Value function

 Policy Based

 Policy

 No Value Function

 Actor Critic model

 Policy

 Value Function

Actions: N, E, S, W; States: Agents location; 

Arrows: policy 𝜋(𝑠) for each state 𝑠.



RL Algorithms

 Grid layout 
represents the 
transition model 𝒫𝑠𝑠′

𝑎

 Numbers represents 
immediate reward 
ℛ𝑠

𝑎
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 Categorizing RL agents

 Model Free

 Policy and/or Value Function; No model; Example: Dynamic Programming (DP)

 Model Based

 Policy and or Value Function; Model; ex. Temporal Difference and Monte Carlo



Algorithms for RL
 Dynamic Programming

 Model based approach; 

 Temporal Difference and Monte Carlos

 Model-free (simulation) – explicitly models the dynamics of the environment

 Mechanisms of RL algorithms

 Learn by incrementally updating the expected Q-values for each action pairs, 

estimating the Bellman optimality equation

 Initialize Q-values to arbitrary value

 Visualize process as a matrix of states vs actions

 Update state-action pair 𝑄𝑘 for each iteration 𝑘

 Equation form
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Where Step-size – Learning rate (𝛼); [𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒] – error to achieve 𝑄∗



Algorithms for RL

 Stopping criterion: Q-value convergence [difference ≤ some threshold
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Initialized state

Optimal policy selects 

𝑎 with highest expecte

d value in each state 𝑠

Terminal state

𝜋∗



DP vs TD – Differences

 DP - Difference based on update of Q-values

 Updates Q-value off-line for every possible state action pair in a single iteration

 Requires explicitly model of the dynamics of the environment

 Transition function fully defines the probability of moving from state 𝑠 → 𝑠′

 Given transition probability and reward functions: 𝑃 𝑠′ 𝑠, 𝑎 ; 𝑅 𝑠, 𝑎 we can:
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 TP – Model-free

 No need for full model of the transition function

 Requires some sample episodes of state transitions; not all

 Requires online exploration of large state-action pairs

 Only sampled transitions contribute to improved 𝑄∗; requires online exploration



Advantages of TD Learning

 TD methods do not require a model of the environment, only 

experience

 TD, but not MC, methods can be fully incremental

 You can learn before knowing the final outcome

 Less memory

 Less peak computation

 You can learn without the final outcome

 From incomplete sequences

 Both MC and TD converge (under certain assumptions), but 

which is faster?
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SARSA Algorithm

 Commonly used is SARSA (𝜆). 𝜆 - eligibility trace factors to ensure rapid 
converge

 Reflects updating Q-values based on (𝑎𝑡′𝑠𝑡 , 𝑟𝑡+1𝑎𝑡+1 , 𝑠𝑡+1). 

 Is a greedy method updating the policy be greedy w.r.t current estimate
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Basic facts – So far

 What are do these exploration and exploitation strategies mean?

 Offline – Data is fixed, agent learns from previous interaction

 Online – agents interacts with environment including previously explored states

 On-policy – Learns about policy currently executing

 Exploration – Find more information about the environment

 Exploitation – maximize/exploit know information to maximize reward

 Prediction: Evaluates the future for a given policy

 Control: Optimize the future, finding the best policy

 Learning: Using the history, predict (determine future) state while 

exploring the best policy [What, how, why, where]
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Curse of Dimensionality

 Is exponential growth of policies with state and action spaces

 Four binary features and 3 action states = 324
→ 43,046,721 policies

 To reduce state space for learning proposed [many approaches]

 Feature reduction; Reduction of possible state-action combinations; Summarizing 

similar states

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Dialogue - application

 Dialogue is represented as vector of real valued features 𝑓(𝑠) – learns 

function approximation; 𝑓(𝑠) is mapped to vector of estimate 𝑄(𝑠, 𝑎)

 Given the weight weights trained on data, Q-function is re-written as the 

inner product of state vector 𝑓(𝑠) and weighted vector 𝑤𝑎:

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

 Two are treated as similar if they share features – affected in training

 Similarity measure is called Linear Kernel

 Simulation-based RL offers cheap learning by training the policy



So far ….

