Lecture Note #4 (Spring, 2019)

# **Chemisorption, Physisorption, & Dynamics**

Reading: Kolasinski, ch.3

# Type of interactions

Physisorption vs. Chemisorption

Physisorption (physical adsorption)

- Van der Waals interaction
- Small adsorption energy: ≤ 20 kJ/mole
- Similar to condensation
- Multilayer adsorption possible
- No charge transfer
- Substrate non-specific

Chemisorption (chemical adsorption)

- Chemical bonding (covalent bonding)
- Large adsorption energy: ≥ 200 kJ/mole
- Charge transfer : work function change
- Limited to a monolayer
- Substrate specific
- Gas specific

#### Synoptic table 25.1\* Maximum

observed enthalpies of physisorption

| Adsorbate        | $\Delta_{ad} H^{\Theta}/(kJ mol^{-1})$ |  |  |
|------------------|----------------------------------------|--|--|
| $CH_4$           | -21                                    |  |  |
| H <sub>2</sub>   | 10_4                                   |  |  |
| H <sub>2</sub> O | -59                                    |  |  |
| N <sub>2</sub>   | -21                                    |  |  |

**Synoptic table 25.2**<sup>\*</sup> Enthalpies of chemisorption,  $\Delta_{ad}H^{\Theta}/(kJ \text{ mol}^{-1})$ 

| Adsorbate       | Adsorbent (substrate) |      |      |  |
|-----------------|-----------------------|------|------|--|
|                 | Cr                    | Fe   | Ni   |  |
| $CH_4$          | -427                  | -285 | -243 |  |
| СО              |                       | -192 |      |  |
| H <sub>2</sub>  | -188                  | -134 |      |  |
| NH <sub>3</sub> |                       | -188 | -155 |  |

| Chemisorption                                                                                                                                                                    | Physisorption                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| electron exchange<br>chemical bond formation<br>strong<br>$\geq 1 \text{ eV} (100 \text{ kJ mol}^{-1})$<br>highly corrugated potential<br>analogies with co-ordination chemistry | polarization<br>van der Waals attractions<br>weak<br>≤0.3 eV (30 kJ mol <sup>-1</sup> ), stable only at cryogenic temperatures<br>less strongly directional |

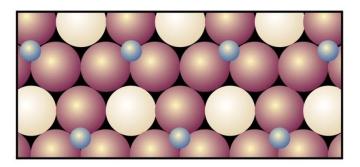
### **Table 3.1** A comparison between chemisorption and physisorption

Cryogenic temperatures: liquid He (4K), liquid N<sub>2</sub> (77K)

- Adsorption, especially chemisorption  $\to$  surface free energy  $\downarrow \to$  surface tension,  $\gamma \downarrow$
- Chemisorption  $\rightarrow$  usually exothermic process  $\rightarrow \Delta S < 0$  (gas in 2D),  $\Delta G < 0$  (constant T & P, free energy), spontaneous)  $\rightarrow \Delta G = \Delta H T\Delta S \rightarrow \Delta H < 0$  (exothermic)
- Temperature  $\downarrow \rightarrow \mathsf{Adsorption} \uparrow$
- exception: dissociate adsorbates & high translational mobility on the surface (ΔS > 0). Repulsion between adsorbates by coverage↑ → less exothermic

e.g., H<sub>2</sub> on glass: endothermic, H<sub>2</sub>(g)  $\rightarrow$  2H (glass),  $\Delta$ S > 0  $\rightarrow \Delta$ H > 0

