Aeroelasticity

2014

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Index

- 0. Introduction
- 1. Static Aeroelasticity
- 2. Unsteady Aerodynamics
- 3. Dynamic Aeroelasticity
- 4. Turbomachinery Aeroelasticity
- 5. Helicopter Aeroelasticity

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Two principal phenomena
- Dynamic instability (flutter)
- Responses to dynamic load, or modified by aeroelastic effects
- Flutter \cdots self-excited vibration of a structure arising from the interaction of aerodynamic elastic and internal loads "response" ∙∙∙ forced vibration "Energy source" ∙∙∙ flight vehicle speed
- Typical aircraft problems
- Flutter of wing
- Flutter of control surface
- Flutter of panel

Stability concept

If solution of dynamic system may be written or

$$
y(x,t) = \sum_{k=1}^{N} \overline{y}_k(x) \cdot e^{(\sigma_k + i\omega_k)t}
$$

a) $\sigma_k < 0, \omega_k \neq 0 \Rightarrow$ Convergent solution : "stable"

b) $\sigma_{_k}$ = 0, $\omega_{_k}$ ≠ 0 \Rightarrow Simple harmonic oscillation : "stability boundary"

c) $\sigma_k > 0, \omega_k \neq 0 \Rightarrow$ Divergence oscillation : "unstable"

d) $\sigma_k < 0, \omega_k = 0 \Rightarrow$ Continuous convergence : "stable"

e) $\sigma_k = 0, \omega_k = 0 \Rightarrow$ Time independent solution : "stability boundary"

f) $\sigma_{\rm\scriptscriptstyle k}$ > $0,\omega_{\rm\scriptscriptstyle k}$ = 0 \Rightarrow Continuous divergence : "unstable"

Flutter of a wing

Typical section with 2 D.O.F

 K_{α} , K_{μ} : torsional, bending stiffness

- First step in flutter analysis
- Formulate eqns of motion
- The vertical displacement at any point along the mean aerodynamic chord from the equilibrium $z = 0$ will be taken as $z_a(x,t)$

$$
z_a(x,t) = -h - (x - x_{ea})\alpha
$$

The eqns of motion can be derived using Lagrange's eqn

$$
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = Q_i
$$

$$
L = T - U
$$

The total kinetic energy(T)

$$
T = \frac{1}{2} \int_{-b}^{b} \rho \left(\frac{\partial z_a}{\partial t} \right)^2 dx
$$

\n
$$
= \frac{1}{2} \int_{-b}^{b} \rho \left[\dot{h} + (x - x_{ea}) \dot{\alpha} \right]^2 dx
$$

\n
$$
= \frac{1}{2} \dot{h}^2 \int_{-b}^{b} \rho dx + \dot{h} \dot{\alpha} \int_{-b}^{b} \rho (x - x_{ea}) dx + \frac{1}{2} \dot{\alpha}^2 \int_{-b}^{b} (x - x_{ea})^2 dx
$$

\n*m S_a*
\n(airfoil mass) (static unbalance) (mass moment of inertia about c.g.)

*Note) if $x_{ea} = x_{cg}$, then $S_a = 0$ by the definition of c.g. Therefore,

$$
T = \frac{1}{2}m\dot{h}^2 + \frac{1}{2}I\dot{\alpha}^2 + S_{\alpha}\dot{h}\dot{\alpha}
$$

The total potential energy (strain energy)

$$
U = \frac{1}{2}k_h h^2 + \frac{1}{2}k_\alpha \alpha^2
$$

- Using Lagrange's eqns with $L = T - U$

$$
q_1 = h_1, q_2 = \alpha
$$

\n
$$
\Rightarrow \begin{cases} m\ddot{h} + S_\alpha \ddot{\alpha} + k_h h = Q_h \\ S_\alpha \ddot{h} + I_\alpha \ddot{\alpha} + k_\alpha \alpha = Q_\alpha \end{cases}
$$

Where Q_h, Q_a are generalized forces associated with two d.o.f's h, α respectively.

$$
Q_h = -L = -L(\alpha, h, \dot{\alpha}, \dot{h}, \ddot{\alpha}, \ddot{h}, \cdots)
$$

$$
Q_\alpha = M_{ea} = M_{ea}(\alpha, h, \dot{\alpha}, \dot{h}, \ddot{\alpha}, \ddot{h}, \cdots)
$$

Governing eqn.

$$
\Rightarrow \begin{bmatrix} m & S_{\alpha} \\ S_{\alpha} & I_{\alpha} \end{bmatrix} \begin{bmatrix} \ddot{n} \\ \ddot{\alpha} \end{bmatrix} + \begin{bmatrix} K_h & 0 \\ 0 & K_{\alpha} \end{bmatrix} \begin{bmatrix} h \\ \alpha \end{bmatrix} = \begin{bmatrix} -L \\ M_{ea} \end{bmatrix}
$$

- For approximation, let's use quasi-steady aerodynamics

$$
L = qSC_{L_{\alpha}}(\alpha + \frac{\dot{h}}{U_{\infty}})
$$

\n
$$
M_{ac} = qS_{c}C_{m_{\alpha}}\dot{\alpha}
$$

\n
$$
M_{ea} = (x_{ea} - x_{ac}) \cdot L + M_{ac} = eqSC_{L_{\alpha}}(\alpha + \frac{\dot{h}}{U_{\infty}}) + qS_{c}C_{m_{\alpha}}\dot{\alpha}
$$

*Note) Three basic classifications of unsteadiness (linearized potential flow)

- i) Quasi-steady aero: only circulatory terms due to the bound vorticity. Used for characteristic freq. below $2H_z\,$ (e.g., conventional dynamic stability analysis)
- ii) Quasi-unsteady aero: includes circulatory terms from both bound and wake vorticities. Satisfactory results for $2Hz < \omega_\alpha, \omega_\text{h} < 10Hz$. Theodorsen is one that falls into here. (without apparent mass terms)
- iii) Unsteady aero: "quasi-unsteady"+"apparent mass terms" (non-circulatory terms, inertial reactions: $\dot{\alpha}$, \ddot{h}) For $\omega > 10$ Hz, for conventional aircraft at subsonic speed.

Then, aeroelastic systems of equations becomes

$$
\begin{bmatrix} m & S_{\alpha} \\ S_{\alpha} & I_{\alpha} \end{bmatrix} \begin{bmatrix} \ddot{n} \\ \ddot{\alpha} \end{bmatrix} + \begin{bmatrix} \frac{qSC_{L_{\alpha}}}{U_{\infty}} & 0 \\ -\frac{qSec_{L_{\alpha}}}{U_{\infty}} & -qS_{c}C_{m_{\alpha}} \end{bmatrix} \begin{bmatrix} \dot{n} \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} K_{h} & qSC_{L_{\alpha}} \\ 0 & K_{\alpha} - qSec_{L_{\alpha}} \end{bmatrix} \begin{bmatrix} h \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

- For stability, we can obtain characteristic eqn. of the system and analyze the roots.

neglect damping matrix for first,

$$
\begin{bmatrix} m & S_{\alpha} \\ S_{\alpha} & I_{\alpha} \end{bmatrix} \begin{Bmatrix} \ddot{h} \\ \ddot{\alpha} \end{Bmatrix} + \begin{bmatrix} K_h & qSC_{L_{\alpha}} \\ 0 & K_{\alpha} - qSec_{L_{\alpha}} \end{bmatrix} \begin{Bmatrix} h \\ \alpha \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}
$$

Much insight can be obtained by looking at the undamped system (Dowell, pp. 83)

Set
$$
\alpha = \overline{\alpha}e^{pt}
$$
, $h = \overline{h}e^{pt}$
\n
$$
\Rightarrow \begin{bmatrix} (mp^2 + K_h) & (S_{\alpha}p^2 + qSC_{La}) \\ S_{\alpha}p^2 & (I_{\alpha}p^2 + K_{\alpha} - qSec_{L_{\alpha}}) \end{bmatrix} \begin{bmatrix} \overline{h} \\ \overline{\alpha} \end{bmatrix} e^{pt} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

For non-trivial solution,

Characteristic eqn., $det(\Delta) = 0$

$$
(mI_{\alpha} - S_{\alpha})p^{4} + [K_{h}I_{\alpha} + (K_{\alpha} - qSeC_{L_{\alpha}})m - qSC_{L\alpha}S_{\alpha}]p^{2} + K_{h}(K_{\alpha} - qSeC_{L_{\alpha}}) = 0
$$

\nA
\nB
\n
$$
\therefore p^{2} = \frac{-B \pm \sqrt{B^{2} - 4AC}}{2A}
$$

The signs of *A*, *B*, *C* determine the nature of the solution.

$$
A > 0, C > 0 \text{ (if } q < q_D)
$$

\n*B* Either (+) or (-)
\n
$$
B = mK_{\alpha} + K_{h}I_{\alpha} - [me + S_{\alpha}]qSC_{L_{\alpha}}
$$

- If $[me + S_{\alpha}] < 0, B > 0$ for all q
- Otherwise $B < 0$ when

$$
\frac{K_{\alpha}}{e} + \frac{K_{h}I_{\alpha}}{me} - \left[1 + \frac{S_{\alpha}}{me}\right] qSeC_{L_{\alpha}} < 0
$$

- Two possibilities for *B* (*B*>0 and *B*<0)
- *i) B*>0:
	- ① $B^2 4AC > 0$, p^2 are real, negative, so p is pure imaginary \rightarrow neutrally stable
	- ② $B^2 4AC < 0$, p^2 is complex, at least one value should have a positive real part \rightarrow unstable

$$
\textcircled{3} \quad B^2 - 4AC = 0 \rightarrow \text{stability boundary}
$$

• Calculation of q_F^+

 $Dq_F^2 + Eq_F + F = 0 \ \leftarrow (from \ \ B^2 - 4AC = 0,$ stability boundary)

$$
q_F = \frac{-E \pm \sqrt{E^2 - 4DF}}{2D}
$$

where,

$$
D = \left\{ \left[me + S_{\alpha} \right] SC_{L_{\alpha}} \right\}^{2}
$$

\n
$$
E = \left\{ -2 \left[me + S_{\alpha} \right] \left[mK_{\alpha} + K_{h}I_{\alpha} \right] + 4 \left[ml_{\alpha} - S_{\alpha}^{2} \right] eK_{h} \right\} SC_{L_{\alpha}}
$$

\n
$$
F = \left[mK_{\alpha} + K_{h}I_{\alpha} \right]^{2} - 4 \left[ml_{\alpha} - S_{\alpha}^{2} \right] K_{h}K_{\alpha}
$$

- $\circled{1}$ At least, one of the q_F must be real and positive in order for flutter to occur.
- ② If both are, the smaller is the more critical.
- ③ If neither are, flutter does not occur.
- Q If $S_a \leq 0$ (c.g. is ahead of e.a), no flutter occurs (mass balanced)

ii) *B*<0: *B* will become (-) only for large q

 $B^2 - 4AC = 0$ will occur before $B=0$ since $A>0$, $C>0$

∴ To determine q_F , only B>0 need to be calculated.

Examine p as q increases

Low Higher $q \rightarrow p = \pm i \omega_{\text{\tiny{l}}} , \pm i \omega_{\text{\tiny{2}}} (B^2 - 4 A C = 0) \rightarrow$ stability boundary More higher dynamic instability $q \rightarrow p = \pm i \omega_1, \pm i \omega_2 (B^2 - 4AC > 0)$ $q \rightarrow p = -\sigma_1 \pm i\omega_1, \sigma_2 \pm i\omega_2 (B^2 - 4AC < 0) \rightarrow$

Even more higher $q \to p = 0, \pm i\omega_{\rm l}(C=0) \to$ stability boundary

 \therefore Flutter condition: $B^2 - 4AC = 0$ Torsional divergence: $C = 0$

Graphically,

Effect of static unbalance In Dowell's book, after Pines[1958] $S_{\alpha} \leq 0 \rightarrow$ avoid flutter, if 2 $0, \frac{q_F}{q} = 1 - \frac{\omega_h}{\omega^2}$ *D* $S_{\alpha} = 0, \frac{q}{q}$ *q* α α ω ω $= 0, \frac{4F}{ } = 1 -$

If
$$
q_D < 0
$$
 ($e < 0$) $\frac{\omega_h}{\omega_\alpha} < 1.0 \Rightarrow q_F < 0$ no flutter
\nIf $q_D > 0$ and $\frac{\omega_h}{\omega_\alpha} > 1.0 \Rightarrow$ no flutter

- Inclusion of damping \rightarrow "can be a negative damping" for better accuracy,

 $m\ddot{q} + c\dot{q} + Kq = 0$, where $\frac{L_{\alpha}}{2}$ 0 *L m qSC U c* $\frac{qSC_{L_{\alpha}}}{U_{\infty}}$ *-qScC* α α α ∞ ∞ qSC_{L} | $\frac{L_a}{I}$ 0 = $-\frac{T^2 - L_{\alpha}}{T}$ – $\left[\begin{array}{ccc} & U_{_{\infty}} & & {}^{I} & {}^{m_{\dot\alpha}} \end{array} \right]$

The characteristic equation is now in the form of

$$
A_4 p^4 + A_3 p^3 + A_2 p^2 + A_1 p + A_0 = 0
$$

$$
A_4 p^4 + A_3 p^3 + A_2 p^2 + A_1 p + A_0 = 0 \cdots
$$

Routh criteria for stability

; At critical position, the system real part becomes zero, damping becomes zero.

Substitute $p = i\omega$ into $(*)$, we get,

$$
\begin{cases} A_4 \omega^4 - A_2 \omega^2 + A_0 = 0 \\ i(-A_3 \omega^3 + A_1 \omega) = 0 \end{cases}
$$

From the second eqn, $\omega^2 = \frac{A_1}{A_3}$, substitute into first equation, then,

$$
A_4 \left(\frac{A_1}{A_3}\right)^2 - A_2 \left(\frac{A_1}{A_3}\right) + A_0 = 0 \text{ or } A_4 A_1^2 - A_1 A_2 A_3 + A_0 A_3^2 = 0
$$

And, we can examine p as q increases,

Low $q \to p = -\sigma_1 \pm i\omega_1, -\sigma_2 \pm i\omega_2 \to$ damped natural freq. **Higher** More higher $q \to p = -\sigma_1 \pm i\omega_1, \pm \sigma_2 \pm i\omega_2 \to$ dynamic instability. $q \rightarrow p = -\sigma_1 \pm i\omega_1, \pm i\omega_2$

- $-$ Static instability \cdots \mid K $\mid = 0$
- Dynamic instability a) frequency coalescence $(msymmetric K)$
	- b) Negative damping $(C_{ij} < 0)$
	- c) Unsymmetric damping (gyroscopic)

Consider disturbance from equilibrium

Using modal method, the displacement $\, (w_{_{ea}}) \,$ and rotation $\, (\theta_{_{ea}}) \,$ at elastic axis can be expressed as

$$
\begin{cases}\nw_{ea} = \sum_{r=1}^{N} h_r(y) q_r(t) \\
\theta_{ea} = \sum_{r=1}^{N} \alpha_r(y) q_r(t)\n\end{cases}
$$

where $h_r(y), \alpha_r(y)$: mode shape $q_{_r}(t)$: generalized (modal) coordinate : *N* total number of modes

Modes can be assumed, or calculated from mass-spring representation. The displacements and rotations at any point $(x, y, t) = w_{ea} + (x - x_0) \theta_{ea} = \sum |h_r + (x - x_0)|$ (x, y, t) 1 $(y, y, t) = W_{ea} + (x - x_0) \theta_{ea} = \sum |h_r + (x - x_0) \alpha_r| q_r(t)$ $(\theta, y, t) = \theta_{eq} = \sum \alpha_r q_r(t)$ *N* e^{a} $(\lambda - \lambda_0)$ ^U e^{a} \sim λ ₁ n_r $(\lambda - \lambda_0)$ U_r q_r *r N* $_{ea}$ - \sum α _r q _r $w(x, y, t) = w_{eq} + (x - x_0) \theta_{eq} = \sum |h_r + (x - x_0) \alpha_r| q_r(t)$ $\theta(x, y, t) = \theta_{eq} = \sum \alpha_{r} q_{r}(t)$ = $= w_{ea} + (x - x_0) \theta_{ea} = \sum \Big[h_r + (x - x_0) \alpha_r \Big]$ $=\theta_{_{ea}}=\sum$

1

=

r

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

The kinetic energy (T) is

$$
T = \frac{1}{2} \iint_{\frac{1}{2} \arccos f} m(\dot{w})^2 dxdy
$$

= $\frac{1}{2} \iint_{r=1}^{N} m \sum_{r=1}^{N} \left[h_r + (x - x_0) \alpha_r \right] \dot{q}_r \sum_{s=1}^{N} \left[h_s + (x - x_0) \alpha_s \right] \dot{q}_s dxdy$
= $\frac{1}{2} \sum_{r=1}^{N} \sum_{s=1}^{N} m_{rs} \dot{q}_r \dot{q}_s$

where, $m_{rs} = \int_0 \left[M h_r h_s + I_\alpha \alpha_r \alpha_s + S_\alpha \left(h_r \alpha_s + h_s \alpha_r \right) \right]$ $m_{rs} = \int_0^l \left[M h_r h_s + I_\alpha \alpha_r \alpha_s + S_\alpha \left(h_r \alpha_s + h_s \alpha_r \right) \right] dy$

$$
M = \int_{LE}^{TE} m dx
$$
: mass/unit span
\n
$$
S_{\alpha} = \int_{LE}^{TE} (x - x_0) m dx
$$
: static unblance/unit span
\n
$$
I_{\alpha} = \int_{LE}^{TE} (x - x_0)^2 m dx
$$
: moment of inertia about E.A. /unit span

The potential energy (U) is

$$
U = \frac{1}{2} \int_0^l EI \left(\frac{\partial^2 w_{ea}}{\partial y^2} \right)^2 dy + \frac{1}{2} \int_0^l GJ \left(\frac{\partial \theta_{ea}}{\partial y} \right)^2 dy
$$

= $\frac{1}{2} \int_0^l EI \sum_{r=1}^N h_r'' q_r \sum_{s=1}^N h_s'' q_s dy + \frac{1}{2} \int_0^l GJ \sum_{r=1}^N \alpha_r' q_r \sum_{s=1}^N \alpha_s' q_s dy$
= $\frac{1}{2} \sum_{r=1}^N \sum_{s=1}^N K_{rs} q_r q_s$

where, 0 $\sqrt{3}$ $\sqrt{0}$ $l = l$ *l* $K_{rs} = \int_0^r E I h_r'' h_s'' dy + \int_0^r G J \alpha_r' \alpha' dy$

[Note] $K_{rs} = 0$ for rigid modes 1,2, since $h_1'' = h_2'' = 0$ and $\alpha_1' = \alpha_2' = 0$

Finally, the work done by airloads,

$$
\delta W = -\int_0^l L_{ea} \delta w_{ea} dy + \int_0^l M_{ea} \delta \theta_{ea} dy - L_{HT} \delta w_{HT} + M_{HT} \delta \theta_{HT} = \sum_{r=1}^N Q_r \delta q_r
$$

subscript *HT*: horizontal tail contribution (rigid fuselage assumption) where, $Q_r = \int_0^{\cdot} (-h_r L_{ea} + \alpha_r M_{ea}) dy - h_{r(HT)} L_{HT} + \alpha_{r(HT)}$ *l* $Q_r = \int_0^r \left(-h_r L_{ea} + \alpha_r M_{ea} \right) dy - h_{r(HT)} L_{HT} + \alpha_{r(HT)} M_{HT}$

[**Note]**
$$
r = 1 \rightarrow Q_1 = -\int_0^l L_{ea} dy - L_{HT} = -\frac{1}{2} L_{Total}
$$

 $r = 2 \rightarrow Q_2 = \frac{1}{2} M_{Total}(C.G)$

place T,U , and Q_r into the Lagrange's equation

$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_r}\right) - \frac{\partial T}{\partial q_r} + \frac{\partial U}{\partial q_r} = Q_r
$$

yield the equation of motion

Equation of motion in matrix form

$$
\begin{bmatrix} m_{rs} \end{bmatrix} \left\{ \ddot{q}_r \right\} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & K_{33} & K_{34} \\ 0 & 0 & K_{43} & K_{44} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \left\{ Q_r \right\}
$$

zeros are associated with rigid body modes

[Note] If we used normal modes, $w(x, y, t) = \sum \phi_r(x, y)$ free-free normal mode 1 $(y, y, t) = \sum \phi_r(x, y) q_r(t)$ *N r* (x, y) y *r* $w(x, y, t) = \sum \phi_r(x, y) q_r(t)$ = $=\sum$

The equation of motion would be uncoupled

$$
\left[m_{rs}\right] \rightarrow \begin{bmatrix} \ddots & & \\ & m_{rr} & \\ & & \ddots \end{bmatrix}, \quad \left[K_{rs}\right] \rightarrow \begin{bmatrix} \ddots & & \\ & & m_{rr}\omega_r^2 & \\ & & & \ddots \end{bmatrix}
$$

Now, let's introduce the aerodynamic load by considering 2-D, incompressible, strip theory

$$
L_{ea} = \pi \rho b^{2} \left[\ddot{w}_{ea} + U \dot{\theta}_{ea} - ba \ddot{\theta}_{ea} \right] + 2 \pi \rho U b C(k) \left[\dot{w}_{ea} + U \theta_{ea} - b \left(\frac{1}{2} - a \right) \theta_{ea} \right]
$$

\n
$$
M_{ea} = \pi \rho b^{3} \left[a \ddot{w}_{ea} + U \left(\frac{1}{2} - a \right) \dot{\theta}_{ea} - b \left(\frac{1}{8} + a^{2} \right) \ddot{\theta}_{ea} \right]
$$

\n+2 $\pi \rho U b^{2} \left(\frac{1}{2} + a \right) C(k) \left[\dot{w}_{ea} + U \theta_{ea} - b \left(\frac{1}{2} - a \right) \theta_{ea} \right]$
\nlift deficiency fn. $\frac{3}{4}c$ airspeed (downwash)
\n
$$
* k = \frac{\omega b}{U} = \frac{\omega c}{2U}
$$
\n
$$
= \frac{b}{\omega \text{ndeflected airfoil}}
$$
\n
$$
= \frac{b}{\omega \text{radal air cell}}
$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Unsteady Aeroelasticity

- **Unsteady Aeroelasticity in Incompressible Flow (B.A.H p.272 and B.A. p.119)**
	- For incompressible flow $(M << 1)$
		- a separation can be made between circulatory and non-circulatory airloads
	- When the airfoil performs chordwise rigid motion. the circulatory lift depends only on the downwash at the $\frac{3}{4}c$ station

$$
w_{\frac{3}{4}c} = \left[\dot{w}_{ea} + U \theta_{ea} - b \left(\frac{1}{2} - a \right) \theta_{ea} \right]: \text{down wash at } \frac{3}{4}c
$$
\n
$$
L_{ea} = \pi \rho b^2 \left[\ddot{w}_{ea} + U \dot{\theta}_{ea} - ba \dot{\theta}_{ea} \right] + 2\pi \rho U b C(k) \left[\dot{w}_{ea} + U \theta_{ea} - b \left(\frac{1}{2} - a \right) \theta_{ea} \right]
$$
\n
$$
\uparrow
$$

Unsteady Aeroelasticity

However,

$$
\begin{cases} w_{ea} = \sum_{s} h_{s} q_{s} \\ \theta_{ea} = \sum_{s} \alpha_{s} q_{s} \end{cases}
$$

and placing these into $\left. L_{_{ea}}, M_{_{ea}} \right.$ yields

$$
Q_r = \int_0^l \left(-h_r L_{ea} + \alpha_r M_{ea}\right) dy + H.O.T = Q_r\left(q_s, \dot{q}_s, \ddot{q}_s\right)
$$

coupled set of homogeneous differential equations. For stability analysis, assume $q_r(t) = \overline{q}_r e^{pt}$ where $p = \sigma + i\omega$, and for $a) + \sigma, \omega \neq 0$ $b) + \sigma, \omega = 0$ "flutter" "divergence" *t t*

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- **Solutions of the Aeroelastic Equations of Motion (Dowell pp.100~106)**
- Two Groups: a) Time domain and b) Frequency domain
	- a) Time domain: fundamentally, a step by step solution for the time history
		- ∙ Direct integration method
			- ① equilibrium satisfied at discrete time *t*
			- $\left(\mathbb{Q}\right)$ assumed variation of variables $\left(q,\dot{q},\ddot{q}\right)$

within the time interval ∆*t*

- ∙ Examples of methods
	- ① central difference
	- ② Newmark
	- ③ Houbolt

Ref. Bathe, "Finite Element Procedures", Chap. 9

- ∙ When selecting a method, three main issues to be aware
	- ① efficient scheme
	- ② numerical stability

conditionally stable – dependent on ∆*t*

- unconditionally stable
- ③ numerical accuracy
	- amplitude decay
	- period elongation
- ∙ Advantage and disadvantage of time domain analysis
	- ① Advantage: straight forward method
	- ② Disadvantage: aerodynamic loads may be a problem
		- \rightarrow theories are not well-developed
		- \rightarrow intensive numerical calculation

for small number of frequency (*k*)