 Agent-environment interaction

 States

 Actions

 Rewards

 Policy: stochastic rule for 

selecting actions

 Return: the function of future 

rewards the agent tries to 

maximize

 Episodic and continuing tasks

 Markov Property

 Markov Decision Process

 Transition probabilities

 Expected rewards

 Value functions

 State-value function for a policy

 Action-value function for a policy

 Optimal state-value function

 Optimal action-value function

 Optimal value functions

 Optimal policies

 Bellman Equations

 The need for approximation

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Model-based RL

 Approaches explicitly models dynamics of environment; learning via off-
line [limited agent-environment interaction]

 Limitation: Corpora not large enough all transition probabilities; learning 
limited to explored a-s combinations [inflexibility]; learning from fixed 
data – working systems already exist – What system do we need?

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr

Neglects users’ responses to system

Considers state transitions and rewards only



Model-based RL

 Involves two phases: Simulated environment and RL agent (DS)

 SE including components – trained via SL; includes user and error model [Dual 

architecture, CLS -> differential training]; 

 Dialogue strategy training – trained by simulated MC or TD for systematic 

exploration, near optimal solution exploration; generalize unseen dialogue states
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Considers users’ responses to system; model the future

Learns a stochastic simulated dialogue environment from data



Simulation-Based RL

 Model-free approach that directly approximates value function via online 

interaction; 

 Advantages

 Large training episodes generated – exhaustive strategies exploration

 Exploration of strategies not in the training data [Unseen strategies exploration]

 No prior fixing of state space and actions – dynamic scaling & modeling of dialogue

 Challenges

 Quality of learned strategy depends on quality of simulated environment

 Reward signal not readable from data; yet reward function must explicitly constructed

 Simulation results inability to replicate real user-dialogue performance

 Simulated components need in-domain data training – expensive to collect & train

 Hence generalizability and automatic dialogue learning feasible
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Dialogue Simulation – WOZ

 Goal of Wizard-of- Oz: Characterize human behavior and user 

preferences; develop a language model and/or acoustic model for 

prototype system

 Procedure: Simulate, evaluate, generalize – development system

 Hidden operator (wizard) simulates some aspects of human behavior in 

dialogue [ensure real HCI illusion considering human dynamics in 

communication]

 Subjects evaluate by filling out questionnaires

 Generalize human behavior, develop models

 Dialogue simulation need to be able to approximate real HCI in order to 

facilitate dialogue system development and testing
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Wizard of Oz simulation

Wizard simulates dialogue behavior; user interacts in they are talking to the 
belief that they are talking to a machine, rates a machine and rates the 

dialogue behavior
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DS: Computer Based Simulation

Dialogue manager interacts with a simulated user over a noisy channel
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DS: Computer-based Simulation

 Goals: Testing and debugging prototype systems; automatic strategy 

development [RL, SL] 

 Error model: Simulates error prone ASR;

 Variation from real HCI due to:

 Quality of simulated components

 Simulated users cannot rate the system according to their preferences

 Discussion: Learnt Framework

 Simulated Environment for RL from data collected in WOZ experiment

 Enables automatic strategy learning
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Application Domains

 Information-Seeking Dialogue Systems

 Multimodal Output Planning and Information Presentation

 Multimodal Dialogue Systems for In-car digital Music Player
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Conclusion

 Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent’s ability to 

behave optimally in the future to achieve the goal

 Reinforcement Learning – Achieve goal successfully
 Learn how to behave successfully to achieve a goal while interacting with 

external environment, Learn via experience

 Game playing – know when  its win  or loss

 Well suited for dialogue strategy development – as dialogue is learned by 

evaluative feedback with delayed rewards and exploration

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr