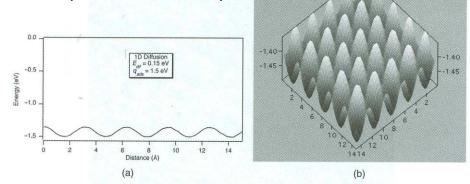
### Terminology


- Adsorption site density  $N_s = # \text{ of sites } / \text{cm}^2 \sim 10^{15} / \text{cm}^2$
- Coverage

fractional coverage  $\theta = N_s/N$ saturation coverage :  $\theta_s = 1$ 

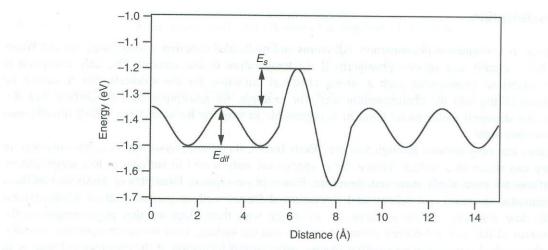
• Wall collision rate Z<sub>w</sub>

 $\begin{aligned} Z_w &= \# \text{ molecules striking a surface /cm^2. s} \\ Z_w &= P / (2\pi \text{ mkT})^{1/2} \sim 10^{15} \text{ molecules /cm^2. s} \\ & @ 10^{-6} \text{ Torr and } 298 \text{ K} \\ 1 \text{ L (Langmuir)} &= 10^{-6} \text{ Torr} \cdot \text{s} \text{ of gas exposure.} \end{aligned}$ 


• Monolayer completion time ~ 1sec @ 10<sup>-6</sup> Torr

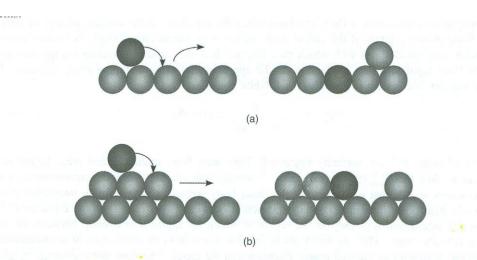


### Binding sites and diffusion


#### Surface sites are separated by energetic barriers $\rightarrow$ diffusion barrier

Potential energy surface (1-D and 2-D)

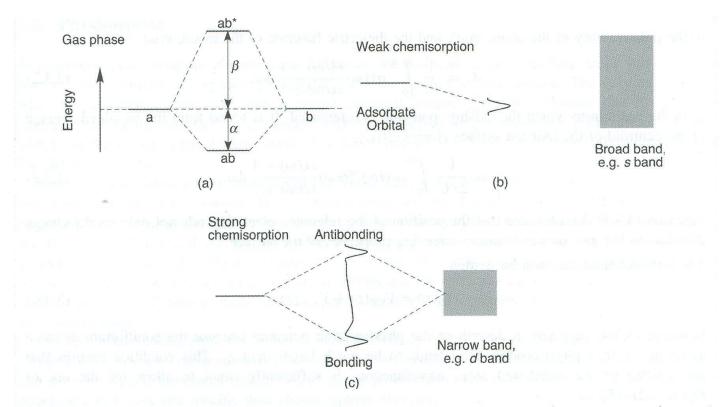



**Figure 3.1** The interaction potential of an adsorbate is corrugated as can be seen in these (a) 1D and (b) 2D representations of energy versus position on ideal defect-free surfaces.

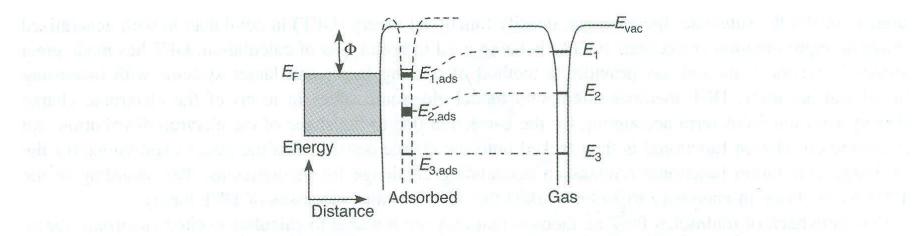
#### Step-up diffusion (E<sub>s</sub>)



**Figure 3.3** A step changes the diffusion activation energy,  $E_{dif}$  [one-dimensional (1D) diffusion]. Step-up diffusion is often negligible because of the increased barrier; note also the increased binding strength at the bottom of the step – a feature that is often observed.  $E_s$ , Ehrlich-Schwoebel barrier.