- b) Frequency domain: most popular approach
	- ∙ Main issue: aerodynamic loads are well developed

for simple harmonic motion

- \cdot consider simple harmonic motion $\ q_r(t)$ = $\overline{q}_re^{i\omega t}$
- and corresponding lift and moment, (Ref. Drela, last page)

$$
L_{ea} = \overline{L}_{ea} e^{i\omega t}
$$

$$
M_{ea} = \overline{M}_{ea} e^{i\omega t}
$$

$$
\overline{L}_{ea}=\pi \rho b^{3} \omega^{2} \Bigg[l_{_{h}}\big(k,M_{_{\infty}}\big) \frac{\overline{w}_{ea}}{b} + l_{_{\alpha}}\big(k,M_{_{\infty}}\big) \overline{\theta} \ \Bigg]
$$

where,

$$
\overline{M}_{ea} = \pi \rho b^4 \omega^2 \left[m_h (k, M_{\infty}) \frac{\overline{w}_{ea}}{b} + m_a (k, M_{\infty}) \overline{\theta} \right]
$$

(Refs. Dowell, p.116 and B.A. pp. 103~114) $l_h, l_\alpha, m_h, m_\alpha$ are dimensionless complex fn. of (k, M_∞)

∙ Then, the governing equation becomes

$$
-\omega^2 \left[M\right] \left\{\overline{q}\right\} + \left[K\right] \left\{\overline{q}\right\} + \omega^2 \left[A\left(k,M_\infty\right)\right] \left\{\overline{q}\right\} = 0
$$

aerodynamic operator (aero. mass matrix)

It is presumed that the following parameters are known.

$$
\underbrace{M, S_{\alpha}, I_{\alpha}}_{\longleftarrow}, \quad \underbrace{\omega_{h}, \omega_{\alpha}}_{\longleftarrow}, \quad b\left(=\frac{1}{2}c\right)
$$

inertia stiffness

The unknown quantities are

$$
\overline{q}, \omega, \rho, M_{\infty}, k\left(=\frac{\omega b}{U}\right)
$$

determined by *p*

- I) k-method (V-g method)
- ∙ consider a system with just the right amount of structural damping, so the motion is simple harmonic

$$
-\omega^{2}[M]\{\overline{q}\} + (1+ig)[K]\{\overline{q}\} + \omega^{2}[A]\{\overline{q}\} = 0
$$

\n
$$
\uparrow
$$

\nstructural damping coefficient

[Note] structural damping – restoring force in phase with velocity, but proportional to displacement

> phase displacement $F_{\rm o}$ = $-g\left(\dot{q}/\bigl|\dot{q}\bigr|\right)\! \bigl| q$

* viscous damping - $F_c = -c\dot{q}$

∙ Rewrite equation

$$
[M-A]\{\overline{q}\} = (1+ig)/\omega^2 [K]\{\overline{q}\}
$$

$$
\Lambda, \text{ Re}[\Lambda] = 1/\omega^2, \text{ Im}[\Lambda] = g/\omega^2
$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

 $g_{\scriptscriptstyle{required}}>g_{\scriptscriptstyle{available}}:$ unstable

 $g_{\mathit{required}} = g_{\mathit{available}}:$ neutral

 $g_{\mathit{required}} < g_{\mathit{available}}: \mathit{stable}$
∙ Solution process

 $\textcircled{1}$ Given M , S_{α} , I_{α} , $\omega_{h}/\omega_{\alpha}$, b

 $\emph{(2) Assume ρ (fix altitude), $M_{\infty} = U/a_{\infty}$}$

 $\textcircled{3}$ For a set of k values, solve for eigenvalues for Λ

$$
U_F \rightarrow M_F = M_\infty
$$

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- I) k-method (V-g method) (Dowell, p.106)
	- \cdot Structural damping is introduced by multiplying at $\omega_h^2, \omega_\alpha^2$ pure sinusoidal motion is assumed $\rightarrow \omega \equiv \omega_{\scriptscriptstyle R}, \omega_{\scriptscriptstyle I} \equiv 0$ for a given U , the g required to sustain pure sinusoidal motion is determined $\times (1 + ig)$, g: structural damping coefficient
- ∙ Advantage the aero. force need to be determined for real frequencies
- \cdot Disadvantage loss of physical sight, only at $U = U_{_F}\big(\omega = \omega_{_R}, \omega_{_I} = 0\big)$ the mathematical solution will be meaningful
- ∙ Following parameters are prescribed

$$
M, S_{\alpha}, I_{\alpha}, \omega_{h}/\omega_{\alpha}, k, m/2\rho_{\infty}bS
$$

then, the characteristic equation becomes a complex polynomial in unknowns $\big(\mathit{\omega_{\alpha}}/\mathit{\omega}\big)(1\!+\!ig)$

- I) k-method (V-g method) (Dowell, p.106)
- \cdot A complex roots are obtained for ω_α/ω and β From ω_α/ω and the previously selected $k \equiv ab/U$,

$$
\frac{\omega_{\alpha}b}{U_{\infty}} = \frac{\omega_{\alpha}}{\omega}k
$$

Then, plot g vs $U_{\infty}/b\omega_{\alpha}$ (typical plot for two d.o.f system below) $g:$ value of structural damping required to sustain neutral stability

 \rightarrow If the actual damping is $g_{\text{available}}$, then flutter occurs when $g = g_{\text{available}}$

If $g < g_{available}$, $U < U_F$ \rightarrow no flutter will occur

- I) k-method (V-g method) (Dowell, p.106)
	- \cdot Uncertainty about *g_{available}* in a real physical system, flutter speed is defined as minimum value of $\left. U_{F}/b\omega_{a}\right.$ for any $\left. g>0\right.$

II) p-method – time dependent solution $q = \overline{q}e^{pt}$, $p = \sigma + i\omega$

∙ The equation,

$$
p^{2}\big[M\big]\big\{\overline{q}\big\}+\big[K\big]\big\{\overline{q}\big\}=\big[A(p,M)\big]\big\{\overline{q}\big\}
$$

Now the aero becomes more approximate

[Note] I) k-method (V-g method),
$$
q_r = \overline{q}_r e^{i\omega t}
$$

\nonly valid for single harmonic motion – $k \sim \omega$

\nII) p-method, $q = \overline{q}e^{pt}$, $p = \sigma + i\omega$

\n
$$
[M]{\ddot{q}} + [K]{\overline{q}} = [A(p, M)]
$$
 - "true damping" (H. Hassig)

III) p-k method

∙ The solution is assumed arbitrary (as in p-method) However, the aero. is assumed to be $A(p,M) \cong A(k,M)$

Then, the eqn. becomes:

$$
\left\{p^2\left[M\right]+\left[K\right]-\left[A\left(k,M\right)\right]\right\}\left\{\overline{q}\right\}=0
$$

∙ Solution process

$$
① \text{ specify } k_i, M_i
$$

$$
2 \text{ solve for } p_0 = \sigma_0 + i\omega_0
$$

③ check for double matching

$$
k_0 = k_i
$$

$$
M_F = M_i
$$

 $k₀$

- **[Note]** p-k method usually requires handful of iteration to converge. It is more expensive than k-method.
	- ∙ Alternative: p-k method (Dowell)

 $h, \alpha \sim e^{pt}$ is assumed, $p = \sigma + i\omega$

in aero. terms, only a $k \equiv \omega b/U$ is assumed

The eigenvalues p are computed \rightarrow new $\omega \rightarrow$ new k \rightarrow new aero.

terms – iteration continues until the process converges

For small σ , i.e., $|\sigma| \ll |\omega|$, $\sigma \sim$ true damping solution

one can fit above by Padé Approximation

in Laplace transform domain p of from

$$
Q_r = \frac{1}{2} \rho U^2 \left[A_2 (b/U)^2 p^2 + A_1 (b/U) p + A_0 + A_3 \frac{(b/U) p}{(b/U) p + \beta_1} \right] q_s
$$

mass damping stiffness lag

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

For harmonic motion $p = i\omega$

$$
Q_{r} = \frac{1}{2} \rho U^{2} \left[\left(-A_{2} + A_{0} + A_{3} \frac{k^{2}}{k^{2} + \beta_{1}} \right) + i \left(A_{1}k - A_{3} \frac{\beta_{1}k}{k^{2} + \beta_{1}^{3}} \right) \right] q_{s}
$$

$$
(Q_{rs})_{real} \qquad (Q_{rs})_{img}
$$

and then evaluate coefficients $A_{\scriptscriptstyle 2},A_{\scriptscriptstyle 1},A_{\scriptscriptstyle 0},A_{\scriptscriptstyle 3},\beta_{\scriptscriptstyle 1}$ to fit $\,\,Q_{\scriptscriptstyle r s}$ $\hbox{\rm over}$ certain range of $\,$ k , $\,0$ \le k \le $\,2$ $\,\left(k \equiv ab/U\right)$

[Note] for better fit, use more lag terms,

$$
Q_r = \frac{1}{2} \rho U^2 \Bigg[A_2 (b/U)^2 p^2 + A_1 (b/U) p + A_0 + \sum_{m=3}^N A_m \frac{(b/U) p}{(b/U) p + \beta_{m-2}} \Bigg] q_s
$$

Next, introduce new augmented state variables y_s , defined as

$$
y_s = \frac{(b/U) p}{(b/U) p + \beta_s} q_s = \frac{p}{p + (U/b) \beta_s} q_s
$$

$$
py_s + (U/b) \beta_s y_s = pq_s
$$

Return to time domain,

$$
Q_{r} = \frac{1}{2} \rho U^{2} \left[A_{2} (b/U)^{2} \ddot{q}_{s} + A_{1} (b/U) \dot{q}_{s} + A_{0} q_{s} + A_{3} y_{s} \right]
$$

$$
\dot{y}_{s} + (U/b) \beta_{s} y_{s} = \dot{q}_{s}
$$

and governing equation,

$$
M\ddot{q} + C\dot{q} + Kq = \frac{1}{2}\rho U^2 \left[A_2 (b/U)^2 \ddot{q}_s + A_1 (b/U) \dot{q}_s + A_0 q_s + A_3 y_s\right]
$$

$$
\dot{y}_s + \left[\begin{array}{ccc} \ddots & & \\ & U\beta/b & \\ & & \ddots \end{array}\right] y_s = \dot{q}_s
$$

or

where

or
$$
\begin{bmatrix} M^* & 0 & 0 \ 0 & M^* & 0 \ 0 & 0 & I \end{bmatrix} \begin{bmatrix} \dot{q} \\ \ddot{q} \\ \ddot{q} \end{bmatrix} + \begin{bmatrix} 0 & -M^* & 0 \ K^* & C^* & G \ 0 & -I & H \end{bmatrix} \begin{bmatrix} q \\ \dot{q} \\ y \end{bmatrix} = 0
$$

$$
\begin{bmatrix} M^* = M - \frac{1}{2} \rho b^2 A_2 \\ C^* = C - \frac{1}{2} \rho b A_1 \\ K^* = K - \frac{1}{2} \rho U^2 A_0 \\ G = \frac{1}{2} \rho U^2 A_3 \\ H = \begin{bmatrix} \ddots \\ U \beta/b \\ \ddots \end{bmatrix}
$$

and then,
$$
\begin{bmatrix} \dot{q} \\ \ddot{q} \\ \ddot{q} \end{bmatrix} = [A] \begin{bmatrix} q \\ \dot{q} \\ \dot{q} \end{bmatrix} \rightarrow \dot{\mathbf{X}} = \mathbf{A}\mathbf{X}
$$

Ref.: Karpel, minimum-state (1991)

y | *y*

 $\left[\begin{matrix} \dot{y} \end{matrix}\right]$ $\left[\begin{matrix} y \end{matrix}\right]$

 \dot{y}

Types of Flutter

I) "Coalescence" or "Merging frequency" flutter

- ∙ coupled-mode, bending-torsion flutter (2 d.o.f flutter)
- for $U > U_F$, one of $\omega_I \rightarrow (+)$ and large (stable pole)

the other $\omega_I \rightarrow$ (-) and large (unstable pole)

 $\omega_{\scriptscriptstyle R}$ remain nearly the same

∙ although $\left\{\begin{array}{c} \text{torsion mode being unstable} \\ \text{the airfoil is} \end{array}\right\}$ $\left\{\right.$ torsion mode being unstable $\left.\right\}$ bending mode being stable $\left.\right\}$

undergoing on oscillation composed of both

 \rightarrow torsional mode usually

goes unstable

 \rightarrow flutter mode contains

significant contributions of both bending and torsion

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Types of Flutter (Dowell. P.103)

- I) "Coalescence" or "Merging frequency" flutter
- ∙ the "out-of-phase" (damping) force are not qualitatively important
- \rightarrow may neglect structural damping entirely and use a quasi-steady or even a quasi-static aerodynamic assumption
- \rightarrow simplified analysis

Out-of-Phase Force (BAH p.528)

- 2-D rigid airfoil with a torsional spring (1 d.o.f system)

$$
I_{\alpha}\ddot{\alpha} + K_{\alpha}\alpha = M_{y}
$$

by assuming

$$
\alpha = \overline{\alpha}_o e^{i\omega t}
$$

$$
\frac{I_{\alpha}}{\pi \rho b^4} \left[1 - \left(\frac{\omega_{\alpha}}{\omega} \right)^2 \right] + m_y = 0
$$

i t

where

$$
m_{y} = \frac{M_{y}}{\pi \rho b^{4} \omega^{2} \overline{\alpha}_{e} e^{i\omega t}}
$$
, function of only $k = \frac{\omega b}{U}$

Substituting into (1), flutter occurs when the out-of-phase aerodynamic damping component vanish.

- Rotating complex vector diagram

Out-of-Phase Force (BAH p.528)

- Rotating complex vector diagram

 ${M}_{y}$ which lags that motion ($\; \; {\rm Im}\big\{{M}_{y} \big\} \! < \! 0$), removes energy from the oscillation, providing damping. This out-of-phase component, $\;{\rm Im}\{M_{\rm y}\}\;$, is the only source of damping or instability from the system.

Types of Flutter

II) Single d.o.f. flutter

- ∙ frequency of mode almost independent of reduced velocity
- ∙ results from negative damping
- ∙ out-of-phase part of aerodynamic operator is very important
- ∙ typical of systems with large mass ratio at large reduced velocity

Types of Flutter (Dowell. P.103)

II) Single d.o.f. flutter

- \cdot frequencies, $\omega_{\scriptscriptstyle R}$, independent of the airspeed $\left(U/b\omega_{\scriptscriptstyle \alpha}\right)$ variation
- \cdot true damping, ω_{I} , also moderate change with airspeed
- · one of the mode (usually torsion) becomes slightly (-) at U_F^{\dagger}
- \rightarrow very sensitive to structural and aerodynamic damping forces
- \rightarrow since those forces are less precisely described,
	- analysis gives less reliable results
- ∙ Since the flutter mode is virtually the same as that of the system at zero airspeed, the flutter mode and frequency are predicted rather accurately (mass ratio < 10)
- ∙ Airfoil blades in turbo machinery and bridges in a wind.

Types of Flutter

III) Divergence

- ∙ flutter at zero frequency
- ∙ very special type of single d.o.f. flutter
- ∙ out-of-phase forces unimportant
- ∙ analysis reliable

Parameter Effects on Wing Flutter

∙ When one non-dimensionalizes the flutter determinant (2D), 5 parameters will appear:

Parameter Effects on Wing Flutter

[additional]

1 $\omega_{\alpha} t$ = nondimensional time *M* = Mach. No. (compressibility effect) $K_{\alpha} = \frac{\omega_{\alpha}b}{I}$ *U* α α $=\frac{\omega_a b}{\sigma}$ =reduced frequency = Treduced velocity $\frac{U_F}{b\omega_a} = f\left(\mu, x_a, \gamma_a, a, \frac{\omega_h}{\omega_a}, M\right)$ ω μ, x_{α}, γ ω (*a*) and ω $=f\Bigg(\mu,x_{\alpha},\gamma_{\alpha},a,\frac{\omega_{h}}{\omega_{\alpha}},M\Bigg)$

The trends are:

a) x_{α} < 0, (CG. Ahead of EA) - frequently no flutter

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Flutter Approximate Formula

 ω_h An approximate formula was obtained by Theodorsen and Garrick for small large μ . ω_{α} b h

$$
\frac{U_F}{b\omega_n} \frac{1}{\sqrt{\mu}} \cong \sqrt{\frac{\gamma_\alpha^2}{2(\frac{1}{2} + a + x_\infty)}}
$$

Distance (non-dimensional) between AC and CG (B.A.H. 9-22)

Recall divergence:

$$
q_D = \frac{K_\alpha}{\rho c C_{l\alpha}} = \frac{1}{2} e U_D^2
$$

$$
\frac{U_D}{b\omega_\alpha}\frac{1}{\sqrt{\mu}}\cong\sqrt{\frac{\gamma_\alpha^2}{2(\frac{1}{2}+a)}}
$$

