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How can we develop an Autonomous 

Learning Dialogue Systems?

What concepts, behavior representation do we 

need to consider?
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Summary

 Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent’s ability to 

behave optimally in the future to achieve the goal

 Reinforcement Learning – Achieve goal successfully
 Learn how to behave successfully to achieve a goal while interacting with 

external environment, Learn via experience

 Game playing – know when  its win  or loss

 Well suited for dialogue strategy development – as dialogue is learned by 

evaluative feedback with delayed rewards and exploration
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Summary

 Scope: 
 RL in dialogue development – Skills {↑, ↓}

 Empirical Justification – Why, Hence..

 Dialogue Simulation – How to generalize
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Peter Rabbit: An agent receiving rewards

 Peter Rabbit – Rewards known
 Mischievous and disobedient - Exploratory

 Chased, escapes, rests, regrets

 Obedience: Sumptuous meal, mother’s love

 Disobedience: Losses clothes, stomach ache

 RL: Objectives

 Model dialogue as a sequence of action (in global point-wise estimates)

 Mimic behaviour observed in non-stationary corpus and explore new strategies
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Nature of Dialogue Interaction

 Dialogue is Temporal

 Goodness of action – depends on dialogue 
progress; planning nec.

 Actions affects the state, options and 
opportunities

 ∴ SL not suitable for dialogue strategy; 
potential for “multi-expert” learning
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 RL – Sequential decisions process
 Based on delayed rewards (benefits apparent 

at the end of the dialogue; avoids local minima

 RL – Chess player may sacrifice prawn 
for promising strategy at the long-run



Nature of Dialogue Interaction
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 Dialogue is Dynamic

 Interaction in stochastic environment –

Dynamic {conditions change, 

differential reaction by agents -

unpredictable}. Need robust strategy

 ∴ chess players strategize – think 

ahead {sequence of action choices}

 Good player dynamically explores; 

winning – rewarded; loosing – punished

 Language Learners – improve 

communicative skills over time 

{encouragement, correction}



In conclusion

 Reinforcement Learning:

 Learns by exploration – learning robust strategies, appropriate for unseen 

states

 Learns by experience

 Simulation Based RL – Ensures enough exploration

 Explores most strategies at low cost
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RL – based Dialogue Strategy Learning

 Dialogue as a Markov Decision Process
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Fig. 3.2 RL with Markov Decision Process (MDP): The learning agent travels 
through a network of interconnected states. At time 𝑡, the agent is in state 𝑠𝑡 , takes 
an action 𝑎𝑡, transitions into state 𝑠𝑡+1 according to the transition probability 
𝑝(𝑠𝑡+1|𝑠𝑡 . 𝑎𝑡), and receives rewards 𝑟𝑡+1

An MDP is 𝑓(𝑆, 𝐴,𝒫, ℛ) {state, ac

tion, transitions, rewards}

Dialogue strategy learner – is an agent 

travelling through a network

Initial 

state

collects rewards

actions terminal

terminal

collects rewards

actions
𝒫 – transition probabilities {none de

terministic – stochastic, dynamic



RL – based Dialogue Strategy Learning

 Specialized MDP – accounts temporal nature of dialogue

 Markov Property requires that the state and reward at time 𝑡 + 1 only depends 
on the state and action at time 𝑡.

 State at step 𝑡 information available to agent about its environment; Summarize 
past sensations, retains all “essential” info

 Markov Property:
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Fig. 3.2 The agent interacting with a stochastic 
environment and actively influencing its behavior 
by taking action 𝑎𝑡 in state 𝑠𝑡 , The changes in the 
environment are observed (𝑜𝑡+1) and a reward is 
received 𝑟𝑡+1



Dialogue as a MDP

 State space (𝑆) – reachable states for agent

 Action set (𝐴) – All actions available to agent

 State transition function (𝒫) – dynamics of environment
 Next state 𝑠′ ∈ 𝑆 is likely to follow when taking action 𝑎 ∈ 𝐴 in states 𝑠 ∈ 𝑆.

𝒫 is defined over 𝒫: 𝑆 × 𝐴 × 𝑆 ⟶ [0,1] where:

 Reward function – Value for a decision

 For state 𝑠𝑡 and action 𝑎𝑡 expected reward value:

 Reward critical for learning
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Dialogue as a MDP

 State space (𝑆) – reachable states for agent
 Dialogue features – knowledge about dialogue history (  𝑠𝑑), user input 

action (  𝑎𝑢) [e.g. confidence values], and task level features (  𝑠𝑢)

 Action set (𝐴) – All actions available to agent
 Dialogue actions to be learned represented as abstract semantic Speech 

Acts on the intentional level

 State transition function (𝒫) – dynamics of environment
 Next state 𝑠′ ∈ 𝑆 is likely to follow when taking action 𝑎 ∈ 𝐴 in states 𝑠 ∈ 𝑆.