Diffusion for strongly interacting atoms (metal on metal)



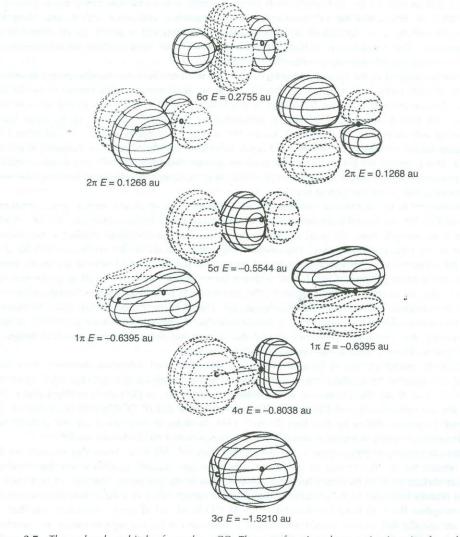

**Figure 3.4** The exchange mechanism of diffusion. Mass transport occurs via the replacement of one atom with another. This can happen either (a) on a terrace or (b) at a step

### Non-dissociative chemisorption

### Theoretical treatment of chemisorption

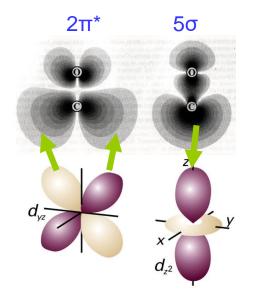


**Figure 3.5** Orbital interactions. (a) Gas phase. (b) Weak chemisorption. (c) Strong chemisorption. a, b, atomic orbitals; ab,  $ab^*$ , bonding and antibonding molecular orbitals;  $\alpha$ ,  $\beta$  energy shifts of molecular orbitals with respect to the mean energy of a and b.




**Figure 3.6** Diagram of broadening and shifting of adsorbate levels as they approach a surface.  $E_F$ , Fermi energy;  $E_{vac}$ , vacuum energy;  $\Phi$  work function of the surface material;  $E_1$ ,  $E_2$ ,  $E_3$ , energies of molecular orbitals 1, 2 and 3, respectively, of the molecule far from the surface;  $E_{1,ads}$ ,  $E_{2,ads}$ ,  $E_{3,ads}$ , energies of molecular orbitals 1, 2 and 3, respectively, of the adsorbed molecule; shaded area, occupied band (e.g. valence band).

As a molecule approaches a surface, its electronic states interact with the electronic states of the metal

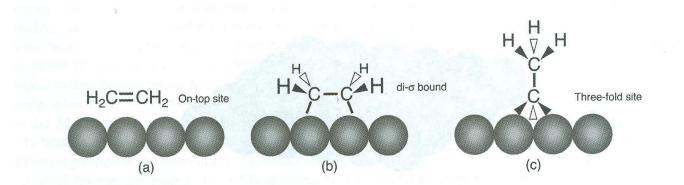

 $\rightarrow$  this broadens the MOs and it also lowers the energy of the MOs  $\rightarrow$  the reason why MOs experience a shift and broadening is that they interact with the electron of the substrate

#### Blyholder model of CO chemisorption on a metal



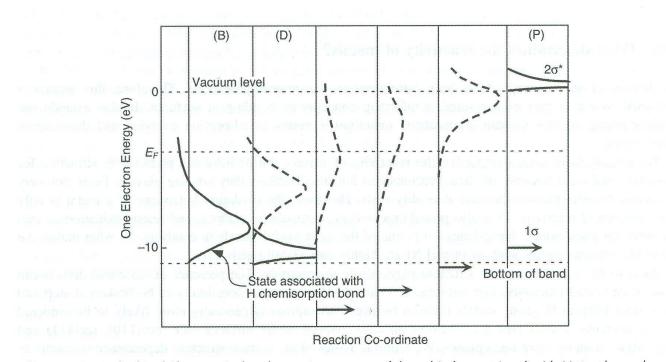
**Figure 3.7** The molecular orbitals of gas-phase CO. The wavefunction changes sign in going from the regions enclosed by solid lines to those enclosed by dashed lines. Energies, E, are given in atomic units (1 atomic unit = 27.21 eV). Orbitals with negative energies are occupied in the ground state of the neutral molecule. Reproduced from W. L. Jorgensen, L. Salem, The Organic Chemist's Book of Orbitals, Academic Press, New York. © (1973) with permission from Academic Press.