. non dimensionalize the typical section equation of motion

$$
\frac{h}{b} = F_1(\omega_a t : \frac{S_\alpha}{mb}, \frac{I_\alpha}{mb^2}, \frac{m}{\rho(2b)^2}, \frac{e}{b}, \frac{\omega_h}{\omega_\alpha}, M, \frac{U}{b\omega_a})
$$

$$
\alpha = F_2(\omega_a t : \frac{S_\alpha}{mb}, \frac{I_\alpha}{mb^2}, \frac{m}{\rho(2b)^2}, \frac{e}{b}, \frac{\omega_h}{\omega_\alpha}, M, \frac{U}{b\omega_a})
$$

- Choice of non-dimensional parameters:

. not unique, but a matter of convenience

i) non dimensional dynamic pressure, or 'aeroelastic stiffness No.'

instead of a non dimensional velocity, 2 2 2^{2} 1 $4\rho U$ K_{α}^{-2} m ω_{α} $\lambda \equiv \frac{1}{\eta} = \frac{4\rho}{\eta}$ μ K $_{\alpha}$ m ω $\equiv \frac{1}{\sqrt{2}}$ = 2 *U* $b\omega_a^+$

ii) $\omega_a t$ nondimensional time static unbalance $2\equiv \frac{I_a}{I_a}$ radius of gyration (squared) $(2b)^2$ mass ratio location of e.a measured from a.c or mid-chord frequency ratio Mach number $k_a = \frac{\omega_a b}{U}$ Reduced frequency 2 $\omega_{_h}$ *S mb I mb m b e a b M U* α γ_α = α $\gamma_\alpha^{\;\;2}$ = $\omega_{\scriptscriptstyle \alpha}$ $=\frac{\omega_{\alpha}}{2}$ μ ρ ≡ ≡

- For some combinations of parameters, the airfoil will be dynamically unstable ('flutter')
- Alternative parametric representation

Assume harmonic motion $h=\overline{he}^{i\omega t}, \alpha=\overline{\alpha}e^{i\omega t}$

Eigenvalues $\omega = \omega_R + i\omega_I$

$$
\frac{\omega_R}{\omega_\alpha} = G_R(x_\alpha, r_\alpha, \mu, a, \frac{\omega_h}{\omega_a}, M, \frac{U}{b\omega_\alpha}) \qquad , \qquad \frac{\omega_I}{\omega_\alpha} = G_I(x_\alpha, r_\alpha, \mu, a, \frac{\omega_h}{\omega_a}, M, \frac{U}{b\omega_\alpha})
$$

- For some combinations, $\omega_I < 0$, the system flutters.

― the coalescence flutter , conventional flow condition (no shock oscillation and no stall)

I) Static unbalance, x_α ... if $x_\alpha < 0$, frequently no flutter occurs II) Frequency ration $\frac{n}{\sqrt{m}} ... U_F / b\omega_a$ is a minimum when III) Mach No. M \ldots aero pressure on an airfoil is normally greatest near $M = 1 \rightarrow$ flutter speed tends to be a minimum For $M \gg 1$, from aero piston theory, For $M \geq 1$ and constant μ , ${U}_{F} \approx {M}^{\, 1/2}$ $\omega_{\alpha}^{}$ $\frac{\omega_h}{\omega_m}$ *w* $U_F/b\omega_a$ is a minimum when $\frac{\omega_h}{\omega_m} \approx 1$ ω_{α} $\omega_{_h}$ U^2 $p \approx \rho \frac{C}{M}$

— for flight at constant altitude, ρ (hence μ) and $\alpha_{\scriptscriptstyle \infty}$ (speed of sound) fixed. $U = M\alpha_{\infty} \rightarrow \left|\frac{U}{h\omega}\right| = M\left|\frac{u_{\infty}}{h\omega}\right| \rightarrow$ compatibility relation \int \setminus $\overline{}$ \setminus $= M$ $\bigg)$ \backslash $\overline{}$ \setminus $=\boldsymbol{M}\boldsymbol{\alpha}_{\infty}\rightarrow\left(\frac{\boldsymbol{U}}{\boldsymbol{b}\boldsymbol{\omega}_{\alpha}}\right)=\boldsymbol{M}\left(\frac{\boldsymbol{\alpha}_{\infty}}{\boldsymbol{b}\boldsymbol{\omega}_{\alpha}}\right)$ α ω $\alpha_{\infty} \rightarrow \left(\frac{\partial}{\partial \omega_{\alpha}}\right) = M\left(\frac{\partial}{\partial \omega_{\alpha}}\right)$ *M b* $U = M\alpha_{\infty} \rightarrow \left(\frac{U}{I}\right)$ $U_F/b\omega_a$ \Rightarrow *M* 1.0 compatibility relation $f \cong M^{1/2}$ for large M and for a flat plate

 $-$ by repeating flutter calculation for various altitudes (various $\rho, \alpha_{\infty},$ various μ and $\alpha_{\scriptscriptstyle \alpha}/b\varpi_{\scriptscriptstyle \alpha}$) IV) Mass ratio μ ... For large $\mu \rightarrow$ constant flutter dynamic pressure For small $\mu \rightarrow$ constant flutter velocity (dashed line) for $M \equiv 0$ and 2-D airfoil theory \rightarrow U_F \rightarrow ∞ for some small but finite μ (solid line) Altitude / *M* No flutter $\left\langle \right\rangle$ flutter μ $b\omega_a$ \overline{U}_F \vert \cong constant for large J \setminus I \mathbf{r} \setminus $=\frac{1}{\sqrt{\frac{U_F}{\cdot}}}\Bigg)^2$ 1 $\mu\!\setminus\!b\hskip.03cm\omega_{\alpha}$ λ *b* $U_{\scriptscriptstyle F}$ $\mathcal{L}_F = \frac{1}{L}$ $\frac{1}{L}$ \cong constant for large μ

Flutter Prevention

- Flutter Prevention

- add mass or redistribute the mass $\implies x_{\alpha} < 0$ ("mass balance")
- increase ω_{α}
- move $\frac{\omega_h}{\omega_\alpha}$ away from 1
- add damping, mainly for single D.O.F flutter
- use composite materials
	- couple bending and torsion
	- $\bullet \quad$ shift $\omega_{\scriptscriptstyle \alpha}$ away from $\,\omega_{\scriptscriptstyle h}$
- limit flight envelope by "fly slower"

Physical Explanation of Flutter (BA p. 258)

• Purely rotational motion of the typical section

 $I_{\alpha} \ddot{\alpha} + K_{\alpha} \alpha = M_{y}$

- Approximate form: $I_{\alpha} + \frac{\pi}{2} \rho_0 b^3 S \Big|_0^1 + a^2$ $\int_{0}^{3} b^{3}S\left(\frac{1}{2}+a^{2}\right)\left|\ddot{\alpha}-\frac{\partial M_{y}}{\partial \dot{\alpha}}\dot{\alpha}+\right|K_{\alpha}-\frac{\partial M_{y}}{\partial \dot{\alpha}}\left|\alpha=0\right|$ $2'$ (8) M_{v} , $\Big|$ *M* $I_{\alpha} + \frac{\pi}{2} \rho_0 b^3 S \left[\frac{1}{2} + a^2 \right] \left| \ddot{\alpha} - \frac{C M y}{2} \dot{\alpha} + \right| K_{\alpha} - \frac{C M y}{2} \left| \alpha \right|$ α and α $\begin{bmatrix} \pi & \pi & \pi^3 \pi \end{bmatrix}$ $\begin{bmatrix} 1 & \pi^2 \end{bmatrix}$ $\begin{bmatrix} \ddots & \partial M_y & \ddots & \partial M_y \end{bmatrix}$ $\left[I_{\alpha} + \frac{\pi}{2}\rho_0 b^3 S\left(\frac{1}{8} + a^2\right)\right] \ddot{\alpha} - \frac{\partial H_y}{\partial \dot{\alpha}} \dot{\alpha} + \left[K_{\alpha} - \frac{\partial H_y}{\partial \alpha}\right] \alpha =$ ∂

if $\frac{\partial}{\partial \dot{\alpha}}, \frac{\partial}{\partial \alpha}$ are known, \rightarrow second-order, damped-parameter system with 1DOF $\frac{\partial M_y}{\partial \dot{\alpha}}, \frac{\partial M_y}{\partial \alpha}$ are known, →

- $-$ Laplace transform variable p, characteristic polynomial $a_0 p^2 + a_1 p + a_2$ two possible ways of instability
	- I) *α* coeff. (+) → (-), $a_2 \le 0$ in Routh's criterion → "torsional divergence" …negative "aerodynamic spring" about E.A. overpowers *K*^α
	- II) $\frac{\partial M_y}{\partial x}$ (-) \rightarrow (+), $a_1 \le 0$ in Routh's criterion \rightarrow dynamic instability $\partial \dot{\alpha}$ entirely aerodynamic "negative" damping $\frac{\partial M_{y}}{\partial x^{2}}$ (−) → (+), $a_{1} \leq 0$ in Routh's criterion → $I_m\left\{M_y\right\}=0$