𝒫 is defined over 𝒫: 𝑆 × 𝐴 × 𝑆 ⟶ [0,1] where:

 Reward function – Reward for a decision

 For state 𝑠𝑡 and action 𝑎𝑡 expected reward value:
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Partially Observable MDP (POMDP)

 History and State

 History – Sequence of observations, actions, rewards

 𝐻𝑡 = 𝑂1, 𝑅1, 𝐴1, … , 𝑂𝑡−1, 𝑅𝑡, 𝐴𝑡 {all observable variables up to time t}

 State – information used to determine what happens next
𝑆𝑡 = 𝑓(𝐻𝑡)

 Information state – (Markov state) contains useful info

 Environment State 𝑆𝑡
𝑒– Environment’s private representation

 Data for picking next observation/reward

 Agent State 𝑆𝑡
𝑎 - agent’s internal representation

 Info agent uses to pick next action, used by RL algorithm

 Can be any function of history

𝑆𝑡
𝑎 = 𝑓(𝐻𝑡)
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Partially Observable MDP (POMDP)

 Definition

 A state 𝑆𝑡 is Markov if and only if

ℙ 𝑆𝑡+1 𝑆𝑡 = ℙ[𝑆𝑡+1|𝑆1, … , 𝑆𝑡]

“The future is independent of the past given the present”
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 Once the state is known, the history may be thrown away – The state is 
a sufficient statistic of the future

 The environment state 𝑆𝑡
𝑒 is Markov, the history 𝐻𝑡 is Markov 



Rat Example
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Partially Observable MDP (POMDP)

 MDP – entire space is fully observable 

 Uncertainty represented as state feature encoding [low, high;  or confirmed or unconfirmed

 Fully observability: Agent directly observes the environment state; 𝑂𝑡 =
𝑆𝑡
𝑎 = 𝑆𝑡

𝑒; Agent state = environment state = information state
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 Partial Observability: agent indirectly observes environment

 Observes current state, agent state ≠ environment state

 In POMDP - Agent constructs its own state representation 𝑆𝑡
𝑎 providing

 Complete History: 𝑆𝑡
𝑎 = 𝐻𝑡

 Beliefs of environment state: 𝑆𝑡
𝑎 = (ℙ 𝑆𝑡

𝑒 = 𝑠1 , … , ℙ 𝑆𝑡
𝑡 = 𝑠𝑛 )

 Recurrent neural network: 𝑆𝑡
𝑎 = 𝜎(𝑆𝑡+1

𝑎 𝑊𝑠 + 𝑂𝑡𝑊0)



POMDP – Belief Monitory

 Belief Monitoring –

 POMDP encodes uncertainty by representing current dialogue state s as a 
belief state b(s) – distribution of the possible states

 Belief Monitoring - Update belief state based current observation o

 Belief state update:

 𝑏′ 𝑠′ = estimated belief state, 𝑃 𝑠′|𝑜′, 𝑎, 𝑏 = probability of being in a state 𝑠′ given 
observation 𝑜′, the user action a and the current belief state b(s).

 Re-written as probability of observing 𝑜′ in state 𝑠′ and given a system action 𝑎𝑠, given 
transition probability for current belief state to the new state 𝑠, 𝑘 is  normalization constant

 POMDP: Can track multiple hypotheses simultaneously; fast backtrack and correct
errors; User’s goal info accumulates over dialogue turns; scaling up problem –
computationally very expensive and intractable for dialogue system

 MDP – Looses alternative hypothesis info; complex in error discovery and correction

 Approximation possible
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Reinforcement Learning problem

 MDP – allows dialogue management strategy (policy) {agent’s 

behavior} to map state to action 𝜋: 𝑆 ⟶ 𝐴

 Elements of RL – {Policy, action, Reward, discount factor}

 Policy 𝜋 – Selections action of highest rewards during a dialogue

 Deterministic policy - 𝑎 = 𝜋 𝑠

 Stochastic policy - 𝜋 𝑎 𝑠 = ℙ[𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠]

 The final Reward ℛ - total discounted return received from time 𝑡. Discount factor 𝛾 –

weights rewards {immediate rewards 0; further future -1}; 𝛾=0 RL maximizes the 

immediate utility; 𝛾=1 takes into consideration future rewards.