- Charge transfer : work function change
- e<sup>-</sup> donation + backdonation
- Orbital symmetry
- Transition & noble metal : d-band metal
- Heat of adsorption: bond strength
- Dissociation
- Activated adsorption

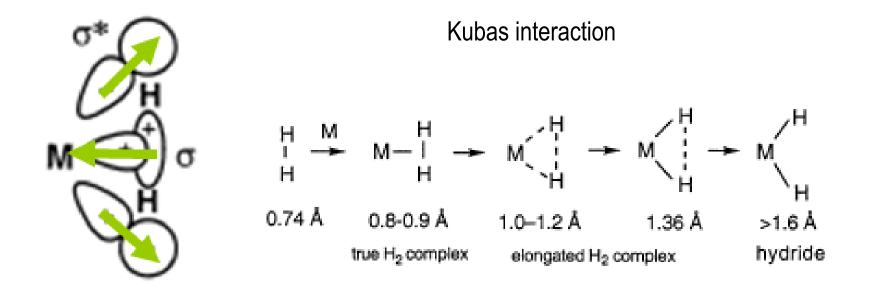



### Molecular oxygen chemisorption

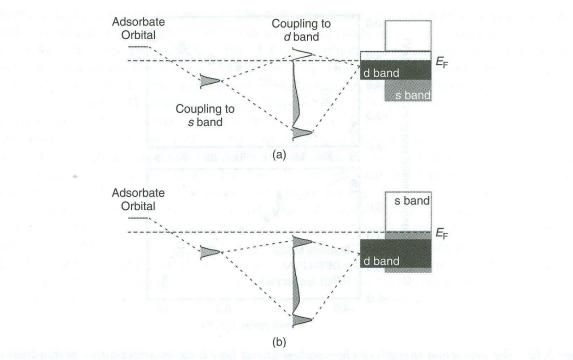



**Figure 3.8**  $O_2/Pd(111)$  adsorbate structure. The labelling of the three states ( $\omega_1$ ,  $\omega_2$  and  $\omega_3$ ) correlates with the loss peaks observed in the electron energy loss spectrum as shown in Fig. 2.30.

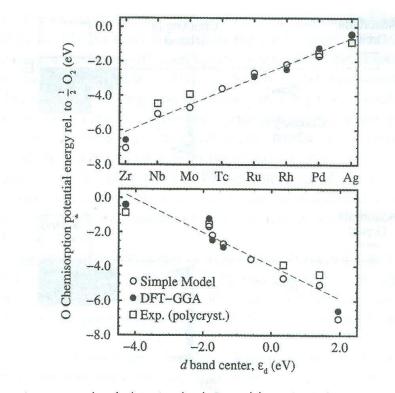
#### The binding of ethene




**Figure 3.9** The binding of ethene at a metal surface. (a) The weakly chemisorbed  $\pi$ -bonded  $C_2H_4$ . (b) The a  $\sigma$ -bonded chemisorbed state. (c) Ethylidyne.