Physical Explanation of Flutter

- Qualitative explanation of negative damping
	- $-$ principal part L_{σ} ... due to the incremental a.o.a, in phase with α , e.a. at ¼ chord

adding to the torsional spring K_α when $a<-\frac{1}{2}$ \rightarrow adding to the torsional spring K_{α} when $a < -\frac{1}{2}$

- $-$ bound circulation Γ_o ... changing with time. Since the total circulation is const., countervortices strength are induced shed from the trailing edge \rightarrow wake vortex sheet
	- \rightarrow out-of-phase loading is induced (upwash) at low k
- upwash... produces additional lift L_{2} \Rightarrow when e.a. lies ahead of 1⁄4 chord, the moment due to $L_{\scriptscriptstyle 2}$ is in the same sense of $\dot{\alpha} \rightarrow$ net positive work per cycle of the wing "negative damping"
- $-$ at higher k , damping becomes $(+)$ more cycles of wake effects upwash, bound circulation lags behind α , center of pressure of lift oscillates

Physical Explanation of Flutter (BA p.258)

i) Pure rotational system (1 D.O.F)

 $I_{\alpha} \ddot{\alpha} + K_{\alpha} \alpha = M_{y}$

2 D. O. F. system

$$
m[\dot{h} + \omega_h^2 h] + S_\alpha \ddot{\alpha} = -qS \frac{\partial G}{\partial \alpha} \left[\alpha + \frac{\dot{h}}{U} \right] \qquad e = \begin{cases} b \left[\frac{1}{2} + a \right] \\ b \left[\frac{1}{2} + a \right] \end{cases}
$$

$$
S_\alpha \ddot{h} + I_\alpha \left[\ddot{\alpha} + \omega_\alpha^2 \alpha \right] = qS \frac{\partial G}{\partial \alpha} e \left[\alpha + \frac{\dot{h}}{U} \right] \qquad e = \begin{cases} b \left[\frac{1}{2} + a \right] \\ b \left[\frac{1}{2} + \left(\frac{\gamma + 1}{4} \right) M \frac{A w}{2b^2} \right] \text{Piston theory} \end{cases}
$$

―Dimensionless frequency and damping

- 1) $U = 0 \approx 1/2$ critical $U/b\omega_{\alpha}$... mode shape remains the same as for free vibration, involving pure rotation about an axis
- II) rotation axis moves forward, as indicated by falling amplitude of bending
- III) gradual suppression of h ... caused by lift variation due to torsion, lift, in phase with α drives the bending freedom at ω greater ω_h \rightarrow response to it has a maximum downward amplitude at the instant of maximum upward force

2 D. O. F. system

―Dimensionless frequency and damping

IV) simultaneously ω drops... lift constitutes a negative "aerodynamic spring" on the torsional freedom with "spring constant" ~ dynamic pressure

V) small advances in $\,\varphi_{h\cdot\cdot\cdot}$ due to lift, due to $\,\dot{h}\,$

VI) flutter occurrence ... bending amplitude $=0$, only pure rotational oscillation about E.A., no damping acts

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

Flutter of a simple system 2 D.O.F (BAH p. 532)

- ― flutter from coupling between the bending and torsional motions the most dangerous but not the most frequently encountered
- ― Equations of motions $\begin{array}{c} \end{array}$ \int $\left\{ \right.$ $\sqrt{2}$ $+ I_{\alpha} \ddot{\alpha} + I_{\alpha} \omega_{\alpha}^2 \alpha = Q_{\alpha} =$ $+ S_{\alpha} \ddot{\alpha} + m \omega_h^2 h = Q_h =$ *y* p_h $n = Q_h$ $S_{\alpha} \ddot{h} + I_{\alpha} \ddot{\alpha} + I_{\alpha} \omega_{\alpha}^2 \alpha = Q_{\alpha} = M$ $m\ddot{h} + S_{\alpha}\ddot{\alpha} + m\omega_h^2 h = Q_h = -L$ α α α α α α α $\alpha + L_{\alpha}\omega_{\alpha}\alpha$ $\alpha + m\omega$ 2 2 $\ddot{h} + I_{\alpha} \ddot{\alpha}$ $\ddot{h} + S_{\alpha} \ddot{\alpha}$
- ― Simple harmonic motion $\overline{\mathcal{L}}$ $\begin{array}{c} \hline \end{array}$)
1 \int $-\omega^2 S_{\alpha} h - \omega^2 I_{\alpha} \alpha + \omega^2 I_{\alpha} \alpha =$ [−] [−] ⁺ ⁼ [−] [⇒] $h = \overline{h}_0 e^{i\omega t}$, $\alpha = \alpha_0 e^{i(\omega t + \varphi)} = \overline{\alpha}_0 e^{i\omega t}$ $S_{\alpha}h - \omega^2 I_{\alpha} \alpha + \omega^2 I_{\alpha} \alpha = M_{y}$ $mh - \omega^2 S_{\alpha} \alpha + \omega h^2 mh = -L$ ω Δ Ω $-\omega$ Ω α $+\omega$ Ω ω mn $-\omega$ S $\alpha + \omega$ α α α α α $2S h \omega^2 I \alpha + \omega^2$ $2ab$ ω^2 \sim ω^2 2 0 $\int_{0}^{\tau}e^{i\omega t}$, $\alpha=\alpha_{0}e^{i(\omega t+\varphi)}$ *b b b ba bx*_α

Flutter of a simple system 2 D.O.F

$$
- \text{Aerodynamic operator}
$$
\n
$$
L = -\pi \rho b^2 \omega^2 \left\{ L_h \frac{h}{b} + \left[L_\alpha - L_h \left(\frac{1}{2} + a \right) \right] \alpha \right\}
$$
\n
$$
M_y = -\pi \rho b^2 \omega^2 \left\{ \left[M_h - L_h \left(\frac{1}{2} + a \right) \right] \frac{h}{b} + \left[M_\alpha - (L_\alpha + M_h) \left(\frac{1}{2} + a \right) + L_h \left(\frac{1}{2} + a \right)^2 \right] \alpha \right\}
$$
\nfunction of L_h , L_α , M_α (incompressible) K , M_α ...1/2

Plugging the aerodynamic operator, and set the coefficient determinant to zero

- \bullet characteristic eqn. for $\omega_{\scriptscriptstyle \alpha}/\omega_{\scriptscriptstyle \cdots}$ implicitly dependent on the 5 $^{\circ}$ dimensionless system parameters
	- : axis location *a*

$$
\omega_h/\omega_a
$$
: bending-torsion frequency ratio
\n $x_a = S_a/mb$: dimensionless static unbalance
\n $r_a = \sqrt{I_a/mb^2}$: radius of gyration
\n $m/\pi \rho b^2$: density ratio

• parametric trends of U_F in terms of 5 parameters
$-$ Divergence speed U_p

both U_D above and the flutter speeds in Fig 9-5 from the 2-D aerodynamic strip theory \rightarrow the predicted $|U_{F}$ will not exceed $|U_{D}$

- Fig. 9-5 (A)

- Fig. 9-5 (B)

- Fig. 9-5 (C)

Fig. 9-5(C). Dimensionless flutter speed $U_F/b\omega_\alpha$ plotted against frequency ratio ω_h/ω_α for various values of radius of gyration r_α^2 ; $a = -0.2$, $x_\alpha = 0.1$.

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- Fig. 9-5 (D)

Fig. 9-5(A), (C)... dip near $\omega_{h}/\omega_{\alpha} \approx 1 \rightarrow$ can bring up with small amounts of structural friction

(B)... density ratio increase \rightarrow raise flutter speed (flutter speed vs. altitude)

"mass balancing"… flutter speed is more sensitive to a change of x_α

 \rightarrow Not much balancing is needed to assure safety form bending-torsion flutter

Fig. 9-5(D)... flutter is governed by $(a + x_{\alpha})$ chordwise c.g.

Garrick and Theodorsen (1940):

$$
\frac{U_F}{b\omega_\alpha} \approx \sqrt{\frac{m}{\pi \rho b^2} \frac{r_\alpha^2}{\left[1 + 2(a + x_\alpha)^2\right]}}
$$

From a.c. to c.g.

- Panel Flutter:
	- Self-excited oscillation of the external skin of a flight vehicle when exposed to airflow on that side (supersonic flow)

• For simplicity, consider a 2-D simply supported panel in supersonic flow; for a linear panel flutter analysis, the equation of motion is:

$$
D\frac{\partial^4 w}{\partial x^4} + m\ddot{w} = P_A
$$
, where $D = \frac{Eh^3}{12(1-v^2)}$ (isotropic, plate stiffness)

 $m =$ mass/unit, h : thickness

 $P_A =$ aerodynamic pressure

$$
For M > 1.6, P_A \approx \frac{-\rho V^2}{\sqrt{M^2 - 1}} \left\{ \frac{\partial w}{\partial x} + \frac{M^2 - 2}{M^2 - 1} \frac{1}{V} \frac{\partial w}{\partial t} \right\}
$$

Putting all together, the governing equation becomes:

$$
D\,\frac{\partial^4 w}{\partial x^4} + \frac{\rho V^2}{\sqrt{M^2 - 1}}\,w' + \frac{\rho V}{\sqrt{M^2 - 1}}\frac{M^2 - 2}{M^2 - 1}\,\dot{w} + m\ddot{w}
$$

It is subject to:

$$
w(0,t)=w(a,t)=0
$$

$$
w''(0,t) = w''(a,t) = 0
$$

- They are the simply supported B.C
- Using Galerkin Method $\Rightarrow w(x,t) = \sum_{i=1}^{n} \sin i \frac{\pi x}{a} q_i(t)$
- satisfies all the B.C.'s

- By setting: $q_j(t) = \bar{q}_j e^{\bar{p}t}$
- we get:

 $\begin{bmatrix} (p^2 + a_{\infty}p + {\omega_1}^2) & -\frac{8{\omega_1}^2}{3\pi^2}\lambda_F \\ \frac{8{\omega_1}^2}{3\pi^2}\lambda & (p^2 + a_{\infty}p + 16{\omega_1}^2) \end{bmatrix} = 0$ Anti-symmetric

where a_{∞} : speed of sound, $\lambda = \frac{\rho V^2 a^3}{D\sqrt{M^2-1}}$: critical speed param.

$$
\omega_1 = \pi^2 \sqrt{\frac{D}{\pi a^4}}
$$
: lowest natural frequency

- A typical result :

Theoretical considerations of panel flutter at high supersonic mach numbers (AIAA J, 1966)

•Basic Panel Flutter Eqn. and its Sol.

•A rectangular panel simply supported on all 4 edges and subject to a supersonic flow over one side, midplane compressive force Nx, Ny , elastic foundation K structural damping G_s

$$
D\Delta^4 w = \Delta p_A - \rho_M h \frac{\partial^2 w}{\partial t^2} - Nx \frac{\partial^2 w}{\partial x^2} - Ny \frac{\partial^2 w}{\partial y^2} - Kw - G_s \frac{\partial w}{\partial t}(1)
$$

•Aerodynamic pressure for high supersonic Mach No.

$$
\Delta p_A \approx -\left[\frac{\rho_A U^2}{(M^2 - 1)^2}\right] \cdot \left[\frac{\partial w}{\partial x} + \frac{1}{U} \frac{\partial w}{\partial t} \frac{M^2 - 2}{M^2 - 1}\right](2)
$$
\n
$$
(1) + (2) : \text{ non-dimensional coordinates introduced } \zeta, \eta, \tau
$$
\n
$$
\frac{\partial^4 w}{\partial \zeta^4} + 2\left(\frac{a}{b}\right)^2 \frac{\partial^4 w}{\partial \zeta^2 \partial \eta^2} + \left(\frac{a}{b}\right)^4 \frac{\partial^4 w}{\partial \eta^4} + \lambda \frac{\partial w}{\partial \zeta} + \pi^4 g + \frac{\partial w}{\partial \tau} + \pi^4 \frac{\partial^2 w}{\partial \tau^2}
$$
\n
$$
+ \pi^4 kw + \pi^2 \gamma_x \frac{\partial^2 w}{\partial \zeta^2} + \pi^2 \gamma_y \left(\frac{a}{b}\right)^2 \frac{\partial^2 w}{\partial \eta^2} = 0
$$

• Additional non-dimensional parameters

$$
\lambda = \frac{\rho_A U^2 a^3}{D(M^2 - 1)}: \text{dynamic pressure parameter}
$$
\n
$$
g_T = g_A + g_S: \text{total damping parameter}
$$
\n
$$
g_A = a335 \left\{ M(M^2 - 2)(M^2 - 1)^{\frac{3}{2}} \right\} * \left(\frac{\rho_A}{\rho_M} \right) \left(\frac{c_A}{c_M} \right) \left(\frac{a}{h} \right)^2 : \text{aerodynamic damping coefficient}
$$
\n
$$
g_s = \frac{g_i \omega_i}{\omega_0} : \text{effective structural damping coefficient}
$$
\n
$$
\frac{a}{b} = \text{aspect ratio}
$$
\n
$$
k = \frac{k a^4}{\pi^4 D} : \text{foundation parameter}
$$
\n
$$
\gamma_x = \frac{N_x a^2}{\pi^2 D} : \text{longitudinal compression parameter}
$$
\n
$$
\gamma_y = \frac{N_y a^2}{\pi^2 D} : \text{lateral compression parameter}
$$

• Simply supported B.C's
At $\eta = 0,1; w = 0, \frac{\partial^2 w}{\partial v^2} = 0$ • Solution procedure $w(\zeta, \eta, \tau) = \overline{w}(\zeta) [\sin m \pi \eta] e^{\theta \tau}$ $\bar{\theta} = \bar{\alpha} + i \bar{w}$ O.D.E $\frac{d^4\overline{w}}{d\zeta^4}+C\frac{d^2\overline{w}}{d\zeta^2}+A\frac{d\overline{w}}{d\zeta}+(B_R+iB_I)\overline{w}=0$ $C = \pi^2 \left[-z \left(\frac{ma}{h^2} \right) + \gamma_x \right]$ $A = \lambda$ $B = B_R + iB_I = \pi^4 \left[\left(\frac{ma}{h^2} \right) + k - \left(\frac{ma}{h} \right) \gamma_y^2 + g_T \bar{\theta} + \bar{\theta}^2 \right]$

General solution of O.D.E $\overline{w}(\zeta) = C_1 e^{z_1 \zeta} + C_2 e^{z_2 \zeta} + C_3 e^{z_3 \zeta} + C_4 e^{z_4 \zeta}$ This along with the B.C, the determinant must be: - Equal to zero for nontrivial solutions

$$
\Delta = \begin{vmatrix} 1 & 1 & 1 & 1 \\ z_1^2 & z_2^2 & z_3^2 & z_4^2 \\ e^{z_1} & e^{z_2} & e^{z_3} & e^{z_4} \\ z_1^2 e^{z_1} & z_2^2 e^{z_2} & z_3^2 e^{z_3} & z_4^2 e^{z_4} \end{vmatrix} = 0
$$

- For low values of the determinant, the eigenvalues are real. $B_I = 0$
- Above a certain value of A, they become imaginary. $B_I \neq 0$

Complete panel behavior

- $\bar{\theta} = \bar{\alpha} + i \bar{\omega}, \omega, \gamma, t, dynamic pressure$ - Plotting
- The Frequency coalescence: Instability occurs at $\bar{\alpha}=0$

$$
\frac{Q_I}{(-Q_R)^{\frac{1}{2}}}=g_T
$$

- Flutter Frequency:

$$
\overline{\omega_F} = (-Q_R)^{\frac{1}{2}} = \omega_F/\omega_0
$$

- Deflection shapes
	- •Simple sine shape standing-wave type for $A=0$
	- •Standing-wave type at low A
	- •Traveling-wave type at high values of A

Active Aeroelasticity and Rotorcraft Lab., Seoul National University

- With the abundance of computational resources and algorithms, there has been a great development in two areas:
- CFD: Computational Fluid Dynamics
- CSD: Computational Structural Dynamics
	- CAE: Computational Aeroelasticity

- Difficulties arise from the nature of the two methods.
	- CFD: Finite difference discretization procedure based on Eulerian (spatial) description
	- CSD: finite element method based on Lagrangian (material) description.
- Define the nature of the coupling when combining the two numerical schemes.

i) Tightly (or closely) coupled analysis:

- Most popular
- Interaction between CFD and CSD codes occurs at every time step
- Guarantee of convergence and stability

ii) Loosely coupled analysis:

- CFD and CSD are solved alternatively
- Occasional interaction only

=> Difficulties in convergence

iii) Intimately coupled (unified) analysis:

- The governing equations are re-formulated and solved together

i) – Tightly (or closely) coupled analysis:

End of Chapter III

Active Aeroelasticity and Rotorcraft Lab.