 Reward ℛ𝑡 - intrinsic desirability of a state or action; policy discovered via trial-and-

error search through interaction btw. learning agent and its dynamic environment
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Reinforcement Learning problem

 Value Function 𝑉𝜋 𝑠
 Long term desirability of a state considering all likely subsequent states

 𝑉 – value of a state; is future expected reward for visiting states s following policy 𝜋
subsequently

 Value function 𝑉 is a prediction of future reward; evaluates goodness/badness of a 

state; selects actions
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 Q-function 𝑄𝜋 𝑠, 𝑎 - Expected return

 The value function can be re-written as the Q-function 𝑄𝜋 𝑠, 𝑎 - is expected return 

for taking action 𝑎 in a given state 𝑎 and following policy 𝜋 thereafter

 𝑉𝜋 𝑠 and 𝑄𝜋 𝑠, 𝑎 can be formulated recursively using Bellman equations



Bellman Equations

 Using equation 3.2 and 3.3 the resulting equations are Bellman’s 

equations

 Bellman equations describe the expected reward for taking action 

prescribed by policy 𝜋. The equations for the optimal policy 𝜋∗ are 

referred to as Bellman optimality equations:

 Finding an optimal policy by solving the Bellman Optimality Equations requires 

accurate knowledge of the environment dynamics, time and space
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Summary

State- value function for policy  :

V
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Action - value function for policy  :
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 The value of a state is the expected return starting from that state; 

depends on the agent’s policy:

 The value of taking an action in a state under policy  is the 

expected return starting from that state, taking that action, and 

thereafter following  :
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Bellman Equation for a Policy 
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More on the Bellman Equation

V

(s) (s,a) Ps s 

a
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( s ) 
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a



This is a set of equations (in fact, linear), one for each state.

The value function for  is its unique solution.

Backup diagrams:

for V
 for Q
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RL Algorithms

 A Model – predicts what the environment 
will do next

 𝒫 predicts the next states

 ℛ predicts the next (intermediate) 
rewards
 Agent may have an internal model of the 

environment

 Dynamics: how actions change the state

 Rewards: How much reward from each state
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 Categorizing RL agents

 Value Based

 No policy (implicit)

 Value function

 Policy Based

 Policy

 No Value Function

 Actor Critic model

 Policy

 Value Function

Actions: N, E, S, W; States: Agents location; 

Arrows: policy 𝜋(𝑠) for each state 𝑠.



RL Algorithms

 Grid layout 
represents the 
transition model 𝒫𝑠𝑠′

𝑎

 Numbers represents 
immediate reward 
ℛ𝑠

𝑎
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 Categorizing RL agents

 Model Free

 Policy and/or Value Function; No model; Example: Dynamic Programming (DP)

 Model Based

 Policy and or Value Function; Model; ex. Temporal Difference and Monte Carlo



Algorithms for RL
 Dynamic Programming

 Model based approach; 

 Temporal Difference and Monte Carlos

 Model-free (simulation) – explicitly models the dynamics of the environment

 Mechanisms of RL algorithms

 Learn by incrementally updating the expected Q-values for each action pairs, 

estimating the Bellman optimality equation

 Initialize Q-values to arbitrary value

 Visualize process as a matrix of states vs actions

 Update state-action pair 𝑄𝑘 for each iteration 𝑘

 Equation form
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Where Step-size – Learning rate (𝛼); [𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒] – error to achieve 𝑄∗



Algorithms for RL

 Stopping criterion: Q-value convergence [difference ≤ some threshold
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Initialized state

Optimal policy selects 

𝑎 with highest expecte

d value in each state 𝑠

Terminal state

𝜋∗



DP vs TD – Differences

 DP - Difference based on update of Q-values

 Updates Q-value off-line for every possible state action pair in a single iteration

 Requires explicitly model of the dynamics of the environment

 Transition function fully defines the probability of moving from state 𝑠 → 𝑠′

 Given transition probability and reward functions: 𝑃 𝑠′ 𝑠, 𝑎 ; 𝑅 𝑠, 𝑎 we can:
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 TP – Model-free

 No need for full model of the transition function

 Requires some sample episodes of state transitions; not all

 Requires online exploration of large state-action pairs

 Only sampled transitions contribute to improved 𝑄∗; requires online exploration



Advantages of TD Learning

 TD methods do not require a model of the environment, only 

experience

 TD, but not MC, methods can be fully incremental

 You can learn before knowing the final outcome

 Less memory

 Less peak computation

 You can learn without the final outcome

 From incomplete sequences

 Both MC and TD converge (under certain assumptions), but 

which is faster?
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SARSA Algorithm

 Commonly used is SARSA (𝜆). 𝜆 - eligibility trace factors to ensure rapid 
converge

 Reflects updating Q-values based on (𝑎𝑡′𝑠𝑡 , 𝑟𝑡+1𝑎𝑡+1 , 𝑠𝑡+1). 

 Is a greedy method updating the policy be greedy w.r.t current estimate
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Basic facts – So far

 What are do these exploration and exploitation strategies mean?