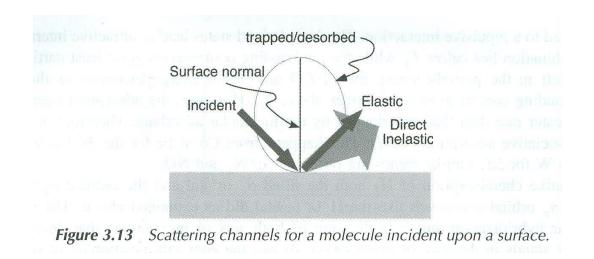

### Dissociative chemisorption: H<sub>2</sub> on a simple metal




**Figure 3.10** Calculated changes in the electronic structure of the orbitals associated with  $H_2$  as the molecule approaches a Mg surface. Moving to the left in the diagram represents motion toward the surface. Reproduced from J. K. Nørskov, A. Houmøller, P. K. Johansson, B. I. Lundqvist, Phys. Rev. Lett., 46, 257. © 1981, with permission from the American Physical Society.

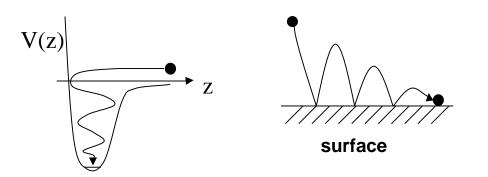


### What determines the reactivity of metals?




*Figure 3.11* The two-step conceptualization of chemisorption bond formation on transition metal surfaces. (a) Early transition metal. (b) Coinage metal.

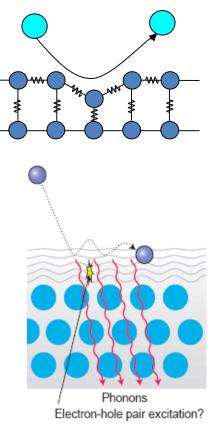



**Figure 3.12** The interaction strength of chemisorbed O and how it varies across a row of transition metals. In the upper panel, the good agreement between experimental and theoretical results is shown. In the lower panel, the linear relationship between interaction strength and the d band centre is demonstrated. Source of data for experimental results: I. Toyoshima, G. A. Somorjai, Catal. Rev – Sci. Eng., 19 (1979) 105. Reprinted from B. Hammer and J. K. Nørskov, Theoretical surface science and catalysis – Calculations and concepts, Adv. Catal., Vol. 45 (Eds B. C. Gates, H. Knözinger), Academic Press, Boston, p. 71. © 2000 with permission from Academic Press.

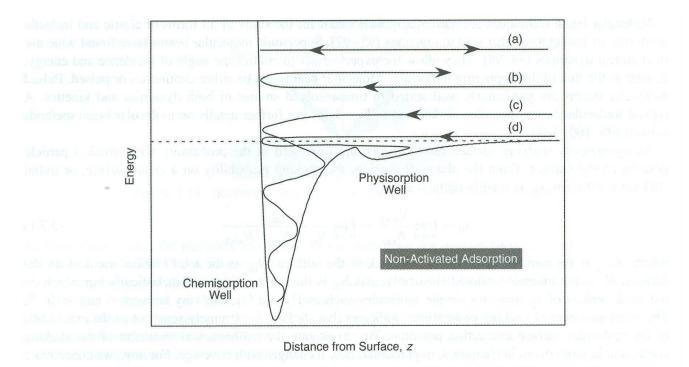
## Atoms and molecules incident on a surface



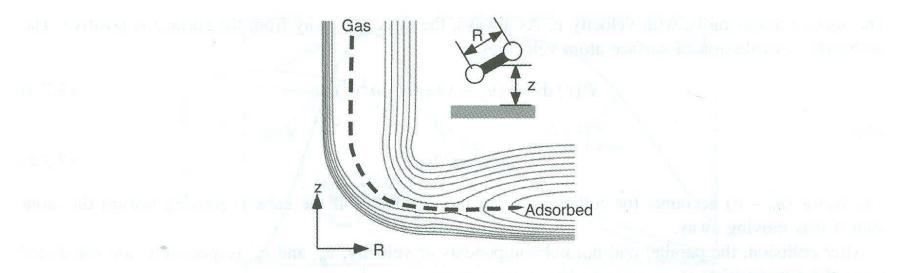
# Adsorption dynamics


- The outcome of the gas-surface collisions;
  - 1) Trapping: becoming a bound state after the 1<sup>st</sup> collision
  - 2) Direct reflection to the gas phase
- The trapping probability is determined by the amount of the energy transfer to the surface.
- Energy transfer occurs via multiphonon excitations.




| TABLE 5.1 Some Typical Values of the Initial Sticking Probab | ility : | at | 300 1 | К |
|--------------------------------------------------------------|---------|----|-------|---|
|--------------------------------------------------------------|---------|----|-------|---|

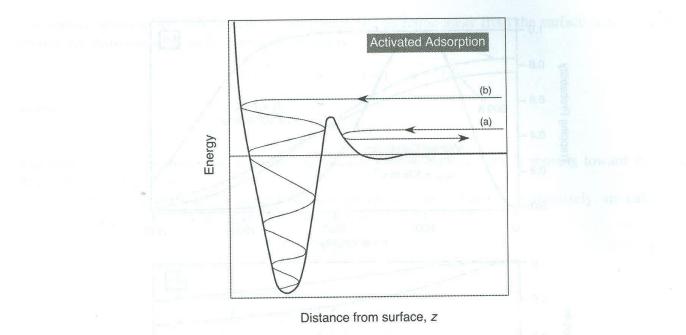
| 100000000000000000000000000000000000000 |         |                    |                 |             |                      |
|-----------------------------------------|---------|--------------------|-----------------|-------------|----------------------|
| Gas                                     | Surface | S(0)               | Gas             | Surface     | S(0)                 |
| H <sub>2</sub>                          | Ni(100) | 0.06               | N <sub>2</sub>  | W(320)      | 0.7                  |
| H <sub>2</sub>                          | Ni(111) | 0.02               | N <sub>2</sub>  | W(110)      | $< 3 \times 10^{-3}$ |
| H <sub>2</sub>                          | Pt(110) | 0.2                | Ga              | GaAs(100)-B | 1.0                  |
| H <sub>2</sub>                          | Si(100) | < 10 <sup>-4</sup> | As <sub>4</sub> | GaAs(100)-B | < 10 <sup>-3</sup>   |
| CO                                      | Pt(111) | 0.67               | As <sub>4</sub> | GaAs(100)-A | 0.5                  |
| 0                                       | Pt(111) | 0.07               | AS4             | GaAs(100)-A | 0.0.00               |


Data taken from Morris et al. [1984] and Joyce and Foxton [1984].



#### Non-activated adsorption



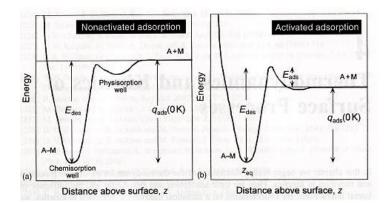

**Figure 3.14** A one-dimensional representation of non-activated adsorption: (a) elastic scattering trajectory; (b) direct inelastic scattering trajectory; (c) sticking event (chemisorption); (d) sticking event (physisorption).

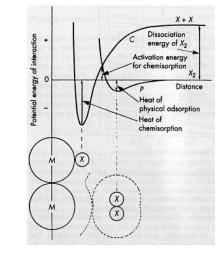


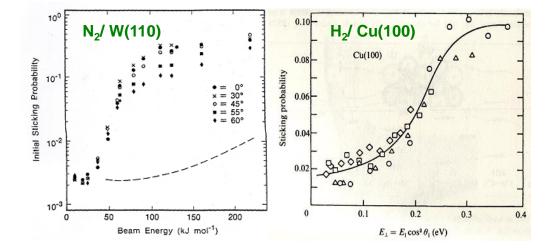
*Figure 3.15* 2D PES for non-activated dissociative adsorption. z is the distance from the molecular centre of mass to the surface. R is the internuclear distance between the atoms of the molecule.