 Offline – Data is fixed, agent learns from previous interaction

 Online – agents interacts with environment including previously explored states

 On-policy – Learns about policy currently executing

 Exploration – Find more information about the environment

 Exploitation – maximize/exploit know information to maximize reward

 Prediction: Evaluates the future for a given policy

 Control: Optimize the future, finding the best policy

 Learning: Using the history, predict (determine future) state while 

exploring the best policy [What, how, why, where]
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Curse of Dimensionality

 Is exponential growth of policies with state and action spaces

 Four binary features and 3 action states = 324
→ 43,046,721 policies

 To reduce state space for learning proposed [many approaches]

 Feature reduction; Reduction of possible state-action combinations; Summarizing 

similar states
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Dialogue - application

 Dialogue is represented as vector of real valued features 𝑓(𝑠) – learns 

function approximation; 𝑓(𝑠) is mapped to vector of estimate 𝑄(𝑠, 𝑎)

 Given the weight weights trained on data, Q-function is re-written as the 

inner product of state vector 𝑓(𝑠) and weighted vector 𝑤𝑎:
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 Two are treated as similar if they share features – affected in training

 Similarity measure is called Linear Kernel

 Simulation-based RL offers cheap learning by training the policy



So far ….

 Agent-environment interaction

 States

 Actions

 Rewards

 Policy: stochastic rule for 

selecting actions

 Return: the function of future 

rewards the agent tries to 

maximize

 Episodic and continuing tasks

 Markov Property

 Markov Decision Process

 Transition probabilities

 Expected rewards

 Value functions

 State-value function for a policy

 Action-value function for a policy

 Optimal state-value function

 Optimal action-value function

 Optimal value functions

 Optimal policies

 Bellman Equations

 The need for approximation
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Model-based RL

 Approaches explicitly models dynamics of environment; learning via off-
line [limited agent-environment interaction]

 Limitation: Corpora not large enough all transition probabilities; learning 
limited to explored a-s combinations [inflexibility]; learning from fixed 
data – working systems already exist – What system do we need?
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Neglects users’ responses to system

Considers state transitions and rewards only



Model-based RL

 Involves two phases: Simulated environment and RL agent (DS)

 SE including components – trained via SL; includes user and error model [Dual 

architecture, CLS -> differential training]; 

 Dialogue strategy training – trained by simulated MC or TD for systematic 

exploration, near optimal solution exploration; generalize unseen dialogue states
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Considers users’ responses to system; model the future

Learns a stochastic simulated dialogue environment from data



Simulation-Based RL

 Model-free approach that directly approximates value function via online 

interaction; 

 Advantages

 Large training episodes generated – exhaustive strategies exploration

 Exploration of strategies not in the training data [Unseen strategies exploration]

 No prior fixing of state space and actions – dynamic scaling & modeling of dialogue

 Challenges

 Quality of learned strategy depends on quality of simulated environment

 Reward signal not readable from data; yet reward function must explicitly constructed

 Simulation results inability to replicate real user-dialogue performance

 Simulated components need in-domain data training – expensive to collect & train

 Hence generalizability and automatic dialogue learning feasible
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Dialogue Simulation – WOZ

 Goal of Wizard-of- Oz: Characterize human behavior and user 

preferences; develop a language model and/or acoustic model for 

prototype system

 Procedure: Simulate, evaluate, generalize – development system

 Hidden operator (wizard) simulates some aspects of human behavior in 

dialogue [ensure real HCI illusion considering human dynamics in 

communication]

 Subjects evaluate by filling out questionnaires

 Generalize human behavior, develop models

 Dialogue simulation need to be able to approximate real HCI in order to 

facilitate dialogue system development and testing
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Wizard of Oz simulation

Wizard simulates dialogue behavior; user interacts in they are talking to the 
belief that they are talking to a machine, rates a machine and rates the 

dialogue behavior
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DS: Computer Based Simulation

Dialogue manager interacts with a simulated user over a noisy channel

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



DS: Computer-based Simulation

 Goals: Testing and debugging prototype systems; automatic strategy 

development [RL, SL] 

 Error model: Simulates error prone ASR;

 Variation from real HCI due to:

 Quality of simulated components

 Simulated users cannot rate the system according to their preferences

 Discussion: Learnt Framework

 Simulated Environment for RL from data collected in WOZ experiment

 Enables automatic strategy learning
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Application Domains

 Information-Seeking Dialogue Systems

 Multimodal Output Planning and Information Presentation

 Multimodal Dialogue Systems for In-car digital Music Player
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Conclusion

 Learning – Interaction between agent and world

 Percepts received by an agent acts and improves agent’s ability to 

behave optimally in the future to achieve the goal

 Reinforcement Learning – Achieve goal successfully
 Learn how to behave successfully to achieve a goal while interacting with 

external environment, Learn via experience

 Game playing – know when  its win  or loss

 Well suited for dialogue strategy development – as dialogue is learned by 

evaluative feedback with delayed rewards and exploration

© 2016, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr