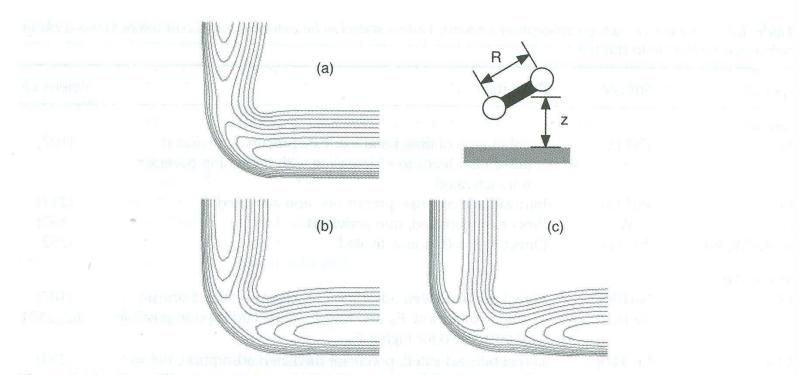
### Hard cube model for non-activated adsorption

#### Activated adsorption





**Figure 3.17** A Lennard-Jones diagram is a one-dimensional representation of the potential energy. In the case shown here, the one dimension is taken as the distance above the surface. A barrier separating the chemisorption well from the gas phase distinguishes activated adsorption. Also shown in the diagram are the energies of two hypothetical trajectories at (a) low and (b) high kinetic energy. Classically, only high energy trajectories can overcome the adsorption barrier.

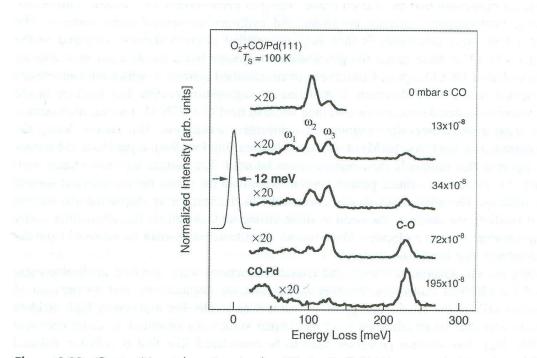

#### Activated adsorption


 $\rm X_{2}~(g) \rightarrow 2~\rm X_{ad}$ 

- Important process in heterogeneous catalysis
- $\ensuremath{\cdot}$  Very small  $s_0$  due to the presence of an adsorption barrier
- A fast N<sub>2</sub> can overcome the barrier to directly populate the atomic state
- A large kinetic energy dependence of s<sub>0</sub>



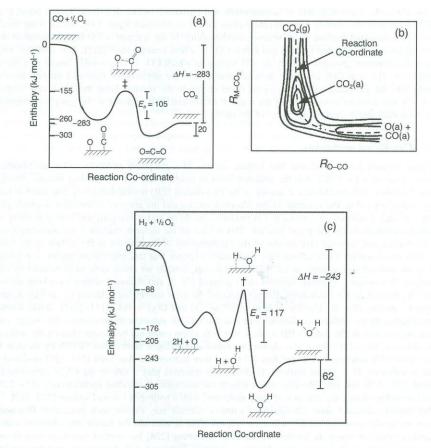







**Figure 3.18** Potential energy surfaces (PESs) for activated dissociative adsorption with (a) early, (b) middle and (c) late barriers. z, the distance from the molecular centre of mass to the surface (vertical axis); R, internuclear distance between the atoms of the (diatomic) molecule (horizontal axis). George Darling is thanked for providing these very fine model PESs.

Direct vs. precursor mediated adsorption (Table 3.2)

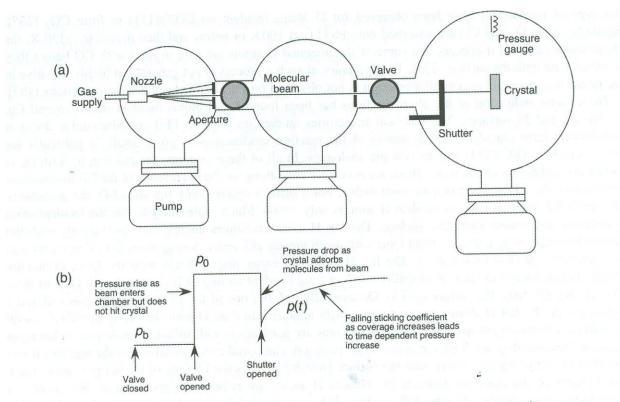

### Competitive adsorption & collision induced processes



**Figure 3.23** Competitive adsorption in the CO +  $O_2/Pd(111)$  system is investigated by electron energy loss spectroscopy (EELS). The species associated with species  $\omega_1$ ,  $\omega_2$  and  $\omega_3$  are illustrated in Fig. 3.8. arb units, arbitrary units;  $T_s$ , surface temperature. Reproduced from K. W. Kolasinski, F. Cemič, A. de Meijere, E. Hasselbrink, Surf. Sci., 334, 19. © 1995, with permission from Elsevier.

### **Classification of reaction mechanism**

Langmuir-Hinshelwood mechanism




**Figure 3.24** The oxidation of CO to form  $CO_2$  and  $H_2$  to form  $H_2O$  on Pt(111) follow Langmuir-Hinshelwood mechanisms. The changes in energy along the reaction pathway are as follows. (a) Enthalpy changes associated with  $CO + O_2$  reaction. The transition state  $\dagger$  is a stretched and bent  $CO_2$  entity. (b) A two-dimensional potential energy surface of the  $CO + O_2$  reaction, portraying the energetic changes as a function of the  $CO_2$ -surface distance  $[r(M-CO_2)]$  and the forming OC bond length [r(O-CO)]. (c) Enthalpy changes associated with the  $H_2 + O_2$  reaction. Two intermediates (2H + O, and H + OH) are formed during the reaction. The transition state  $\dagger$  reached prior to the formation of  $H_2O(a)$  is also bent and stretched; however  $\dagger$  resembles  $H_2O(a)$  more closely than  $\dagger$  resembles  $CO_2(a)$ . Parts (a) and (b) Reproduced with permission from G. Ertl, Ber. Bunsenges. Phys. Chem. 86 (1982) 425. ©1982 Wiley VCH. Values for (c) taken from M. P. D'Evelyn and R. J. Madix, Surf. Sci. Rep. 3 (1983) 413.

### Eley-Rideal mechanism

Hot atom mechanism

## Measurement of sticking coefficients



 $s(t) = \frac{p_0 - p(t)}{p_0 - p_{\rm b}}$ 

Figure 3.25 The King and Wells method of sticking coefficient determination: (a) apparatus, (b) pressure curve.

Sticking probability

s = # molecules adsorbed/ # molecules impinging on a surface

• Molecular beam method, in which the partial pressure change is monitored with a QMS (quadrupole mass spectroscopy)

| TABLE .        | 5.1 Some Typica | l Values of the In | nitial Sticking | Probability at 300 K ( | Chemisorption        |
|----------------|-----------------|--------------------|-----------------|------------------------|----------------------|
| Gas            | Surface         | S(0)               | Gas             | Surface                | S(0)                 |
| H <sub>2</sub> | Ni(100)         | 0.06               | N <sub>2</sub>  | W(320)                 | 0.7                  |
| H <sub>2</sub> | Ni(111)         | 0.02               | N <sub>2</sub>  | W(110)                 | $< 3 \times 10^{-3}$ |
| H <sub>2</sub> | Pt(110)         | 0.2                | Ga              | GaAs(100)-B            | 1.0                  |
| H <sub>2</sub> | Si(100)         | < 10 <sup>-4</sup> | As <sub>4</sub> | GaAs(100)-B            | < 10 <sup>-3</sup>   |
| co             | Pt(111)         | 0.67               | As <sub>4</sub> | GaAs(100)-A            | 0.5                  |

Data taken from Morris et al. [1984] and Joyce and Foxton [1984].

#### Factors influencing s<sub>0</sub> in chemisorption

- Gas- surface combination
- Efficiency of energy transfer in gas-surface collisions
- Surface orientation of the surface for a given single crystal material
- Presence of an energy barrier for dissociative adsorption: activated adsorption